Course Overview

- Part I: Many Predictions
 - The Bootstrap
 - Technical Trading Rules
 - Formalized Data Snooping: Reality Check and the Test of Superior Predictive Ability
 - False Discovery, Stepwise Testing and the Model Confidence Set

- Part II: Many Predictors
 - Dynamic Factor Models
 - The Kalman Filter
 - Expectations Maximization Algorithm
 - Partial Least Squares and The 3 Pass Regression Filter
 - Regularized Reduced Rank Regression
 - LASSO
2 Assignments

1. Group Work
 - Group of 2
 - 40% of course
 - If odd number of students, 1 group of 3 allowed
 - Empirical
 - Due Friday Week 9, 12:00 at SBS

2. Individual Work
 - Formal Assignment
 - 60% of course
 - Empirical
 - Due Friday Week 9, 12:00 (Informal)

Both assignment will make extensive use of MATLAB

Presentation and content of results counts – code is not important

Weekly problems to work on will be distributed – a subset of these will compromise the assigned material
The bootstrap is a statistical procedure where data is resampled, and the resampled data is used to estimate quantities of interest.

- Bootstraps come in many forms
 - Structure
 - Parametric
 - Nonparametric
 - Dependence Type
 - IID
 - Wild
 - Block and other for dependent data

- All share common structure of using simulated random numbers in combination with original data to compute quantities of interest

- Applications
 - Confidence Intervals
 - Refinements
 - Bias estimation
Compute standard deviation for an estimator

For example, in case of mean \bar{x} for i.i.d. data, we know

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

is usually a reasonable estimator of the standard deviation of the data

The standard error of the mean is then

$$V[\bar{x}] = \frac{s^2}{n}$$

which can be used to form confidence intervals or conduct hypothesis tests (in conjunction with CLT)

How could you estimate the standard error for the median of x_1, \ldots, x_n?

What about inference about a quantile, for example that 5th percentile of x_1, \ldots, x_n?

Bootstrap is a computational method to construct standard error estimates of confidence interval for a wide range of estimators.
Assume \(n \) i.i.d. random (possibly vector valued) variables \(x_1, \ldots, x_n \).

Estimator of a parameter of interest \(\hat{\theta} \):

- For example, the mean

Definition (Empirical Distribution Function)

The empirical distribution function assigns probability \(1/n \) to each observation value. For a scalar random variable \(x_i, i = 1, \ldots, n \), the EDF is defined

\[
\hat{F}(X) = \frac{1}{n} \sum_{i=1}^{n} I[x_i < X].
\]

- Also known as the empirical CDF
- CDF of \(X \) should have information about precision of \(\hat{\theta} \), so ECDF might also...
 IID Bootstrap for the mean

Algorithm (IID Bootstrap)

1. Simulate a set of n i.i.d. uniform random integers u_i, $i = 1, \ldots, n$ from the range $1, \ldots, n$ (with replacement)
2. Construct a bootstrap sample $x^*_b = \{x_{u_1}, x_{u_2}, \ldots x_{u_n}\}$
3. Compute the mean
 \[
 \hat{\theta}^*_b = \frac{1}{n} \sum_{i=1}^{n} x^*_b,i
 \]
4. Repeat steps 1–3 B times
5. Estimate the standard of $\hat{\theta}$ using
 \[
 \frac{1}{B} \sum_{i=1}^{B} \left(\theta^*_b - \hat{\theta} \right)^2
 \]
MATLAB Code for IID Bootstrap

```matlab
n = 100; x = randn(n,1); % Mean of x
mu = mean(x);
B = 1000;
% Initialize muStar
muStar = zeros(B,1);
% Loop over B bootstraps
for b=1:B
    % Uniform random numbers over 1...n
    u = ceil(n*rand(n,1));
    % x-star sample simulation
    xStar = x(u);
    % Mean of x-star
    muStar(b) = mean(xStar);
end
s2 = 1/(n-1)*sum((x-mu).^2);
stderr = s2/n
bootstrapStdErr = mean((muStar-mu).^2)
```
How many bootstrap replications?

- B is used for the number of bootstrap replications
- Bootstrap theory assumes $B \rightarrow \infty$ quickly
- This ensures that the bootstrap distribution is identical to the case where all unique bootstraps were computed
 - There are a lot of unique bootstraps
 - n^n in the i.i.d. case
- Using finite B adds some extra variation since two bootstraps with the same data won’t produce identical estimates
- **Note:** Often useful to set the state of your random number generator so that results are reproducible

```matlab
% A non-negative integer
seed = 26031974
rng(seed)
```

- Should choose B large enough that the *Monte Carlo error* is negligible
- In practice little reason to use less than 1,000 replications
- Balanced resampling
 - In standard i.i.d. bootstrap, some values will inevitably appear more than others
 - Balanced resampling ensures that all values appear the same number of times
 - In practice simple to implement

Algorithm (IID Bootstrap with Balanced Resampling)

1. *Replicate the data so that there are B copies of each x_i. The data set should have Bn observations*
2. *Construct a random random permutation of the numbers $1, \ldots, Bn$ as $u_1, \ldots u_{Bn}$*
3. *Construct the bootstrap sample $x_b^* = \{x_{u_{n(b-1)+1}}, x_{u_{n(b-1)+2}}, \ldots x_{u_{n(b-1)+n}}\}*$

- This algorithm samples *without replacement* from the replicated dataset of Bn observations
- Each data point will appear exactly B times in the B bootstrap samples
n = 100; x = randn(n,1);
% Replicate the data
xRepl = repmat(x,B,1);
B = 1000;
% Random permutation of 1,...,B*n
u = randperm(n*B);
% Loop over B bootstraps
for b=1:B
 % Uniform random numbers over 1...n
 ind = n*(b-1)+(1:n);
 xb = xRepl(u(ind));
end
Getting the most out of B bootstrap replications

- Antithetic Random Variables
- If samples are *negatively* correlated, variance of statistics can be reduced
 - Basic idea is to order data so that if one sample has too many large values of x, then the next will have too many small
 - This can induce negative correlation while not corrupting bootstrap

Algorithm (IID Bootstrap with Antithetic Resampling)

1. Order the data so that $x_1 \leq x_2 \ldots \leq x_n$. Treat these indices as the original data.
2. Simulate a set of n i.i.d. uniform random integers u_i, $i = 1, \ldots, n$ from the range $1, \ldots, n$ (with replacement)
3. Construct the bootstrap sample $x^*_b = \{x_{u_1}, x_{u_2}, \ldots x_{u_n}\}$
4. Construct $\tilde{u}_i = n - u_i + 1$
5. Construct the antithetic bootstrap sample $x^*_{b+1} = \{x_{\tilde{u}_1}, x_{\tilde{u}_2}, \ldots x_{\tilde{u}_n}\}$
6. Repeat for $b = 1, 3, \ldots, B - 1$

- Using antithetic random variables is a general principle applicable to virtually all simulation estimators
n = 100; x = randn(n,1);
% Mean of x
mu = mean(x);
B = 1000;
% Initialize muStar
muStar = zeros(B,1);
% Sort x
x = sort(x);
% Loop over B bootstraps
for b=1:2:B
 % Uniform random numbers over 1...n
 u = ceil(n*rand(n,1)); xStar = x(u);
 % Mean of x-star
 muStar(b) = mean(xStar);
 % Uniform random numbers over 1...n
 u = n-u+1; xStar = x(u);
 % Mean of x-star
 muStar(b+1) = mean(xStar);
end
corr(muStar(1:2:B),muStar(2:2:B))
• Many statistics have a *finite sample bias*
• This is equivalent to saying that $\hat{\theta} - \theta \approx c/n$ for some $c \neq 0$
 ▶ Many estimators have $c = 0$, for example the sample mean
 ▶ These estimators are unbiased
• Biased estimators usually arise when the estimator is a non-linear function of the data
• Bootstrap can be used to estimate the bias, and the estimate can be used to debias the original estimate
• Recall the definition of bias

Definition (Bias)

The bias of an estimator is

$$E[\hat{\theta} - \theta]$$
1. Estimate the parameter of interest $\hat{\theta}$
2. Generate a bootstrap sample x_b and estimate the parameter on the bootstrap sample. Denote this estimate as $\hat{\theta}^*_b$
3. Repeat 2 a total of B times
4. Estimate the bias as

$$Bias = B^{-1} \sum_{i=1}^{B} \hat{\theta}^*_b - \hat{\theta}$$

- Example of bootstrap bias adjustment will be given later once more results for time-series have been established
1. *Estimate the parameter of interest* $\hat{\theta}$
2. *Generate a bootstrap sample* x_b and estimate the parameter on the bootstrap sample. *Denote this estimate as* $\hat{\theta}^*_b$
3. *Repeat 2 a total of* B *times*
4. *Estimate the standard error as*

$$\text{Std. Err} = \sqrt{\frac{B^{-1} \sum_{i=1}^{B} (\hat{\theta}^*_b - \hat{\theta})^2}{B - 1}}$$

- Other estimators are also common

$$\text{Std. Err} = \sqrt{(B - 1)^{-1} \sum_{i=1}^{B} (\hat{\theta}^*_b - \overline{\hat{\theta}}^*_B)^2}$$

- B should be sufficiently large that B or $B - 1$ should not matter
- Bootstraps can also be used to construct confidence intervals
- Two methods:
 1. Estimate the standard error of the estimator and use a CLT
 2. Estimate the confidence interval directly using the bootstrap estimators $\{\hat{\theta}_b^*\}$
- The first method is simple and have previously been explained
- The second is also very simple, and is known as the \textit{percentile method}
Algorithm (Percentile Method)

A confidence interval $[C_{\alpha_L}, C_{\alpha_H}]$ with coverage $\alpha_H - \alpha_L$ can be constructed:

1. Construct a bootstrap sample x_b
2. Compute the bootstrap estimate $\hat{\theta}_b^*$
3. Repeat steps 1–2
4. The confidence interval is constructed using the empirical α_L quantile and the empirical α_H quantile of $\{\hat{\theta}_b^*\}$

- If the bootstrap estimates are ordered from smallest to largest, and $B\alpha_L$ and $B\alpha_H$ are integers, then the confidence interval is

$$\left[\hat{\theta}_{B\alpha_L}^*, \hat{\theta}_{B\alpha_H}^*\right]$$

- This method may not work well in all situations
 - n small
 - Highly asymmetric distribution
n = 100; x = randn(n,1);
% Mean of x
mu = mean(x);
B = 1000;
% Initialize muStar
muStar = zeros(B,1);
% Loop over B bootstraps
for b=1:B
 % Uniform random numbers over 1...n
 u = ceil(n*rand(n,1));
 % x-star sample simulation
 xStar = x(u);
 % Mean of x-star
 muStar(b) = mean(xStar);
end
alphaL = .05;alphaH=.95;
muStar = sort(muStar);
CI = [muStar(alphaL*B) muStar(round(alphaH*B))]
CI - mu
Bootstrap and Regression

- Bootstraps can be used in more complex scenarios
- One simple extension is to regressions
- Using a model, rather than estimating a simple statistic, allows for a richer set of bootstrap options
 - Parametric
 - Non-parametric
- Basic idea, however, remains the same:
 - Simulate random data from the same DGP
 - Now requires data for both the regressor y and the regressand x
Parametric vs. Non-parametric Bootstrap

- Parametric bootstraps are based on a model
- They exploit the structure of the model to re-sample residuals rather than the actual data
- Suppose
 \[y_i = x_i \beta + \epsilon_i \]
 where \(\epsilon_i \) is homoskedastic
- The parametric bootstrap would estimate the model and the residuals as
 \[\hat{\epsilon}_i = y_i - x_i \hat{\beta} \]
- The bootstrap would then construct the re-sampled “data” by sampling \(\hat{\epsilon}_i \) separately from \(x_i \)
 - In other words, use two separate sets of i.i.d. uniform indices
- Construct \(y_{b,i}^* = x_{ui} \hat{\beta} + \hat{\epsilon}_{u2i} \)
- Compute statistics using these values
Many examples use `bsxfun`

```matlab
x = randn(1000,10);
mu = mean(x);
err = bsxfun(@minus,x,mu);
```
n = 100; x = randn(n,2); e = randn(n,1); y = x*ones(2,1) + e;

% Bhat
Bhat = x\y; ehat = y - x*Bhat;

% Initialize BStar
BStar = zeros(B,2);

% Loop over B bootstraps
for b=1:B
 % Uniform random numbers over 1...n
 uX = ceil(n*rand(n,1)); uE = ceil(n*rand(n,1));
 % x-star sample simulation
 xStar = x(uX,:); eStar = e(uE);
 yStar = xStar*Bhat + eStar;
 % Mean of x-star
 BStar(b,:) = (xStar\yStar)';
end

Berr = bsxfun(@minus, BStar, Bhat');
bootstrapVCV = Berr' * Berr / B;
trueVCV = eye(2)/100;
OLSVCV = (e' * e) / n * inv(x' * x)
Non-parametric Bootstrap

- Non-parametric bootstrap is simpler
- It does not use the structure of the model to construct artificial data
- The vector \([y_i, x_i]\) is instead directly re-sampled
- The parameters are constructed from the pairs

Algorithm (Non-parametric Bootstrap for i.i.d. Regression Data)

1. Simulate a set of \(n\) i.i.d. uniform random integers \(u_i, i = 1, \ldots, n\) from the range \(1, \ldots, n\) (with replacement)
2. Construct the bootstrap sample \(z_b = \{y_{u_i}, x_{u_i}\}\)
3. Estimate the bootstrap \(\beta\) by fitting the model
 \[
y_{u_i} = x_{u_i} \hat{\beta}_{b}^* + \epsilon^*_{b,i}
 \]
MATLAB Code for Nonparametric Bootstrap of Regression

```matlab
n = 100; x = randn(n,2); e = randn(n,1); y = x*ones(2,1) + e;

% Bhat
Bhat = x\y; ehat = y - x*Bhat;

B = 1000;

% Initialize BStar
BStar = zeros(B,2);

% Loop over B bootstraps
for b=1:B
    % Uniform random numbers over 1...n
    u = ceil(n*rand(n,1));
    % x-star sample simulation
    yStar = y(u);
    xStar = x(u,:);
    % Mean of x-star
    BStar(b,:) = (xStar\yStar)';
end

Berr = bsxfun(@minus, BStar, Bhat');
bootstrapVCV = Berr' * Berr / B
trueVCV = eye(2) / 100
OLSVCV = (e'*e) / n * inv(x'*x)
```

25 / 42
i.i.d. bootstrap is only appropriate for i.i.d. data
 ▶ **Note:** Usually OK for data that is not serially correlated

Two strategies for bootstrapping time-series data
 ▶ Parametric & i.i.d. bootstrap: If the model postulates that the residuals are i.i.d. or at least white noise, then a residual-based i.i.d. bootstrap may be appropriate
 ▷ Examples: AR models, GARCH models using appropriately standardized residuals
 ▶ Nonparametric *block* bootstrap: Weak assumptions, basically that blocks can be sampled so that they (blocks) are approximately i.i.d.
 ▷ Similar to the notion of ergodicity which is related to asymptotic independence
 ▷ **Important:** Like Newey-West covariance estimator, *block length* must grow with sample size
 ▷ Fundamentally same reason
The problem with the IID Bootstrap

Original Data

IID

Circular Block
% Number of time periods
T = 100;
% Random errors
e = randn(T,1);
y = zeros(T,1);
% Y is an AR(1), phi1 = 0.5
y(1) = e(1)*sqrt(1/(1-.5^2));
for t=2:T
 y(t)=0.5*y(t-1)+e(t);
end
% 10,000 replications
B = 10000;
% Initial place for mu-star
muStar = zeros(B,1);
Moving Block Bootstrap

- Samples blocks of m consecutive observations
- Uses blocks which start at indices $1, \ldots, T - m + 1$

Algorithm (Moving Block Bootstrap)

1. **Initialize** $i = 1$
2. **Draw a uniform integer** v_i **on** $1, \ldots, T - m + 1$
3. **Assign** $u_{(i-1) + j} = v_i + j - 1$ **for** $j = 1, \ldots, m$
4. **Increment** i **and repeat** 2–3 **until** $i \geq \lceil T/m \rceil$
5. **Trim** u **so that only the first** T **remain if** T/m **is not an integer**
% Block size
m = 10;
% Loop over B bootstraps
for b=1:B
 % ceil(T/m) Uniform random numbers over 1...T-m+1
 u = ceil((T-m+1)*rand(ceil(T/m),1));
 u = bsxfun(@plus,u,0:m-1)';
 % Transform to col vector, and remove excess
 u = u(:); u = u(1:T);
 % y-star sample simulation
 yStar = y(u);
 % Mean of y-star
 muStar(b) = mean(yStar);
end
Circular Bootstrap

- Simple extension of MBB which assumes the data live on a circle so that $y_{T+1} = y_1$, $y_{T+2} = y_2$, etc.
- Has better finite sample properties since all data points get sampled with equal probability
- Only step 2 changes in a very small way

Algorithm (Circular Block Bootstrap)

1. Initialize $i = 1$
2. Draw a uniform integer v_i on $1, \ldots, T$
3. Assign $u_{(i-1)+j} = v_i + j - 1$ for $j = 1, \ldots, m$
4. Increment i and repeat 2–3 until $i \geq \lceil T/m \rceil$
5. Trim u so that only the first T remain if T/m is not an integer
MATLAB Code for Circular Block Bootstrap

% Block size
m = 10;
% Loop over B bootstraps
yRepl = [y;y];
for b=1:B
 % ceil(T/m) Uniform random numbers over 1...T-m+1
 u = ceil(T*rand(ceil(T/m),1));
 u = bsxfun(@plus,u,0:m-1)';
 % Transform to col vector, and remove excess
 u = u(:); u = u(1:T);
 % y-star sample simulation
 yStar = yRepl(u);
 % Mean of y-star
 muStar(b) = mean(yStar);
end
Stationary Bootstrap

- Differs from MBB and CBB in that the block size is no longer fixed
- Chooses an average block size of m rather than an exact block size
- Randomness in block size is worse when m is known, but helps if m may be suboptimal
- Block size is *exponentially distributed* with mean m

Algorithm (Stationary Bootstrap)

1. Draw u_1 uniform on 1, \ldots, T
2. For $i = 2, \ldots, t$
 a. Draw a uniform v on (0, 1)
 b. If $v \geq 1/m$, $u_i = u_{i-1} + 1$
 i. If $u_i > T$, $u_i = u_i - T$
 c. If $v < 1/m$, draw u_i uniform on 1, \ldots, T
% Average block size
m = 10;
% Loop over B bootstraps
yRepl = [y;y];
u = zeros(T,1);
for b=1:B
 u(1) = ceil(T*rand);
 for t=2:T
 if rand<1/m
 u(t) = ceil(T*rand);
 else
 u(t) = u(t-1) + 1;
 end
 end
% y-star sample simulation
yStar = yRepl(u);
% Mean of y-star
muStar(b) = mean(yStar);
end
Comparing the Three TS Bootstraps

- MBB was the first
- CBB has simpler theoretical properties and usually requires fewer corrections to address “end effects”
- SB is theoretically worse than MBB and CBB, but is the most common choice in time-series econometrics
 - Theoretical optimality assumes that the the “optimal” block size is used
- Popularity of SB stems from difficulty in determining optimal m
 - More on this in a minute
- Random block size brings some robustness at the cost of extra variability
The stationary AR(P) model can be parametrically bootstraps

Assume

\[y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_P y_{t-P} + \epsilon_t \]

Usual assumptions, including stationarity

Can use a parametric bootstrap by estimating the residuals

\[\hat{e}_t = y_t - \hat{\phi}_1 y_{t-1} + \ldots + \hat{\phi}_P y_{t-P} \]

Algorithm (Stationary Autoregressive Bootstrap)

1. Estimate the AR(P) and the residuals for \(t = P + 1, \ldots, T \)
2. Recenter the residuals so that they have mean 0

\[\bar{e}_t = \hat{e}_t - \bar{\hat{e}} \]

3. Draw \(u \) uniform from \(1, \ldots, T - P + 1 \) and set \(y'_1 = y_u \), \(y'_2 = y_{u+1}, \ldots, y'_P = y_{u+P+1} \)
4. Recursively simulate \(y'_{P+1}, \ldots, y'_T \) using \(\bar{e} \) drawn using an i.i.d. bootstrap
MATLAB Code for Stationary AR Bootstrap

\[
\phi = y(1:T-1) \backslash y(2:T);
\]
\[
eh = y(2:T) - \phi \cdot y(1:T-1);
\]
\[
etilde = e - \text{mean}(e);
\]
\[
yStar = \text{zeros}(T,1);
\]
\[
\text{for } i=1:B
\]
\[
\quad \%	ext{ Initialize to one of the original values}
\]
\[
\quad yStar(1) = y(\text{ceil}(T \cdot \text{rand}));
\]
\[
\quad \%	ext{ Indices for errors}
\]
\[
\quad u = \text{ceil}((T-1) \cdot \text{rand}(T,1));
\]
\[
\quad \%	ext{ Recursion to simulate AR}
\]
\[
\quad \text{for } t=2:T
\]
\[
\quad \quad yStar(t) = \phi \cdot yStar(t-1) + e(t);
\]
\[
\quad \end{for}
\]
\[
\end{for}
\]
Data-based Block Length Selection

- Block size selection is crucial for good performance of block bootstraps
- Small block sizes are too close to i.i.d. while large block sizes are overly noisy
- Politis and White (2004) provide a data dependent lag length selection procedure
 - See also Patton, Politis, and White (2007) correction
- Code is available by searching the internet for “opt_block_length_REV_dec07”
- Politis and White (2004) show for stationary bootstrap

\[B_{opt,SB} = \left(\frac{2G^2}{D_{SB}} \right) N^{1/3} \]

- \[G = \sum_{k=-\infty}^{\infty} |k| \gamma_k \] where \(\gamma_k \) is the autocovariance
- \[D_{SB} = 2g(0)^2 \] where \(g(w) = \sum_{s=-\infty}^{\infty} \gamma_s \cos(ws) \) is the spectral density function

- Need to estimate \(\hat{G} \) and \(\hat{D}_{SB} \) to estimate \(\hat{B}_{opt,SB} \)

- \[\hat{G} = \sum_{k=-M}^{M} \lambda \left(\frac{k}{M} \right) |k| \hat{\gamma}_k, \]

\[\lambda(s) = \begin{cases} 1 & \text{if } |s| \in [0, 1/2] \\ 2 \left(1 - |s| \right) & \text{if } |s| \in [1/2, 1] \\ 0 & \text{otherwise} \end{cases} \]

- \[\hat{D}_{SB} = 2\hat{g}(0), \hat{g}(w) = \sum_{k=-M}^{M} \lambda \left(\frac{k}{M} \right) \hat{\gamma}_k \cos(wk) \]
- \(M \) is set to \(2\hat{m} \)
- \(\hat{m} \) is the smallest integer where if \(\hat{\rho}_j > 2 \sqrt{\log T/T}, j = m + 1, \ldots, K_T \)
- \(K_T = 2 \max \left(5, \sqrt{\log_{10}(T)} \right) \)
Example 1: Mean Estimation for Log Normal

- $y_i \overset{i.i.d.}{\sim} LN(0, 1)$
- $n = 100$
- $B = 1000$ using i.i.d. bootstrap
- This is a check that the bootstrap works
- Also shows that bootstrap will not work miracles
- Performance of bootstrap is virtually identical to that of asymptotic theory
 - Gains to bootstrap are more difficult to achieve
 - Most useful property is in estimating standard error in hard to compute cases
Example 1: Mean Estimation for Log-Normal
Example 2: Bias in AR(1)

- Assume \(y_t = \phi y_{t-1} + \epsilon_t \) where \(\epsilon_t \sim \text{i.i.d.} N(0, 1) \)
- \(\phi = 0.9, T = 50 \)
- Use parametric bootstrap
- Estimate bias using the different between bootstrap estimates and the actual estimate

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Debiased</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>0.8711</td>
<td>0.8810</td>
</tr>
<tr>
<td>(\text{Var})</td>
<td>0.0052</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

- Reduced the bias by about 1/3
- Reduced variance (rare)