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Abstract

Binary comparison operators form the basis of consumer set theory. If humans could only per-
form binary comparisons, the most efficient procedure a human might employ to make a complete
preference ordering ofn items would be an log2n algorithm. But, if humans are capable of assigning
each item an ordinal utility value, they are capable of implementing a more efficient linear algo-
rithm. In this paper, we consider six incentive systems for ordering three different sets of objects:
pens, notebooks, and Hot Wheels. All experimental evidence indicates that humans are capable of
implementing a linear algorithm, for small sets.
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1. Introduction

We experimentally examine the algorithms that individuals use to order sets of objects.
Our focus is not the static properties of the ordered objects, but rather the properties of the
algorithms that humans use to make the ordering. By comparing human algorithms with
known computer ordering algorithms, we can determine their properties. We use complex-
ity theory to measure cost and to formulate hypotheses to test among alternative human
algorithms.

If humans were limited to a binary ranking operator in determining a complete preference
ordering for a set ofn items, humans could employ an algorithm no more efficient than
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n log2n binary ranking operations in both the worst and expected cases.We discuss several
of these sorting algorithms and provide a brief survey of computational complexity in
Section 2. However, if consumers were able to assign an ordinal utility value to each item
in the set, they could employ a conceptually simple linear bucket sort algorithm.

The experimental design for ordering sets of pens, notebooks and Hot Wheels and the
problem of incentives are described inSection 3and the observations of the subjects’
behavior are presented inSection 4. The observations and regression results presented in
Section 5show that the subjects are using the linear modified bucket sort to order the selected
objects. InSection 6, our ordering data also indicates that humans are not consistent in their
orderings of pens. Finally, we conclude inSection 7.

2. Computer ordering

In this section, we examine ordering algorithms, commonly referred to as sorting algo-
rithms,Aho et al. (1974), Knuth (1973), Mehlhorn (1994). In this paper we asymptotically
compare algorithms on the time to sort as the number of items,n, increases. Roughly speak-
ing, worst case (expected value) analysis is finding the algorithm which has the best worst
case (expected value) performance for all possible (specified distribution of) initial positions
of the objects to be sorted.

To define the asymptotically computational complexity, letY = Y (n) be a nonnegative
function which we wish to compare with the cost function,C = Cϕ(n). FrequentlyY is n,
n2 etc. Consider the following definitions:

D1.C isO(Y) if there existi, j > 0 such thatC(n) ≤ jY(n) for all n > i.
D2.C isΩ(Y) if there existi, j > 0 such thatC(n) ≥ jY(n) for all n > i.
D3. A problem has computational complexityY if there exists an efficient algorithmϕi

such thatCϕi isO(Y) and for all algorithmsϕj Cϕj is
(Y).

In order to discuss sorting algorithms consider a setBn = b1, b2, . . . , bn of close sub-
stitutes. First, we characterize algorithms based on an information operation to determine
the attributes of each good and a binary comparison operator. We define the information
operatorD(bi) = ai . Because subjects do not determine the position of each molecule on
the surface of the test objects, the information operator returns a truly minuscule fraction
of the potentially observable attributes. Indeed, we assume likeMyers and Alpert (1968)
the subjects employ an information operator that determines only those attributes necessary
to make comparisons. For a discussion of the affect of varying amounts of information
on decisions, seePayne et al. (1993). Minor variations in the information operator among
subjects are considered part of the error term in the regressions.

Subjects use the information operator in order to execute a ranking operator,R(ai, aj )

⇒ bi � bj or bj � bi that determines the preferences between two items,bi and
bj . We do not assume transitivity in this paper because of the increasing empirical evi-
dence of intransitive preferences starting withTversky (1969). Intransitivity will not affect
the complexity of the algorithms, just the extent to which the orderings have desirable
properties.
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We assume each type operatorD(bi) and R(ai, aj ) incurs a cost ofcD and cR
respectively. These costs are considered to be constant both over time and over the
entire set of items. We also assume that each type operatorD(bi) and R(ai, aj ) is
performed in a fixed time oftD and tR, respectively. Thus, we are assuming an equi-
valence between cost and time complexity, a standard assumption in complexity
analysis.

In discussing sorting algorithms we assume that humans will employ the most efficient
algorithm they are capable of implementing. As computer scientists have spent several
decades developing sorting algorithms, it is unlikely that humans intuitively use an algorithm
not mentioned in this section.

Thus, we might expect humans to use a variation of a bubble sort to order a set of pens.
A possible algorithm to order the pens in a complete preference ordering from left to right
is as follows:

(1) write with the first pen,D(P1) = a1, and place on the table;
(2) write with the second pen,D(P2) = a2. If R(a1, a2) ⇒ P2 � P1, placeP2 to the left

of P1, else placeP2 to the right ofP1;
(3) now consider the placement of themth pen after them − 1 pens have been ordered.

Starting with the pen furthest to the right, comparePm with each pen moving to the left
until the following condition is satisfied:Pm � Pi andPi+1 � Pm. PlacePm between
Pi andPi+1. If Pm � Pm−1 placePm to the left ofPm−1;

(4) repeat (3) until all pens are ordered.

Because this algorithm requires 1+ 2+ 3+ · · · + n− 1 (=n(n− 1)/2) binary comparisons
in the worst case and half that number in the expected case, it isO(n2) both in the worst
and expected cases. The absolute cost, but not the asymptotic cost of this algorithm can be
reduced by starting the comparison of each new pen with the existing ordering in the middle
and proceeding up or down depending on the pairwise comparisons. If the sorter started in
the middle, on average he would only have to compare the new pen with 1/4 of the pens in
the existing ordering.

Efficient algorithms exist for ordering which are onlyO(n log2n) in the worst and ex-
pected value cases,Mehlhorn (1994). Let us consider one of the algorithms efficient in the
worst case (and expected case), Mergesort. A human might employ this algorithm to order
16 pens in the following manner:

(1) write with all sixteen pens;
(2) lay the pens in a row;
(3) merge the first with the second, the third with the fourth,. . . , the 15th with the 16th.

Merging the first with the second requires comparing the first with the second and
ordering them in a column with the preferred item first. This results in eight columns
of two members each;

(4) merge the first column with the second, the third with the fourth,. . . , the seventh with
the eighth. This step results in four columns of four members each;

(5) in a similar fashion, merge the four columns merged into two columns of eight members
each;

(6) merge the two columns into one ordered column.
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Another efficient algorithm in the worst case is the Heapsort algorithm and a third algo-
rithm, efficient in the expected value case, is the Quicksort algorithm. Because each of these
algorithms take considerable time to understand, they are not likely to be used intuitively.
Nevertheless, if the subjects were using one of these algorithms it would be observable from
the way they organized the objects and from their hand motions.

But, if humans can assign ordinal utility values to items in a set, then humans could use
a more efficient algorithm. Consider the bucket ordering algorithm used to sort it n integers
all contained in the interval(k, l), wherek andl are integers. This sorting process uses the
following algorithm for(l − k − 1) integers on the interval:

(1) create(l − k − 1) buckets;
(2) pick an integer and determine its value;
(3) place it in the bucket with the corresponding value;
(4) repeat (2) and (3) until all numbers are assigned to buckets.

The integers are now sorted. Thus, a human wishing to efficiently sort a set of integers
could use a bucket sort. This idea, however, is not limited to sorting integers. Consider a
human orderingn items in a setB. If a human can use an information operatorG(bi) to
assign an ordinal utility value to each item, then the human could use a placement operator
P(bi) to place eachbi in the correct bucket. The number ofG andP operations isO(n)

for this bucket sort, thus the computational complexity isn in time and cost assuming each
operation has fixed unit cost and time. Defects in assigning ordinal utility values would
affect the consistency of the outcome, but not the efficiency of the algorithm. A bucket sort
is the only known linear algorithm for sorting.

In determining what algorithm subjects use we shall:

(1) observe subjects’ object organization and the hand motions;
(2) analyze the regression results;
(3) ask the subjects questions.

3. Experimental ordering design

3.1. Groups and subgroups

To determine how humans actually establish a complete preference ordering, we selected
320 University of Texas at Austin undergraduates in ten groups of 32 divided into subgroups
of eight subjects. Each subject was given a practice set of three objects to sort to ensure
that they were following the instructions. Then each subject ordered three sets of objects as
shown below:

Groups, subgroups and the size of the three sets to order

Group Subgroup

1 2 3 4

1–6 (3, 6, 17) (3, 7, 16) (3, 8, 15) (3, 9, 14)
7–10 (3, 5, 9) (3, 6, 10) (4, 7, 11) (4, 8, 12)



A. Norman et al. / J. of Economic Behavior & Org. 50 (2003) 249–262 253

Thus, each of the eight members of subgroup 3, group 9 orders sets of 4, 7, and then 11
objects. The numbers were chosen to provide data over many numbers for the regression
analysis.

3.2. Objects

We choose pens, notebooks, and Hot Wheels for objects that student experimenters
thought student subjects would be familiar. We made a concerted effort to ensure that the
objects were distinctive. We included pens with various types of points, ink, colors, size,
style and cost. Similarly, we selected notebooks on which the students might take their
class notes, including notebooks of different sizes from 3× 5 to 8.5 × 11, color of paper,
binding, writing pads such as legal pads and we even included a clipboard and three-ring
binder. From a very large selection of Hot Wheels, we selected sports cars, station wagons,
pickups, a garbage truck, and even a tank. In selecting sets of objects to order we made an
effort to make the sets representative of the various types of objects in the overall set.

Subjects performed strong and weak orderings on the listed objects:
Objects for experiment

Group 1 2 3 4 5 6 7 8 9 10
Ord S W S S S S S S S S
Obj P P P P P P P NB HW HW

where Ord, S, and W are ordering, strong, and weak, respectively. Obj, P, NB, and HW are
object, pens, notebooks, and Hot Wheels, respectively.

3.3. Evaluation

There are two processes in this experiment i.e. the evaluation of objects and the ordering or
placement of objects. Since our focus is ordering, we want the subject to evaluate each object
in an experiment in approximately the same time. In an earlier version of the experiment,
subjects start writing their signatures initially with each pen and then gradually reduce the
amount they wrote to a short wiggle. In order to ensure that subjects evaluated each object
in a uniform time, subjects were asked to write ‘ABC’ with each pen, write ‘ABC’ on each
notebook, and roll each Hot Wheel down a runway.

3.4. Incentives

The fundamental issue in this experiment is choice of algorithm and how well the subjects
execute the selected algorithm is secondary. Since our paper tests the choice of algorithm
and not the choice of objects, by the logic of choice mechanisms, ideally we should give the
subjects algorithms to take home. But, as this would not be a reward to most students, our
approach to incentives was to show that the results are robust to variations in the incentives.

The design and incentives must consider the fact that ordering is tedious. In reviewing
a previous version of the experiment for which the subjects had to order 5, 10, 15, 20, and
then 25 pens, we observed that some subjects had a very large number of inconsistencies.
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In this experiment, the number of sets of objects the subjects had to order was reduced to
three and the largest set had less than 20 objects. When asked, subjects indicated that they
were more than adequately compensated for the task as the total time involved was less
than 15 min and subjects were paid over US$ 5 in cash and goods. The fact that all of our
incentive systems had a flat fee component was to ensure the subjects were easy to recruit
and felt adequately compensated. In the table below a flat fee of US$ 4 is indicated by F4.

We considered two incentives to increase the consistency of the orderings. If the subjects
were completely consistent, they would be ordering the objects with consistent preferences.
For groups 3 and 6–7, subjects were paid US$ 0.25 for consistency, indicated by 25↑, in each
binary comparison and for group 4 subjects were deducted US$ 0.25 for each inconsistency,
indicated by 25↓. A colleague suggested that we make the experiment incentive compatible
with the secondary objective by randomly choosing two objects in the ordering and giving
the subjects the object with the higher position in the ordering. We employed this incentive
for the 2nd and 3rd orderings in all groups with the letters ‘Ra’ in the incentive table below.

Both these incentives have positive and negative features. Because both of these incentives
emphasis binary choice, they may not be neutral among the class of possible algorithms.
The random award of an object from the ordering is incentive compatible with the secondary
objective, but may not be very salient. Specific payment for consistency is probably more
salient, but might induce the subjects to modify their preferences.

For the pen orderings we tried seven variations in the design to test how the variation
affected the ordering result. For the notebooks we tried one incentive system. For the Hot
Wheels we used the same incentives with and without prior evaluation in which subjects
developed evaluation criteria with 10 Hot Wheels not in the experiment prior to the exper-
iment. A table of the incentive systems for the various groups is presented below:

Incentives for each group

Group Incentive

1 F4
2 F4
3 F2+25↑
4 F5+25↓
5 F4+Ra
6 F4+Ra+25↑
7 F4+Ra+25↑
8 F4+Ra
9 F5+Ra
10 F5+Ra

3.5. Evaluate and place

In the previous version of the experiment about 90 percent of the subjects wrote with a
new pen and placed it in the partial ordering before writing with a new pen. About three of
the subjects in the early rounds wrote with all the pens before ordering any of them. Two of
the subjects switched to the dominant algorithm after the first set because processing the list
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became progressively tedious. The one subject who wrote with all the pens before trying
to order them with each set presented to him became increasingly frustrated with trying to
remember which pens he had pulled from the list. Since processing the list is possibly a
quadratic process and this algorithm is less efficient, we organized the instructions so that
all the subjects would shift to the dominant ‘evaluate and place’ algorithm in the practice
round. Subjects could have used the list processing algorithm, but it was more natural to
shift immediately to the ‘evaluate and place’ algorithm.

3.6. Additional measurements

Many subjects order pens quickly. Using the ‘evaluate and place’ algorithm some subjects
can order 16 pens in less than a minute. We performed additional consistency tests to check
how consistently the subjects were ordering the objects.

For each subgroup some pens from the second ordering were included in the set of pens
given to the subject for the third ordering. This helped verify consistency in ordering between
the second and third orderings. The rank position of objects passed without the subjects’
knowledge from the completed ordering 2 to the third set to be ordered are displayed. Note:
a higher number is preferred over a lower number.

Rank position of objects: passed from ordering 2 to third set to be ordered

Groups Subgroup

1 2 3 4

1–6: objects in 2⇒ 3 1,2,3,4,5,6 2,3,4,5,6 2,4,6,8 3,6,9
7–10: objects in 2⇒ 3 2,4,5 2,4,5 3,5,6 3,5,6

where for Group 8, subgroup 2, objects in positions 2, 4, and 5 of the second ordering are
passed to the third set to be ordered. Groups 3 through 10 were asked to make a binary
comparison with selected pairs after completing the third ordering. Subjects did not see us
select the objects and could not see the previous ordering and had to make each decision with
only the information gained from writing the two ‘ABC’s or rolling the two Hot Wheels
down the track and their previous experience.The selected pairs were:

Rank position of objects for binary comparison

Group Subgroup Binary comparisons

3–4 1 (12, 16), (3, 7), (11, 14), (5, 8), (13, 15), (4, 6), and (9, 10)
3–4 2 (11, 15), (2, 6), (10, 13), (4, 7), (12, 14), (3, 5), and (8, 9)
3–4 3 (10, 14), (1, 5), (9, 12), (3, 6), (11, 13), (2, 4), and (7, 8)
3–4 4 (10, 14), (1, 5), (9, 12), (3, 6), (11, 13), (2, 4), and (7, 8)
4–6 1 (9, 12), (8, 10), (6, 7)
4–6 2–4 (8, 11), (7, 9), (5, 6)
7–10 1 (5, 8), (4, 6), (2, 3)
7–10 2–3 (6, 9), (5, 7), (3, 4)
7–10 4 (7, 10), (6, 8), (4, 5)
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3.7. Bubble sort

We also trained 16 subjects in subgroups of four to perform a bubble sort using Group 10
specifications. Prior to the experiment they examined Hot Wheels not used in the experiment
and wrote a paragraph giving their evaluation criteria. Subjects were taught the bubble sort
procedure on the practice round and then used this algorithm to order three additional sets.
To keep the bubble sort as simple as possible, we had each subject start with the worst
Hot Wheel and make binary comparisons up the ordering until he or she found the proper
position for the Hot Wheel being inserting into the order.

Complete experimental instructions are available from the first author.

4. Observations

4.1. Basic algorithm

Given the instructions, all subjects used some variation of the ‘evaluate and place’ al-
gorithm. They ranked the sets of objects in a sequential manner creating a partial ordering
of the first 1,2,3, . . . , k objects until finished. With the exception of Group 9, almost all
subjects appeared to evaluate pens and notebooks at a constants rate because they wrote
ABC with pens on paper, wrote ABC on notebooks, or rolled the Hot Wheel down the run-
way and immediately proceeded to the placement phase. After evaluating each new object,
subjects, with few exceptions, thought for a few seconds before placing the object into the
partial ordering.

4.2. Variations

In each group, there were usually one or more outliers whose behavior deviated from
the rest. These deviations usually were mostly in how they evaluated the objects and
less often in the way they placed the object. Rather than trying to create criteria for
eliminating outliers, we made the groups large enough so that the results are robust to
outliers.

An important variation in ordering pens is how many times the subjects wrote with each
pen. Forty-one of the 128 subjects in groups 1–4 wrote ‘ABC’ with each pen only once,
83 subjects made less than six rewrites and three subjects made more than 32 rewrites.
Most subjects rewrote with pens occasionally when they needed to refresh their memory
about a particular pen. One subject tentatively placed each new pen in the partial pen
ordering and rewrote with the pen on both sides, resulting in 57 rewrites. The subject
who made 87 rewrites wrote ‘ABC’ with each pen several times and subjectively weighed
each pen in his hand. Another subject post-processed the ordering according to visual
characteristics alone without rewriting with any of the pens. These subjects expended much
greater effort in evaluating each pen, but their actions certainly are not a priori a nonlinear
algorithm.

Most subjects processed the pens in the order that they were given. A minority pro-
cessed pens in subgroups by observable characteristics. One subject created columns for
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the pens of each color, for example, all the ‘ABCs’ for the red pens were written in
one column. This procedure facilitated placing the pens in a consistent manner in each
ordering.

4.3. Evaluation problems

In Group 9 many subjects ordering Hot Wheels took less time with the larger third
ordering than the smaller second ordering. It appeared that subjects needed extra time to
create evaluation criteria in rounds 1 and 2. For example, one subject in Group 9 rolled
each Hot Wheel at least three times down the track during the first two orderings. Then,
she appeared to have made up her mind and only rolled each Hot Wheel down the track
once during the third ordering. She finished the third ordering in less time than the second,
though the second ordering had about half as many Hot Wheels. We ran the experiment
again with Hot Wheels, Group 10, where the subjects were given 10 Hot Wheels not in the
experiment and asked to write a paragraph on their evaluation criterion. With prior criteria
creation, subjects appeared to evaluate the Hot Wheels in the experiment at a constant
rate.

From observing the subjects’ object organization and hand motions we can exclude
the efficient binary sort algorithms. Subjects trained to perform a bubble sort general
placed the Hot Wheel to be placed over the Hot Wheel with which they were mak-
ing a binary comparison. They proceeded up the partial ordering until they placed the
new addition. Because in Groups 1–10 the final placement of an object in partial
ordering was almost always within one object of the initial placement we can
exclude a bubble sort because the time to perform a binary comparison is clearly
observable.Our maintained hypothesis is that the subjects were using a modified bucket
sort.

Subjects, when asked to describe the algorithm they used subjects, described the criterion
they used rather than how they placed the objects. The one subject who participated in the
experiment and was later one of the new subjects who was trained to perform a bubble sort
was emphatic that she was initially using a bucket sort.

The major difference in the human bucket sort and a computer bucket sort is the creation
of the buckets. In a computer bucket sort the buckets are created before the sort is initiated.
However, in the human bucket sort for a small number of objects, the subjects create buckets
in asingle motion as needed. If the subject decides that a pen should be placed between the
current fourth and fifth pen the subject simply creates a new bucket between the fourth and
fifth pen and the old fifth pen becomes the new sixth pen. If writing with a pen the subject
decides that the pen is much better than the currently ordered pens the subject places the
pen some distance to the right of the existing order.

Some insight into how the subjects placed the pens was obtained by the response of the
first two groups to the following question:

“In placing a new pen into the ordering, I did it by

(a) assigning the pen a number as in the numerical ordering experiment and comparing
with numbers of pens already ordered;
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(b) assigning the pen a verbal descriptor such as “very good” and comparing the pen to the
verbal descriptors of the pens already ordered;

(c) intuitively, without assigning numbers or verbal descriptors.”

Of the 64 subjects asked this question, 3 responded with (a), 13 responded with (b), and
the remaining 48 responded with (c). Thus, they were acting as if they were assigning utility
values.

5. Analysis of algorithms

Before considering the regressions, it is desirable to discuss the relationship between
asymptotic complexity theory and identifying algorithms using regressions based on small
samples. Because the subjects write with each pen and the number of writes plus rewrites
appear linear inn, the regressions should have a linear factor. Complexity theory tells us
that if the subjects were using a binary algorithm operator, we should find a higher power
term to be significant in the regression. The size of the sample required to demonstrate
this depends on the time to perform a binary operation. We determined that the time to
perform a binary comparison is 3.2 s (report available from first author) and we are 90
percent confident that it is greater than 1.5 s. We demonstrate that the number of objects is
adequate.

Let us examine the three hypotheses and the regression results concerning the relationship
between timeT , and the number of pens,X, where we assumeεi to be distributedN(0, σ 2

ε ).
The maintained hypothesis, a bucket sort, is:

Maintained hypothesis: bucket sortTi = βXi + εi

Group Observation β σβ tβ

1 96 7.32 0.21 34.3
2 96 8.62 0.47 18.4
3 96 9.17 0.29 31.3
4 96 8.23 0.31 26.2
5 96 8.60 0.38 22.5
6 96 8.60 0.33 25.7
7 96 9.04 0.43 20.9
6 + 7 192 8.75 0.26 33.3
8 96 10.43 0.35 29.9
9 96 8.69 0.31 27.9
10 96 10.1 0.35 28.9

We know that the function intersects the origin because each subject began working
immediately and, thus, displayed no fixed cost. To test this, we estimated Eq. (1) inclu-
ding an intercept termα. We failed to reject the hypothesis thatα = 0 at the 0.05
significance level. Based on this, we concluded that excluding the constant term is rea-
sonable.
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Now let us consider the first alternative hypothesis: a bubble sort, where the constant
term is for the evaluation process and the quadratic term for the number of binary compa-
risons.

First alternative: bubble sortTi = βXi + γX2
i + εi

Group Observation β σβ tβ γ σγ tγ Power

1 96 7.33 0.82 8.9 −0.00068 0.057 −0.012 0.9(0.9)
2 96 7.72 1.80 4.3 0.065 0.126 0.52 0.9(0.75)
3 96 8.25 1.12 7.3 0.066 0.078 0.85 0.9(0.9)
4 96 7.50 1.21 6.2 0.053 0.085 0.63 0.9(0.9)
5 96 7.50 1.47 5.1 0.080 0.103 0.78 0.9(0.8)
6 96 6.43 1.27 5.1 0.156 0.088 1.77 0.9(0.68)
7 96 7.35 1.63 4.5 0.184 0.171 1.07 0.8(0.5)
6+7 192 7.73 0.84 9.2 0.084 0.065 1.28 0.9(0.9)
8 96 9.81 1.32 7.4 0.068 0.139 0.49 0.9(0.78)
9 96 10.94 1.16 9.46 −0.244 0.121 −2.02 ANA
10 96 9.71 1.32 7.33 0.043 0.139 0.31 0.9(0.7)

5.1. Groups 1–8 and 10

Because we failed to reject the hypothesis thatγ = 0 at the 0.05 significance level for
all groups except 9 (significantly negative), we consider it reasonable to assume thatγ = 0
in these cases.

5.2. Group 9

The γ coefficient is negative significant indicating that the subjects speeded up in the
third round. Assuming that the subjects had trouble establishing criteria to evaluate the
Hot Wheels and then speeded up once they had decided how to evaluate them, we re-
did the Hot Wheels experiment. Before starting the experiment the subjects were asked
to run 10 Hot Wheels, not in the sets to be ordered, down the track and write a para-
graph describing the criteria they would use to order the sets of Hot Wheels. With prior
evaluation the results for Group 10 show no significant speedup and we can assume
γ = 0.

5.3. Group 6

The one group that is nearly significant is Group 6 for which theγ coefficient would
be significant at 0.08. As there was no observable change in the algorithm used by the
subjects, we decided to obtain more observations to see ifγ would become significant at
0.05. Combining the observations of Groups 6 with 7 results in aγ coefficient would not
be significant for anyα < 0.20.
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5.4. Power

To determine the power of our test that the subjects were using a modified bucket sort
and not a modified bubble sort or an efficient binary sort we tested the following hypo-
theses:

Power of the test

Bubble vs. bucketγ for X2 Efficient binary vs. bucket
γ for X log2X

HO : γ = 0 HO : γ = 0
HA : γ = b/8 HA : γ = b

HO is the hypothesis that the subjects were using a modified bucket sort andHA is the
hypothesis that the subjects were using a modified bubble sort or an efficient binary sort.
On average for the bubble sort, assuming the pens are in random order, each subject starts at
the center, and will have to makem/4 binary comparisons to place the new pen in them pens
that already have been ordered. Using the Gauss formula for summing 1+2+3+· · ·+m =
m(m+ 1)/2 the coefficient of the quadratic termX2 should beb/8, whereb is the time to
make a binary comparison.

For all results except Group 9 the power of the test is >0.8. With our worst case scenario
for the coefficient of a modified bubble sort, the power of the test, shown in above Table,
is still greater than 0.7 for these cases except Groups 6 and 7. For Group 6 combined with
Group 7, the worse case scenario power of the test is >0.9.

5.5. Actual bubble sort

The results of the bubble sort regression where subjects were trained to perform a bubble
sort are:

Actual bubble sort

Group Observation β σβ tβ(96) γ σγ tγ (96)

Bubble 48 7.95 2.68 3.0 0.58 0.28 2.1

It is important to note that for subjects performing a bubble sort the linear evaluation process
is reflected in a significant linear coefficient and the quadratic number of binary comparisons
is reflected in a significant quadratic coefficient. Therefore, for all groups we can reject the
hypothesis that the subjects were using a modified bubble sort.

The prospect for a simple unknown efficient binary comparison with the hand motions
exhibited by the subjects is extremely remote. Nevertheless, let us consider the second
alternative: an efficient binary sort, where the evaluation process is:
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Second alternative: efficient binary sortTi = βXi + γXi log2

Group Observation β σβ tβ γ σγ tγ Power

1 96 6.9 1.5 4.8 0.11 0.39 0.26 0.9(0.9)
2 96 6.3 3.2 2.0 0.63 0.85 0.738 0.9(0.9)
3 96 7.7 2.0 3.9 0.40 0.53 0.76 0.9(0.9)
4 96 6.9 2.1 3.2 0.36 0.57 0.63 0.9(0.9)
5 96 6.9 2.6 2.6 0.47 0.71 0.68 0.9(0.9)
6 96 5.1 2.2 2.3 0.94 0.60 1.56 0.9(0.8)
7 96 6.4 2.8 2.3 0.83 0.88 0.949 0.9(0.75)
6+7 192 6.8 1.6 4.4 0.55 0.44 1.26 0.9(0.9)
8 96 9.7 2.3 4.3 0.25 0.71 0.35 0.9(0.9)
9 96 12.6 1.96 6.4 −1.24 0.62 −2.0 NA
10 96 9.40 2.25 4.2 0.22 0.71 0.32 0.9(0.9)

Because for the efficient binary sort we failed to reject the hypothesis thatγ = 0 at the 0.05
significance level for any of the groups except Group 8 (significantly negative), we consider
it reasonable to assume thatγ = 0 in all these cases. Nevertheless, for completeness sake,
we performed the statistical analysis to show that the subjects were not using some unknown
efficient binary comparison sort. The power of the tests in the worst case scenario are greater
than 0.75 in all relevant cases. Therefore, for all groups we can reject the hypothesis that
the subjects were using an efficient binary comparison algorithm.

Our tests indicate that only a linear function of the number of pens provides a significant
explanation for the variance in the sorting times provided the subjects have established
their ranking criteria prior to starting the ordering experiment. If subjects had used any
algorithm based on binary comparison, a function equal or greater than then log2n should
have proved significant. This means thatT can be considered a linear function ofX and
that we can reasonably conclude that our subjects used a linear algorithm when sorting the
pens, proving our hypothesis that humans act as if assigning ordinal utility values to items
in sets. This hypothesis appears robust to minor changes in the incentives.

6. Consistency

Even if the variation in incentives did not affect the choice of sorting algorithm, this
variation could still affect the performance of the subjects in consistently ordering the sets
of objects. The design of the experiment made creating and testing consistency hypotheses
using ANOVA analysis possible. We shall only show one result. The other results are
available on request.

One result that clearly shows that subjects were trying is that the percent inconsistencies
falls further apart in the rank position are the objects selected for testing. We performed
an ANOVA analysis of the percent consistencies for 1, 2, and 3 positions apart for Group
5 (pens with random), Group 8 (notebooks), Group 9 (Hot Wheels), and Group 10 (Hot
Wheels with prior criteria creation).
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Percent inconsistencies for Groups 5, 8, 9, 10

Group Observation 3 position apart 2 position apart 1 position apart

5 32 19 31 48
8 32 7.8 16 22
9 32 13 16 23
10 32 7.8 4.7 16
SIG(5, 8, 9, 10) 0.0002 0.0014 0.089

The differences in the means are significant for 1 and 2 positions apart at the 1 percent level
and for 3 positions apart at the 8 percent level.

We also created four consistency statistics and used ANOVA to compare (1) random
placement; (2) subjects’ placement under flat incentives; and (3) subjects’ placement under
flat incentives with consistency tests. As would be expected, (3) induces more consistent
behavior than (2), which in turn leads to more consistent behavior than (1).

7. Concluding remarks

Would the human ordering algorithm remain linear for large samples of pens? This may
not be testable because subjects appear to be near their limits to meaningful discrimination
among the number of pens considered in this experiment. Also, there are not really a very
large number of different pens in the marketplace. Humans might linearly sort a large
number of pens into equivalence classes, but the inconsistencies of the current experiment
suggest that the boundaries of these equivalence classes might be fuzzy.
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