
Chapter 8

Value-at-Risk, Expected Shortfall and
Density Forecasting

Alternative references for this chapter include Christoffersen (2003), which is a highly accessible
introduction, Gourieroux and Jasiak (2009), who provide additional technical details, and, McNeil,
Frey, and Embrechts (2005), who provide a comprehensive and technical treatment of risk measure-
ment.

The American Heritage Dictionary, Fourth Edition, defines risk as “the possibility of suffering
harm or loss; danger.” In finance, harm or loss has a specific meaning: decreases in the value of a
portfolio. This chapter introduces three methods used to assess the riskiness of a portfolio: Value-at-
Risk (VaR), Expected Shortfall, and modeling the entire density of the portfolio’s return.

8.1 Defining Risk

Portfolios are exposed to multiple distinct sources of risk. The most important sources of risk can be
classified into one of six categories.

Market Risk

Market risk describes the uncertainty about the future price of an asset due to changes in fundamen-
tals or beliefs. For example, market risk captures changes in asset prices due to macroeconomics
announcements such as FOMC policy rate updates or non-farm payroll releases.

Liquidity risk

Liquidity risk complements market risk by measuring the loss involved if a position must be rapidly
unwound. For example, if a fund wished to sell 20,000,000 shares of IBM on a single day, which
has a typical daily volume of 5,000,000, this sale would be expected to have a substantial effect on
the price. Liquidity risk is distinct from market risk since it represents a transitory distortion due to
transaction pressure.
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Credit Risk

Credit risk, also known as default risk, covers cases where a 3rd party is unable to pay per previously
agreed to terms. Holders of corporate bonds are exposed to credit risk since the bond issuer may not
be able to make some or all of the scheduled coupon payments.

Counterparty Risk

Counterparty risk extends credit risk to instruments other than bonds and captures the event that a
counterparty to a transaction, for example, the seller of an option contract, is unable to complete the
transaction at expiration. Counterparty risk was a significant factor in the financial crisis of 2008
where the protection offered in Credit Default Swaps (CDS) was not available when the underlying
assets defaulted.

Model Risk

Model risk represents an econometric form of risk that measures the uncertainty about the correct form
of the model used to compute the price of the asset or the asset’s riskiness. Model risk is particularly
important when prices of assets are primarily determined by a model rather than in a liquid market,
as was the case in the Mortgage Backed Securities (MBS) market in 2007.

Estimation Risk

Estimation risk captures an aspect of risk that is present whenever estimated parameters are used
in econometric models to price securities or assess risk. Estimation risk is distinct from model risk
since it is present even if a model when correctly specified. In many practical applications, parameter
estimation error can result in a substantial misstatement of risk. Model and estimation risk are always
present and are generally substitutes – parsimonious models are more likely to be misspecified but
may have less parameter estimation uncertainty.

This chapter deals exclusively with market risk. Liquidity, credit risk and counterparty risk all
require specialized treatment beyond the scope of this course. Model evaluation, especially out-of-
sample evaluation, is the primary tool for assessing model and estimation risks.

8.2 Value-at-Risk (VaR)

The most widely reported measure of risk is Value-at-Risk (VaR). The VaR of a portfolio is a measure
of the risk in the left tail of portfolio’s return over some period, often a day or a week. VaR provides a
more sensible measure of the risk of the portfolio than variance since it focuses on losses. VaR is not a
perfect measure of risk, and the issues with VaR are detailed in the context of coherent risk measures
(section 8.8).

8.2.1 Value-at-Risk Defined

The VaR of a portfolio measures the value (in £, $, C, ¥, . . .) which an investor would lose with some
small probability, usually between 1 and 10%, over a specified horizon. Because the VaR represents
a potential loss, it is usually a positive number.
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A graphical representation of Value-at-Risk
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Figure 8.1: A graphical representation of Value-at-Risk. The VaR is represented by the magnitude of
the horizontal bar and measures the distance between the value of the portfolio in the current period
and the α-quantile of the portfolio value distribution. In this example, α = 5%, the value of the
portfolio’s assets is £10,000,000, and returns are N(.001, .0152).

Definition 8.1 (Value-at-Risk). The α Value-at-Risk (VaR) of a portfolio is defined as the largest
change in the portfolio such that the probability that the loss in portfolio value over a specified horizon
is greater than the VaR is α ,

Pr(Rt <−VaR) = α (8.1)

where Rt =Wt−Wt−1 is the change in the value of the portfolio, Wt and the time span depends on the
application (e.g., one day or two weeks).

For example, if an investor had a portfolio value of £10,000,000 and had a daily portfolio return which
was N(.001, .0152) (annualized mean of 25%, volatility of 23.8%), the daily α Value-at-Risk of this
portfolio is

£10,000,000(−.001− .015Φ
−1(α)) = £236,728.04
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where Φ−1(·) is the inverse CDF of a standard normal. This expression may appear backward – it
is not. The negative sign on the mean indicates that increases in the mean decrease the VaR. The
negative sign on the standard deviation term indicates that increases in the volatility raise the VaR
since for α < .5, Φ−1(α) < 0. It is often more useful to express Value-at-Risk as a percentage of
the portfolio value – e.g., 1.5% – rather than in units of currency since to remove the initial value
portfolio from the measure.

Definition 8.2 (Percentage Value-at-Risk). The α percentage Value-at-Risk (%VaR) of a portfolio is
defined as the largest return such that the probability that the return on the portfolio over a specified
horizon is less than −1×%VaR is α ,

Pr(rt <−%VaR) = α (8.2)

where rt = (Wt−Wt−1)/Wt−1 is the return of the portfolio. %VaR can be equivalently defined as
%VaR= VaR/Wt−1.

Since percentage VaR and VaR only differ by the current value of the portfolio, the remainder of
the chapter focuses on percentage VaR.

8.2.2 The relationship between VaR and quantiles

Understanding that VaR and quantiles are fundamentally related provides a key insight. If r is the
return on a portfolio, the α-VaR is −1×qα(r) where qα(r) is the α-quantile of the portfolio’s return.
In most cases α is chosen to be some small quantile – 1, 5 or 10% – and so qα(r) is a negative
number.1

8.3 Conditional Value-at-Risk

Most applications of VaR are used to measure risk over short horizons, and so require a conditional
Value-at-Risk. Conditioning employs information up to time t to produce a VaR in period t +h.

Definition 8.3 (Conditional Value-at-Risk). The conditional α Value-at-Risk is defined as

Pr(rt+1 <−VaRt+1|t |Ft) = α (8.3)

where rt+1 =
Wt+1−Wt

Wt
is the time t + 1 return on a portfolio. Since t is an arbitrary measure of time,

t +1 also refers to an arbitrary unit of time (e.g., one day, two weeks, or a month)

Most conditional models for VaR forecast the density directly, although some only attempt to esti-
mate the required quantile of the time t+1 return distribution. Five standard methods are presented in
the order of the strength of the assumptions required to justify the method, from strongest to weakest.

1It is theoretically possible for VaR to be negative. If the VaR of a portfolio is negative, either the portfolio has no risk,
the portfolio manager extremely skillful, or most likely the model used to compute the VaR is badly misspecified.
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8.3.1 RiskMetrics©

The RiskMetrics group has produced a simple, robust method for producing conditional VaR. The
basic structure of the RiskMetrics model relies on a restricted GARCH(1,1) where α + β = 1 and
ω = 0. The estimate of the portfolio’s variance is

σ
2
t+1 = (1−λ )r2

t +λσ
2
t , (8.4)

where rt is the (percentage) return on the portfolio in period t. In the RiskMetrics specification σ2
t+1

follows an EWMA which places weight λ j(1−λ ) on r2
t− j.

2 The RiskMetrics model does not include
a conditional mean of the portfolio return, and so is only applicable to assets with returns that are
close to zero. The restriction limits the applicability to applications where the risk-measurement
horizon is short (e.g., one day to one month). The VaR is constructed from the α-quantile of a normal
distribution,

VaRt+1 =−σt+1Φ
−1(α) (8.5)

where Φ−1(·) is the inverse normal CDF. The RiskMetrics model has are no parameters to estimate; λ

has been calibrated to .94 for daily data, 0.97 for weekly data, and .99 for monthly data.3 This model
can also be extended to multiple assets using by replacing the squared return with the outer product
of a vector of returns, rtr′t , and σ2

t+1 with a matrix, Σt+1. The limitations of the RiskMetrics model
are that the parameters aren’t estimated (which is also an advantage), the model does not account for
a leverage effect, and the VaR follows a random walk since λ +(1−λ ) = 1.

8.3.2 Parametric ARCH Models

Parametric ARCH-family models provide a complete description of the future return distribution, and
so can be applied to estimate the VaR of a portfolio. This model is highly adaptable since the mean,
variance and distribution can all be tailored to the portfolio’s historical returns. For simplicity, this
example uses a constant mean and has a GARCH(1,1) variance process.4

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ F(0,1)

where F(0,1) is used to indicate that the distribution of innovations need not be normally distributed
but must have mean 0 and variance 1. For example, F could be a standardized Student’s t with
ν degrees of freedom or Hansen’s skewed t with a degree of freedom parameter ν and asymmetry

2An EWMA differs from a standard moving average in two ways. First, an EWMA places relatively more weight on
recent observations than on observation in the distant past. Second, EWMAs depend on the entire history rather than a
fixed-length window.

3The suggested coefficients for λ are based on a large study of the RiskMetrics model across different asset classes.
4The use of α1 in ARCH models has been avoided to avoid confusion with the α in the VaR.
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parameter λ . The parameters of the model are estimated using maximum likelihood and the time t
conditional VaR is

VaRt+1 =−µ̂− σ̂t+1F−1
α

where F−1
α is the α-quantile of the distribution of et+1. The flexibility to build a model by specifying

the mean, variance and distributions is the strength of this approach. The limitations of this procedure
are that implementations require knowledge of a density family which includes F – if the distribution
is misspecified then the quantile used is wrong – and that the residuals must come from a location-
scale family. The second limitation imposes that all of the dynamics of returns can be summarized by
a time-varying mean and variance, and so higher order moments must be time invariant.

8.3.3 Semiparametric ARCH Models/Filtered Historical Simulation

Semiparametric estimation mixes parametric mean and variance models with nonparametric estima-
tors of the distribution.5 Again, consider a constant mean GARCH(1,1) model

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1)

where G(0,1) is an unknown distribution with mean zero and variance 1. Conditional VaR estimates
from semiparametric models are also known as filtered Historical Simulation, due to their similarity
to Historical Simulation (see ). The ARCH model filters the return data by removing the conditional
mean and volatility.

When the distribution of the standardized residuals G(·) is unknown, maximum likelihood esti-
mation cannot be used to estimate model parameters. Recall that assuming a normal distribution for
the standardized residuals, even if misspecified, produces estimates which are strongly consistent, and
so ω , γ1 and β1 converge to their true values for most any G(·). The model is estimated using QMLE
by assuming that the errors are normally distributed and then the Value-at-Risk for the α-quantile can
be computed

VaRt+1(α) =−µ̂− σ̂t+1Ĝ−1
α (8.6)

where Ĝ−1
α is the empirical α-quantile of of the standardized returns, {êt+1}. To estimate this quantile,

define êt+1 = ε̂t+1/σ̂t+1. and order the errors such that

ê1 < ê2 < .. . < ên−1 < ên.

Here n replaces T to indicate the residuals are no longer time ordered. Ĝ−1
α = êbαnc or Ĝ−1

α = êdαne
where bxc and dxe denote the floor (largest integer smaller than) and ceiling (smallest integer larger

5Semiparametric estimators combine parametric and nonparametric estimators in a single model. In time-series appli-
cations, semiparametric estimators have parametric models for the dynamics of the mean and variance but use a nonpara-
metric estimator of the distribution of the residuals.



8.3 Conditional Value-at-Risk 487

than) of x.6 The estimate of G−1 is the α-quantile of the empirical distribution of êt+1 which is the
value in position αn of the ordered standardized residuals.

Semiparametric ARCH models provide one clear advantage over their parametric ARCH cousins;
the quantile, and hence the VaR, is consistent under weaker conditions since the density of the stan-
dardized residuals does not have to be assumed. The primary disadvantage of the semiparametric
approach is that Ĝ−1

α may be poorly estimated – especially if α is very small (e.g., 1%). Semipara-
metric ARCH models also share the limitation they are only applicable when returns are generated by
a location-scale distribution.

8.3.4 Cornish-Fisher Approximation

The Cornish-Fisher estimator of VaR lies between fully parametric model and the semiparametric
model. The setup is identical to that of the semiparametric model,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γε

2
t +βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1)

where G(·) is an unknown distribution. The model parameters are estimated by QML assuming that
the conditional distribution of residuals is normal to produce standardized residuals, êt+1 = ε̂t+1/σ̂t+1.
The Cornish-Fisher approximation is a Taylor-series-like expansion of the α-quantile around the α-
quantile of a normal and is given by

VaRt+1 =−µ−σt+1G−1
CF(α) (8.7)

G−1
CF(α)≡Φ

−1(α)+
ς

6

([
Φ
−1(α)

]2−1
)
+ (8.8)

κ−3
24

([
Φ
−1(α)

]3−3Φ
−1(α)

)
− ς2

36

(
2
[
Φ
−1(α)

]3−5Φ
−1(α)

)
where ς and κ are the skewness and kurtosis of êt+1, respectively. From the expression for G−1

CF(α),
negative skewness and excess kurtosis (κ > 3, the kurtosis of a normal) decrease the estimated quan-
tile and increases the VaR. The Cornish-Fisher approximation shares the strength of the semipara-
metric distribution in that it can be accurate without a parametric assumption. However, unlike the
semiparametric estimator, Cornish-Fisher estimators are not necessarily consistent which may be a
drawback. Additionally, estimates of higher-order moments of standardized residuals may be prob-
lematic or, in very heavy-tailed distributions, the third and fourth moments may not even exist.

6When estimating a quantile from discrete data and not smoothing, the is quantile “set valued” and defined as any
point between êbαnc and êdαne, inclusive.
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8.3.5 Conditional Autoregressive Value-at-Risk (CaViaR)

Engle and Manganelli (2004) developed a family of ARCH-like models to estimate the conditional
Value-at-Risk using quantile regression. CaViaR models have a similar structure to GARCH models.
The α-quantile of the return distribution, F−1

α,t+1, is modeled as a weighted average of a constant, the
previous value of the quantile, and a shock (or surprise). The shock can take many forms although a
“HIT ”, defined as an exceedance of the previous Value-at-Risk, is the most natural.

HITt+1 = I[rt+1<F−1
t+1]
−α (8.9)

where rt+1 the (percentage) return and F−1
α,t+1 is the time t α-quantile of this distribution. When

F−1
α,t+1 is the conditional quantile of the return distribution, then a HIT is mean zero Et

[
I[rt+1<F−1

α,t+1]

]
=

Pr
(

rt+1 < F−1
α,t+1

)
= α .

Defining qt+1 as the time t +1 α-quantile of returns, the evolution in a standard CaViaR model is
defined by

qt+1 = ω + γHITt +βqt . (8.10)

Other forms that have been explored include the symmetric absolute value,

qt+1 = ω + γ|rt |+βqt . (8.11)

the asymmetric absolute value,

qt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βqt (8.12)

the indirect GARCH,

qt+1 =
(
ω + γr2

t +βq2
t
) 1

2 . (8.13)

The parameters of CaViaR models are estimated by minimizing the “tick” loss function

argmin
θ

T−1
T∑

t=1

α(rt−qt)(1− I[rt<qt ])︸ ︷︷ ︸
Positive errors

+(1−α)(qt− rt)I[rt<qt ]︸ ︷︷ ︸
Negative Errors

= (8.14)

argmin
θ

T−1
T∑

t=1

α(rt−qt)+(qt− rt)I[rt<qt ]

where I[rt<qt ] is an indicator variable which is 1 if rt < qt and 0 otherwise. The loss function is linear
in the error rt − qt and has a slope of α for positive errors and 1−α for negative errors. Estimation
of the parameters is complicated since the objective function may is non-differentiable and has many
flat spots. Derivative-free methods, such as the Nelder-Mead simplex method or genetic algorithms,
can be used to overcome this difficulty. The VaR in a CaViaR framework is then

VaRt+1 =−qt+1 =−F̂−1
t+1 (8.15)
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CaViaR model does not specify a distribution of returns or any moments, and so its use is jus-
tified under much weaker assumptions than other VaR estimators. Additionally, its parametric form
provides reasonable convergence of the unknown parameters. The main drawbacks of the CaViaR
modeling strategy are that it may produce out-of-order quantiles (i.e., 5% VaR is less than 10% VaR)
and that estimation of the model parameters is challenging.

8.3.6 Weighted Historical Simulation

Weighted historical simulation constructs an empirical distribution where recent returns are given
more weight than returns further in the past. The estimator is nonparametric since that no specific
assumptions about either distribution or the dynamics of returns are made.

Weights are assigned using an exponentially declining function. If returns are available from
i = 1, . . . , t, then the weight given to data point i is

wi = λ
t−i (1−λ )/

(
1−λ

t) , i = 1,2, . . . , t.

Typical values for λ range from .99 to .995. When λ = .99, 99% of the weight occurs in the most
recent 450 data points – .995 changes this to the most recent 900 data points. Smaller values of
lambda produce a VaR that is more “local” while larger values produce VaR estimates based most of
the historical sample.

The weighted empirical CDF is then

Ĝt(r) =
t∑

i=1

wiI[ri<r].

The conditional VaR is then computed as the solution to

VaRt+1 = min
r

Ĝ(r)≥ α

which chooses the smallest value of r where the there is at least α probability below in the weighted
cumulative distribution.

8.3.7 Example: Conditional Value-at-Risk for the S&P 500

The concepts of VaR is illustrated using S&P 500 returns from January 1, 1999, until December 31,
2018. A variety of models have been estimated that all produce similar VaR estimates. Alternative
distributional assumptions generally produce similar volatility parameter estimates in ARCH models,
and so VaR estimates only differ due to differences in the quantiles. Table 8.1 reports parameter es-
timates from these models. The volatility parameters of the TARCH models were virtually identical
across all three distributional assumptions. The degree of freedom parameter ν̂ ≈ 8 in both the stan-
dardized Student’s t and the skewed t indicating that the standardizes residuals are leptokurtotic, and
λ̂ ≈−.1, from the skewed t, indicating some negative skewness. The CaViaR estimates indicate little
change in the conditional quantile for positive shock, a substantial increase in the VaR when the return
is negative, and that the conditional quantile is highly persistent. The table also contains estimated
quantiles using the parametric, semiparametric and Cornish-Fisher expansion of the normal. Since
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VaR using RiskMetrics
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VaR using TARCH(1,1,1) with Skewed t errors
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VaR using Asym. Absolute Value CaViaR
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Figure 8.2: The figure contains the estimated 5% VaR for the S&P 500 using data from 1999 until the
end of 2018. While these three models have different specifications for the evolution of the conditional
VaR, the estimated VaRs are remarkably similar.

the fit conditional variances were nearly identical, the only meaningful difference in the VaRs comes
from the differences in these quantiles. These are all qualitatively similar except at 1%.

Figure 8.2 plots the fitted VaRs from the RiskMetrics model, a TARCH with skewed t errors and an
asymmetric absolute value CaViaR. All three plots appear very similar, and the TARCH and CaViaR
model fits are virtually identical. This similarity is due to the common structure of the dynamics
and the values of the estimated parameters. Figure 8.3 plots the conditional VaRs for the weighted
Historical Simulation estimator for three values of the smoothing parameter λ . The three values of
λ , 0.95, 0.99, and 0.995, places 90% of the weight on the most recent 45, 230 and 2280 observations,
respectively. The different values of the smoothing parameter produce meaningfully different condi-
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VaR using Weighted Historical Simulation
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λ = 0.95

λ = 0.99

λ = 0.999

Figure 8.3: The estimated 5% VaR for the S&P 500 using weighted Historical Simulation for
λ ∈ {0.95,0.99,0.999}. The three values of λ place 90% of the weight on the most recent 45,
230, and 2280 observations, respectively. Larger values of the decay parameter λ produce smoother
conditional VaR estimates.

Model Parameters
TARCH(1,1,1)

σt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βσt
ω γ1 γ2 β ν λ

Normal 0.026 0.000 0.172 0.909
Student’s t 0.020 0.000 0.173 0.913 7.926
Skew t 0.022 0.000 0.179 0.910 8.520 -0.123

CaViaR
qt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βqt

ω γ1 γ2 β

Asym CaViaR 0.035 0.002 0.290 0.910

Estimated Quantiles from Parametric and Semi-parametric TARCH models
Semiparam. Normal Stud. t Skew t CF

1% -2.656 -2.326 -2.510 -2.674 -2.918
5% -1.705 -1.645 -1.610 -1.688 -1.739
10% -1.265 -1.282 -1.209 -1.247 -1.237

Table 8.1: Estimated model parameters and quantiles. The choice of distribution for the standardized
shocks makes little difference in the parameters of the TARCH process, and so the fit conditional
variances are virtually identical. The only difference in the VaRs from these three specifications
comes from the estimates of the quantiles of the standardized returns (bottom panel).

tional VaR estimates. The smallest value appears to produce the conditional VaR estimates are most
similar to those depicted in Figure 8.2.
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8.4 Unconditional Value at Risk

While the conditional VaR is often the object of interest, there may be situations which call for the
unconditional VaR (also known as marginal VaR). Unconditional VaR expands the set of choices from
the conditional to include models that do not make use of conditioning information to estimate the
VaR directly from the historical return data.

8.4.1 Parametric Estimation

The simplest form of unconditional VaR specifies a complete parametric model for the unconditional
distribution of returns. The VaR is then computed from the α-quantile of this distribution. For
example, if rt ∼ N(µ,σ2), then the α-VaR is

VaR =−µ−σΦ
−1(α). (8.16)

The parameters of the distribution are estimated using Maximum likelihood with the usual estimators,

µ̂ = T−1
T∑

t=1

rt σ̂
2 = T−1

T∑
t=1

(rt− µ̂)2

In a general parametric VaR model, some distribution for returns which depends on a set of unknown
parameters θ is assumed, rt ∼ F(θ) and parameters are estimated by maximum likelihood. The VaR
is then −F−1

α , where F−1
α is the α-quantile of the estimated distribution. The advantages and disad-

vantages to parametric unconditional VaR are identical to parametric conditional VaR. The models
are parsimonious, and the parameters estimates are precise yet finding a specification general enough
to capture the true distribution is difficult.

8.4.2 Nonparametric Estimation/Historical Simulation

At the other end of the spectrum is a simple nonparametric estimate of the unconditional VaR known
as Historical Simulation. As was the case in the semiparametric conditional VaR, the first step is to
sort the returns so that

r1 < r2 < .. . < rn−1 < rn

where n = T is used to denote an ordering not based on time. The VaR is estimated using rbαnc or
rdαne (or any value between the two). The estimate of the VaR is the α-quantile of the empirical
distribution of {rt},

VaR =−Ĝ−1
α (8.17)

where Ĝ−1
α is the estimated quantile. The empirical CDF is defined

G(r) = T−1
T∑

t=1

I[rt<r]

where I[r<rt ] is an indicator function that takes the value 1 if r is less than rt , and so this function
counts the percentage of returns which are smaller than r.
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Historical simulation estimates are rough, and a single new data point may produce very different
VaR estimates when the sample size is small. Smoothing the estimated quantile using a kernel density
generally improves the precision of the estimate when compared to one calculated directly on the
sorted returns. Smoothing the distribution is most beneficial when the sample size is small. See
section 8.7.2 for more details.

The advantage of nonparametric estimates of VaR is that they are generally consistent under min-
imal assumptions about the distribution of returns and that they are trivial to compute. The disadvan-
tage is that the VaR estimates can be poorly estimated – or equivalently that very large samples are
needed for estimated quantiles to be accurate – particularly for 1% VaRs (or smaller).

8.4.3 Parametric Monte Carlo

Parametric Monte Carlo is meaningfully different from either parametric or nonparametric estimation
of the unconditional distribution. Rather than fit a model to the returns directly, parametric Monte
Carlo fits a parsimonious conditional model. This model is then used to simulate the unconditional
distribution. For example, suppose that returns followed an AR(1) with GARCH(1,1) errors and
normal innovations,

rt+1 = φ0 +φ1rt + εt+1

σ
2
t+1 = ω + γε

2
t +βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1).

Parametric Monte Carlo is implemented by first estimating the parameters of the model, θ̂ =
[φ̂0, φ̂1, ω̂, γ̂, β̂ ]′, and then simulating a long sample {r̃t} from the process (generally much longer
than the actual number of data points available). The VaR from this model is the α-quantile of the
simulated data.

VaR =− ˆ̃G−1
α (8.18)

where ˆ̃G−1
α is the empirical α-quantile of the simulated data, {r̃t}. Generally, the amount of simulated

data should be sufficiently large that the empirical quantile is an accurate estimate of the quantile
of the unconditional distribution. There are two advantages to parametric Monte Carlo over other
unconditional VaR estimators. First, this procedure exploits conditioning information that is ignored
by the other estimators. Second, parsimonious conditional models, e.g., ARCH models with leverage,
can generate rich families of unconditional distributions that are difficult to parameterize directly.
The drawback of this procedure is that an incorrect conditional specification leads to an inconsistent
estimate of the unconditional VaR.

8.4.4 Example: Unconditional Value-at-Risk for the S&P 500

Using the S&P 500 data, 3 unconditional parametric models, a normal, a Student’s t and a skewed t
were estimated. Estimates of the unconditional VaR using the Cornish-Fisher estimator and a Histori-
cal Simulation (nonparametric) estimator were also included. Estimates are reported in Table 8.2. The
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Unconditional Value-at-Risk
HS Normal Stud. t Skew t CF

1% VaR 3.313 2.767 3.480 3.684 5.165
5% VaR 1.854 1.949 1.702 1.788 1.754
10% VaR 1.296 1.514 1.150 1.201 0.781

Table 8.2: Unconditional VaR of S&P 500 returns estimated assuming returns are Normal, Student’s
t or skewed t, using a Cornish-Fisher transformation or using a nonparametric quantile estimator.
While the 5% and 10% VaR are similar, the estimates of the 1% VaR differ.

unconditional VaR estimates are similar except for the estimate computed using the Cornish-Fisher
expansion. The kurtosis of the data was very high (23) which resulted in a very large 1% quantile.
The others are broadly similar with the most substantial differences occurring at the 1% VaR. Figure
8.4 shows the estimated unconditional distribution from the normal and skewed t distributions and a
nonparametric kernel density estimator. The key quantiles are similar despite meaningful differences
in their shapes.

8.5 Evaluating VaR models

The process of evaluating the performance of VaR models is virtually identical to that of evaluating
the specification of models of the conditional mean or variance. The key insight into VaR model
evaluation comes from the tick loss function,

T∑
t=1

α(rt−F−1
α,t )(1− I[rt<F−1

α,t ]
)+(1−α)(F−1

α,t − rt)I[rt<F−1
α,t ]

(8.19)

where rt is the return in period t and F−1
t is α-quantile of the return distribution in period t. The

generalized error can be directly computed from this loss function by differentiating with respect to
VaR, and is

get = I[rt<F−1
α,t ]
−α (8.20)

which is the time-t “HIT” (HITt).7 When there is a VaR exceedance, HITt = 1−α and when there is
no exceedance, HITt =−α . If the model is correct, then α of the HIT s should be (1−α) and (1−α)
should be −α , so that

7The generalized error extends the concept of an error in a linear regression or linear time-series model to nonlinear
estimators. Suppose a loss function is specified as L

(
Yt+1,Ŷt+1|t

)
, then the generalized error is the derivative of the loss

function with respect to the second argument, that is

get =
L
(
Yt+1,Ŷt+1|t

)
∂Ŷt+1|t

(8.21)

where it is assumed that the loss function is differentiable at this point.
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Unconditional Density of the S&P 500

−4 −3 −2 −1 0 1 2 3 4

Normal

Skew t

Nonparametric

Figure 8.4: Plot of the S&P 500 returns as well as a parametric density using Hansen’s skewed t and
a nonparametric density estimator constructed using a kernel.

α(1−α)−α(1−α) = 0,

and the mean of HITt should be 0. Moreover, when the VaR is conditional on time t information ,
Et [HITt+1] = 0 which follows from the properties of optimal forecasts (see chapter 4).
A test that the conditional expectation is zero can be implemented using a generalized Mincer-
Zarnowitz (GMZ) regression of HITt+1|t on any time t available variable. For example, the estimated
quantile F−1

t+1|t for t +1 could be included (since it is in the time-t information set) as well as lagged
HIT s to construct the regression model,

HITt+1|t = γ0 + γ1F−1
t+1|t + γ2HITt + γ3HITt−1 + . . .+ γKHITt−K+2 +ηt

If the model is correctly specified, all of the coefficients should be zero and the null H0 : γ = 0 can be
tested against an alternative that H1 : γ j 6= 0 for some j. If the null is rejected, then either the average
number of violations is wrong, so that γ0 6= 0, or the VaR violations are predictable (γ j 6= 0 for j≥ 1).
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8.5.1 Likelihood Evaluation

VaR forecast evaluation can be improved by noting that VaR violations, I[rt<F−1
α,t ]

, are Bernoulli ran-
dom variables which takes the value 1 with probability α and takes the value 0 with probability 1−α .
A more powerful test can be constructed using a likelihood ratio test using the Bernoulli random vari-
ables H̃IT t = I[rt<F−1

α,t ]
. Under the null that the model is correctly specified, the likelihood function of

a series of H̃IT s is

f (H̃IT ; p) =
T∏

t=1

pH̃IT t (1− p)1−H̃IT t

and the log-likelihood is

l(p; H̃IT ) =
T∑

t=1

H̃IT t ln(p)+(1− H̃IT t) ln(1− p).

If the model is correctly specified, p = α and a likelihood ratio test can be performed as

LR = 2(l(p̂; H̃IT )− l(p = α; H̃IT )) (8.22)

where p̂ = T−1∑T
t=1 H̃IT t is the maximum likelihood estimator of p under the alternative. The test

has a single restriction and so has an asymptotic χ2
1 distribution.

The likelihood-based test for unconditionally correct VaR can be extended to a test of condition-
ally correct VaR by examining the dependence of HIT s. This testing strategy uses the properties of a
Markov chain of Bernoulli random variables. A Markov chain is a modeling device which an ARMA
model that models random variables which take on a finite number of values – such as a HIT . A
simple 1st order binary valued Markov chain produces Bernoulli random variables which are not nec-
essarily independent. It is characterized by a transition matrix which contains the probability that the
state stays the same. In a 1st order binary valued Markov chain, the transition matrix is given by[

p00 p01
p10 p11

]
=

[
p00 1− p00

1− p11 p11

]
,

where pi j is the probability that the next observation takes value j given that this observation has
value i. For example, p10 indicates that the probability that the next observation is a not a HIT given
the current observation is a HIT . In a correctly specified model, the probability of a HIT in the current
period should not depend on whether the previous period was a HIT or not. In other words, the
sequence {HITt} is i.i.d. so that p00 = 1−α and p11 = α in a correctly specified model.

Define the following quantities,

n00 =

T−1∑
t=1

(1− H̃IT t)(1− H̃IT t+1)

n10 =
T−1∑
t=1

H̃IT t(1− H̃IT t+1)
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n01 =

T−1∑
t=1

(1− H̃IT t)H̃IT t+1

n11 =
T−1∑
t=1

H̃IT tH̃IT t+1

where ni j counts the number of times H̃IT t+1 = i after H̃IT t = j.
The log-likelihood for the sequence two VaR exceedances is

l(p; H̃IT ) = n00 ln(p00)+n01 ln(1− p00)+n11 ln(p11)+n10 ln(1− p11)

where p11 is the probability of two consecutive HIT s and p00 is the probability of two sequential
periods without a HIT . The null is H0 : p11 = 1− p00 = α . The maximum likelihood estimates of p00
and p11 are

p̂00 =
n00

n00 +n01

p̂11 =
n11

n11 +n10

and the null hypothesis can be tested using the likelihood ratio

LR = 2(l(p̂00, p̂11; H̃IT )− l(p00 = 1−α, p11 = α; H̃IT )). (8.23)

This test has an asymptotic χ2
2 distribution since there are two restrictions under the null.

This framework can be extended to include conditioning information by specifying a probit or
logit for H̃IT t using any time-t available information. Both of these models are known as limited
dependent variable models since the left-hand-side variables are always 0 or 1. For example, a speci-
fication test could be constructed using K lags of HIT , a constant and the forecast quantile as

H̃IT t+1|t = γ0 + γ1Ft+1|t + γ2H̃IT t + γ3H̃IT t−1 + . . .+ γKH̃IT t−K+1.

Parameters are computed by maximizing the Bernoulli log-likelihood, which requires the esti-
mated probabilities to satisfy

0≤ γ0 + γ1Ft+1|t + γ2H̃IT t + γ3H̃IT t−1 + . . .+ γKH̃IT t−K+1 ≤ 1.

This restriction is imposed using one of two transformations, the normal CDF (Φ(z)) which produces
the probit model or the logistic function (ez/(1+ ez)) which produces the logit model. Generally the
choice between these two makes little difference. If Xt = [1 Ft+1|t H̃IT t H̃IT t−1 . . . H̃IT t−K+1], the
model for H̃IT is

H̃IT t+1|t = Φ(Xtγ)

where the normal CDF is used to map from (−∞,∞) to (0,1), and so the model is a conditional
probability model. The log-likelihood is
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l(γ; H̃IT ,X) =

T∑
t=1

H̃IT t ln(Φ(Xtγ))− (1− H̃IT t) ln(1−Φ(Xtγ)). (8.24)

The likelihood ratio for testing the null H0 : γ0 = Φ−1(α),γ j = 0 for all j = 1,2, . . . ,K against an
alternative H1 = γ0 6= Φ−1(α) or γ j 6= 0 for some j = 1,2, . . . ,K can be computed

LR = 2
(

l(γ̂; H̃IT )− l(γ0; H̃IT )
)

(8.25)

where γ0 is the value under the null (γ = 0) and γ̂ is the estimator under the alternative (i.e., the
unrestricted estimator from the probit).

8.5.2 Relative Comparisons

Diebold-Mariano tests can be used to rank the relative performance of VaR forecasting models (Diebold
and Mariano, 1995). DM tests of VaR models are virtually identical to DM tests on the forecasts from
two conditional mean or conditional variance models. The only important difference is the use of
the VaR-specific tick loss function. If L(rt+1,VaRt+1|t) is a loss function defined over VaR, then a
Diebold-Mariano test statistic can be computed

DM =
d√

V̂
[
d
] (8.26)

where

dt = L(rt+1,VaRA
t+1|t)−L(rt+1,VaRB

t+1|t),

VaRA and VaRB are the Value-at-Risks from models A and B respectively, d = R−1∑M+R
t=M+1 dt , M (for

modeling) is the number of observations used in the model building and estimation, R (for reserve)

is the number of observations held back for model evaluation, and
√

V̂
[
d
]

is the long-run variance
of dt which requires the use of a HAC covariance estimator (e.g., Newey-West). Recall that DM is
asymptotically normally distributed. The null is equal accuracy, H0 : E [dt ] = 0, and the composite
alternative is HA

1 : E [dt ] < 0 and HB
1 : E [dt ] > 0. Large negative values (less than -2) indicate model

A is superior while large positive values indicate the opposite; values close to zero indicate neither
forecasting model outperforms the other.

Ideally the loss function, L(·), should reflect the user’s preference over VaR forecast errors. In
some circumstances there is no obvious choice, and the tick loss function,

L(rt+1,VaRt+1|t) = α(rt+1−VaRt+1|t)(1− I[rt+1<VaRt+1|t ])+(1−α)(VaRt+1|t− rt+1)I[rt+1<VaRt+1|t ]

(8.27)
is a theoretically sound choice. When the distribution of returns is continuous, the tick-loss is uniquely
minimized at the conditional quantile. The tick-loss function has the same interpretation in a VaR
model as the mean square error (MSE) does in conditional mean model evaluation or the QLIK loss
function in volatility models evaluation.
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8.6 Expected Shortfall

Expected shortfall – also known as tail VaR – combines aspects of VaR with additional information
about the distribution of returns in the tail.8

Definition 8.4 (Expected Shortfall). Expected Shortfall (ES) is defined as the expected value of the
portfolio loss given a Value-at-Risk exceedance has occurred. The unconditional Expected Shortfall
is defined

ES = E
[

Wt+1−Wt

Wt

∣∣∣∣Wt+1−Wt

Wt
<−VaR

]
(8.28)

= E [rt+1|rt+1 <−VaR]

where Wt , is the value of the assets in the portfolio.9

The conditional, and generally more useful, Expected Shortfall is similarly defined.

Definition 8.5 (Conditional Expected Shortfall). Conditional Expected Shortfall is defined

ESt+1 = Et [rt+1|rt+1 <−VaRt+1] . (8.29)

where rt+1 return on a portfolio at time t +1. Since t is an arbitrary measure of time, t +1 also refers
to an arbitrary unit of time (day, two-weeks, 5 years, etc.)

Because the computation of Expected Shortfall requires both a quantile and an expectation, they
are generally computed from density models, either parametric or semiparametric, rather than models
focused on only the ES.

8.6.1 Evaluating Expected Shortfall models

Expected Shortfall models can be evaluated using standard techniques since Expected Shortfall is a
conditional mean,

Et [ESt+1] = Et [rt+1|rt+1 <−VaRt+1].

A generalized Mincer-Zarnowitz regression can be used to test whether this mean is zero. Let
I[rt<VaRt ] indicate that the portfolio return was less than the VaR. The GMZ regression for testing
Expected Shortfall is

(ESt+1|t− rt+1)I[rt+1<−VaRt+1|t ] = Xtγ (8.30)

8Expected Shortfall is a special case of a broader class of statistics known as exceedance measures. Exceedance
measures all describe a common statistic conditional on one or more variables being in their tail. Expected short-
fall it is an exceedance mean. Other exceedance measures which have been studied include exceedance variance,
V[X |X < qα ], exceedance correlation, Corr(X ,Y |X < qα,X ,Y < qα,Y ), and exceedance β , Cov(X ,Y |X < qα,X ,Y <

qα,Y )/(V[X |X < qα,X ]V[Y |Y < qα,Y ])
1
2 where qα,· is the α-quantile of the distribution of X or Y .

9Just like VaR, Expected Shortfall can be equivalently defined in terms of returns or in terms of wealth. For consistency
with the VaR discussion, Expected Shortfall is presented here using the return.
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where Xt , as always, is any set of time t measurable instruments. The natural choices for Xt include
a constant and ESt+1|t , the forecast Expected Shortfall. Any other time-t measurable regressors that
capture important characteristics of the tail, such as recent volatility or the VaR forecast (VaRt+1), may
also be useful in evaluating Expected Shortfall models. If the Expected Shortfall model is correct, the
null that none of the regressors are useful in predicting the difference, H0 : γ = 0, should not be
rejected. If the left-hand side term – the Expected Shortfall “surprise” – in eq. (8.30) is predictable,
then the model can be improved.

Despite the simplicity of the GMZ regression framework to evaluate Expected Shortfall, their
evaluation is difficult due to the scarcity of data available to evaluate the exceedance mean; Expected
Shortfall can only be measured when there is a VaR exceedance and so 4 years of data would only
produce 50 observations where this was true. The lack of data about the tail makes evaluating Ex-
pected Shortfall models difficult and can lead to a failure to reject in many cases even when using
misspecified Expected Shortfall models.

8.7 Density Forecasting

Value-at-Risk, a quantile, provides a narrow view into the riskiness of an asset. More importantly,
VaR may not adequately describe the types of risk relevant to a forecast consumer. A density forecast,
in contrast, summarizes everything there is to know about the riskiness of the asset. Density forecasts
nest both VaR and Expected Shortfall as special cases.

In light of this relationship, it is not apparent that VaR or Expected Shortfall should be used.
Density forecasting suffers from three distinct challenges:

• The density contains all of the information about the random variable being studied, and so a
flexible form is generally needed. The cost of this flexibility is increased parameter estima-
tion error which can be magnified when computing the expectation of nonlinear functions of a
forecast density of future asset prices (e.g., pricing an option).

• Multi-step density forecasts are rarely analytically tractable since densities do not time aggre-
gate, except in special cases that are too simple for most applications.

• Unless the user has preferences over the entire distribution, density forecasts inefficiently utilize
information.

8.7.1 Density Forecasts from ARCH models

Density forecasting from ARCH models is identical to VaR forecasting from ARCH models. For
simplicity, a model with a constant mean and GARCH(1,1) variances is used,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1).
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where G(0,1) is used to indicate that the distribution of innovations need not be normal but must
have mean 0 and variance 1. In practice, the mean and variance can be modeled using richer pa-
rameterizations that have been tailored so the historical data. Standard choices for G(·) include the
standardized Student’s t, the generalized error distribution, and Hansen’s skewed t. The 1-step ahead
density forecast is then

F̂t+1|t
d
= G(µ̂, σ̂2

t+1|t) (8.31)

where F(·) is the distribution of returns. This follow directly from the original model where rt+1 =

µ +σt+1et+1 and et+1
i.i.d.∼ G(0,1).

8.7.2 Semiparametric Density forecasting

Semiparametric density forecasting is also similar to its VaR counterpart. The model begins by as-
suming that innovations are generated according to some unknown distribution G(·),

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1).

and estimates of σ̂2
t are computed assuming that the innovations are conditionally normal. The justi-

fication for this choice follows from the strong consistency of the variance parameter estimates even
when the innovations are not normal. Using the estimated variances, standardized innovations are
computed as êt = ε̂t/σ̂t . The final step is to compute the distribution. The simplest method to accom-
plish this is to compute the empirical CDF as

G(e) = T−1
T∑

t=1

I[êt<e]. (8.32)

The function returns the percentage of the standardized residuals smaller than the value e. This
method is trivial but has some limitations. First, the PDF does not exist since G(·) is not differen-
tiable. This property makes some applications difficult, although a histogram provides a simple, but
imprecise, method to work around the non-differentiability of the empirical CDF. Second, the CDF is
jagged and is generally an inefficient estimator, particularly in the tails.

An alternative, more accurate estimator can be constructed using a kernel to smooth the density.
A kernel density is a local average of the number of êt in a small neighborhood of e. The more
standardized residuals in this neighborhood, the higher the probability in the region, and the larger
the value of the kernel density. The kernel density estimator is defined

g(e) =
1

T h

T∑
t=1

K
(

êt− e
h

)
(8.33)

where K(·) can be one of many kernels – the choice of which usually makes little difference. The two
most common are the Gaussian,
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K(x) =
1√
2π

exp(−x2/2), (8.34)

and the Epanechnikov,

K(x) =
{ 3

4(1− x2) −1≤ x≤ 1
0 otherwise

. (8.35)

The choice of the bandwidth h determines the width of the window used to smooth the density. It
plays a more substantial role than the choice of the kernel in the accuracy of a density estimate. In
practice, Silverman’s bandwidth,

h = 1.06σT−
1
5 , (8.36)

is widely used where σ is the standard deviation of êt (which is theoretically 1, but may differ if the
model is misspecified). However, larger or smaller bandwidths can be used to produce smoother or
rougher densities, respectively. The magnitude of the bandwidth represents a bias-variance tradeoff –
a small bandwidth has little bias but is very jagged (high variance), while a large bandwidth produces
an estimate with substantial bias but very smooth (low variance). If the CDF is needed, g(e) can be
integrated using numerical techniques such as a trapezoidal approximation to the Riemann integral.

Finally, the density forecast is constructed by scaling the distribution G by σt+1|t and adding the
mean. The top panel of Figure 8.5 contains a plot of the empirical CDF and kernel smoothed CDF
of TARCH(1,1,1)-standardized S&P 500 returns in 2018. The empirical CDF is jagged, and there are
some large gaps in the observed returns. The bottom panel shows the histogram of the standardized
returns where each bin contains 10 returns, and the smoothed kernel density estimate computed using
Silverman’s bandwidth and a Gaussian kernel.

8.7.3 Multi-step density forecasting and the fan plot

Multi-step ahead density forecasts do not time aggregate. For example, consider a simple GARCH(1,1)
model with normal innovations,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1).

The 1-step ahead density forecast of returns is

rt+1|Ft ∼ N(µ,σ2
t+1|t). (8.37)

Since innovations are conditionally normal and Et

[
σ2

t+2|t

]
is simple to compute, it is tempting con-

struct a 2-step ahead forecast also using a normal,

rt+2|Ft ∼ N(µ,σ2
t+2|t). (8.38)

This forecast is not correct since the 2-step ahead distribution is a variance-mixture of normals and so
is itself non-normal. This reason for the difference is that σ2

t+2|t , unlike σ2
t+1|t , is a random variable
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Empirical and Smoothed Distribution of the S&P 500
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Figure 8.5: The top panel shows the rough empirical and smoothed empirical CDF for standardized
returns of the S&P 500 in 2018 (standardized by a TARCH(1,1,1)). The bottom panel shows the
histogram of the standardized returns using bins with 10 observations each and the smoothed kernel
density.

and the uncertainty in σ2
t+2|tmust be integrated out to determine the distribution of rt+2. The correct

form of the 2-step ahead density forecast is

rt+2|Ft ∼
∫ ∞
−∞

φ(µ,σ2(et+1)t+2|t+1)φ(et+1)det+1.

where φ(·) is a normal probability density function and σ2(et+1)t+2|t+1 reflects the explicit depen-
dence of σ2

t+2|t+1 on et+1. While this expression is fairly complicated, a simpler way to view it is as
a mixture of normal random variables where the probability of getting a specific normal depends on
w(e) = φ(et+1),

rt+2|Ft ∼
∫ ∞
−∞

w(e) f (µ,σ(et+1)t+2|t+1)de.

Unless w(e) is constant, the resulting distribution is not a normal. The top panel in Figure 8.6 contains
the naïve 10-step ahead forecast and the correct 10-step ahead forecast for a simple GARCH(1,1)
process,
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Multi-step density forecasts
10-step ahead density
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Cumulative 10-step ahead density
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Figure 8.6: Naïve and correct 10-step ahead density forecasts from a simulated GARCH(1,1) model.
The correct density forecasts have substantially fatter tails then the naïve forecast as evidenced by the
central peak and cross-over of the density in the tails.

rt+1 = εt+1

σ
2
t+1 = .02+ .2ε

2
t + .78σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1)

where ε2
t = σt = σ̄ = 1 and hence Et [σt+h] = 1 for all h. The bottom panel contains the plot of the

density of a cumulative 10-day return (the sum of the 10 1-day returns). In this case the naïve model
assumes that

rt+h|Ft ∼ N(µ,σt+h|t)

for h = 1,2, . . . ,10. The correct forecast has heavier tails than the naïve forecast which can be verified
by checking that the solid line is above the dashed line in the extremes.
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Fan plot of the forecasts of an AR(2)
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Figure 8.7: Future density of a persistent AR(2) with i.i.d. standard normal increments. Darker regions
indicate higher probability while progressively lighter regions indicate less likely events.

Fan Plots

A fan plot is a graphical tool to convey information about future changes in uncertainty. The Bank of
England has popularized these representations as a method to convey the uncertainty about the future
of the economy. Figure 8.7 contains a fan plot of the forecast density for a persistent AR(2) with
i.i.d. standard normal increments.10 Darker regions indicate higher probability while progressively
lighter regions indicate less likely events.

8.7.4 Quantile-Quantile (QQ) plots

A Quantile-Quantile, or QQ, plot is a graphical tool that is used to assess the fit of a density or a
density forecast. Suppose a set of standardized residuals êt are assumed to have a distribution F . The

10The density was generated from the AR(2) Yt = 1.8Yt−1− 0.81Yt−2 + εt where the final two in-sample values are
YT = 4.83 and YT−1 = 1.37.



506 Value-at-Risk, Expected Shortfall and Density Forecasting

QQ plots of S&P 500 returns
Normal Student’s t, ν = 5.8
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GED, ν = 1.25 Skewed t, ν = 6.3,λ =−0.19
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Figure 8.8: QQ plots of the studentized S&P 500 returns against fitted Normal, Student’s t, GED and
Skewed t distributions. Points along the 45o indicate a good distributional fit.

QQ plot is generated by ordering the standardized residuals,

ê1 < ê2 < .. . < ên−1 < ên

and then plotting the ordered residual ê j (x-axis) against its hypothetical value (y-axis) if the correct

distribution were F , which is the inverse CDF evaluated at j
T+1 ,

(
F−1

(
j

T+1

))
. This graphical as-

sessment of a distribution is formalized in the Kolmogorov-Smirnov test. Figure 8.8 contains 4 QQ
plots for monthly S&P 500 returns against a normal, a Student’s t, a skewed t, and a GED. The MLE
of the density parameters were used to produce the QQ plots. The normal appears to be badly mis-
specified in the tails – as evidenced through deviations from the 45o line. The other models appear
adequate for the monthly returns. The skewed t performs especially well in the lower tail.
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8.7.5 Evaluating Density Forecasts

All density evaluation strategies are derived from a basic property of continuous random variables: if
x ∼ F , then u ≡ F(x) ∼U(0,1). That is, for any continuous random variable X , the cumulant of X
has a Uniform distribution over [0,1]. The opposite of this results is also true, if U ∼ Uniform(0,1),
F−1(U) = X ∼ F .11

Theorem 8.1 (Probability Integral Transform). Let a random variable X have a continuous, increas-
ing CDF FX(x) and define Y = FX(X). Then Y is uniformly distributed and Pr(Y ≤ y) = y, 0 < y < 1.

Theorem 8.1. For any y ∈ (0,1), Y = FX(X), and so

FY (y) = Pr(Y ≤ y) = Pr(FX(X)≤ y)

= Pr(F−1
X (FX(X))≤ F−1

X (y)) Since F−1
X is increasing

= Pr(X ≤ F−1
X (y)) Invertible since strictly increasing

= FX(F−1
X (y)) Definition of FX

= y

The proof shows that Pr(FX(X) ≤ y) = y and so Y = FX(X) must be a uniform random variable (by
definition).

The Kolmogorov-Smirnov (KS) test exploits this property of residuals from the correct distribu-
tion to test whether a set of observed data are compatible with a specified distribution F . The test
statistic is calculated by first computing the probability integral transformed residuals ût = F(êt)
from the standardized residuals and then sorting them

u1 < u2 < .. . < un−1 < un.

The KS test statistic is then computed from

KS = max
τ

∣∣∣∣∣
τ∑

i=1

I[u j<
τ

T ]
− 1

T

∣∣∣∣∣ (8.39)

= max
τ

∣∣∣∣∣
(

τ∑
i=1

I[u j<
τ

T ]

)
− τ

T

∣∣∣∣∣
The test statistic finds the maximum deviation between the number of u j less than τ

T and the expected
number of observations which should be less than τ

T . Since the probability integral transformed
residuals should be Uniform(0,1) when the model is correctly specified, the number of probability
integral transformed residuals expected to be less than τ

T is τ

T . The distribution of the KS test is
nonstandard and simulated critical values are available in most software packages.

11The latter result can be used as the basis of a random number generator. To generate a random number with a CDF
of F , first generate a uniform value, u, and then compute the inverse CDF of u to produce a random number from F ,
y = F−1(u). If the inverse CDF is not available in closed form, monotonicity of the CDF allows for quick, precise
numerical inversion.
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KS test of normal and standardized t4 when the data are normal
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Figure 8.9: A KS test with simulated normal and t3 data. In both cases, the null is that the data have
normal distributions. The data generated from the t3 crosses the confidence boundary indicating a
rejection of this specification. An accurate density forecast should produce a cumulative distribution
close to the 45o line.

The KS test has a graphical interpretation as a QQ plot of the probability integral transformed
residuals against a uniform. Figure 8.9 contains a representation of the KS test using data from two
series: the first is standard normal and the second is a standardized Student’s t3. 95% confidence
bands are denoted with dotted lines. The data from both series were assumed to be from a standard
normal. The KS test rejects normality of the t3 data as evidenced by the cumulants just crossing the
confidence band.

Parameter Estimation Error and the KS Test

The critical values supplied by most packages do not account for parameter estimation error. KS
tests on in-sample data from models with estimated parameters are less likely to reject than if the true
parameters are known. For example, if a sample of 1000 random variables are i.i.d. standard normal
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and the mean and variance are known to be 0 and 1, the 90, 95 and 99% CVs for the KS test are
0.0387, 0.0428, and 0.0512. If the parameters are not known and must be estimated, the 90, 95 and
99% CVs are reduced to 0.0263, 0.0285, 0.0331. Thus, the desired size of 10% (corresponding to a
90% critical value) has an actual size closer to 0.1%. Using the wrong critical value distorts the size
of the test and lowers the test’s power – the test statistic is unlikely to reject the null hypothesis in
many instances where it should.

The solution to this problem is simple. Since the KS-test requires knowledge of the entire distri-
bution, it is simple to simulate a sample with length T , to estimate the parameters, and to compute the
KS test of the simulated standardized residuals (where the residuals are using estimated parameters).
These steps can be repeated B times (B> 1000, possibly larger) and then the correct critical values can
be computed from the empirical 90, 95 or 99% quantiles from KSb, b = 1,2, . . . ,B. These quantiles
are the correct values to use under the null while accounting for parameter estimation uncertainty.

8.7.6 Evaluating conditional density forecasts

In a direct analogue to the unconditional case, if Xt+1|Ft ∼F , then ût+1≡F(x̂t+1)|Ft
i.i.d.∼U(0,1). That

is, the probability integral transformed residuals are conditionally i.i.d.Uniform(0,1). While this con-
dition is simple and easy to interpret, direct implementation of a test is not. The Berkowitz (2001)
test works around this by further transforming the probability integral transformed residuals into nor-
mals using the inverse Normal CDF . Specifically if ût+1 = Ft+1|t(êt+1) are the residuals standardized
by their forecast distributions, the Berkowitz test computes Ŷt+1 = Φ−1(ût+1) = Φ−1(Ft+1|t(êt+1))

which have the property, under the null of a correct specification that Ŷt
i.i.d.∼ N(0,1) – an i.i.d. sequence

of standard normal random variables.
Berkowitz proposes using a regression model to test the Yt for i.i.d.N(0,1). The test is implement-

ing by estimating the parameters of

Yt = φ0 +φ1Yt−1 +ηt

via maximum likelihood. The Berkowitz test is computing using the likelihood ratio test

LR = 2(l(θ̂ ;Y)− l(θ 0;Y))∼ χ
2
3 (8.40)

where θ 0 are the parameters if the null is true, φ0 = φ1 = 0 and σ2 = 1 (3 restrictions). In other words,
that the Yt are independent normal random variables with a variance of 1. As is always the case in
tests of conditional models, the regression model can be augmented to include any time t−1 available
instrument and a more general specification is

Yt = Xtγ +ηt

where Xt may contains a constant, lagged Yt or anything else relevant for evaluating a density forecast.
In the general specification, the null is H0 : γ = 0,σ2 = 1 and the alternative is the unrestricted estimate
from the alternative specification. The likelihood ratio test statistic in the general case would have a
χ2

K+1 distribution where K is the number of elements in Xt (the +1 comes from the restriction that
σ2 = 1).
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8.8 Coherent Risk Measures

With multiple measures of risk available, which should be chosen: variance, VaR, or Expected Short-
fall? Recent research into risk measurement has identified four desirable properties of any risk mea-
sure. Let ρ be any measure of risk, e.g., VaR or ES, that maps the riskiness of a portfolio to the
reserves required to cover regularly occurring losses. P, P1 and P2 are portfolios of assets.

Drift Invariance

The requires reserved for portfolio P satisfies

ρ (P+C) = ρ (P)− c

That is, adding a portfolio C with a constant return c to P decreases the required reserved by that
amount.

Homogeneity

The required reserved are linear homogeneous,

ρ(λP) = λρ(P) for any λ > 0. (8.41)

The homogeneity property states that the required reserves of two portfolios with the same relative
holdings of assets depends linearly on the scale – doubling the size of a portfolio while not altering its
relative composition generates twice the risk, and requires twice the reserves to cover regular losses.

Monotonicity

If P1 first-order stochastically dominates P2 (P1 FOSD P2), the required reserves for P1 must be less
than those of P2since

ρ(P1)≤ ρ(P2). (8.42)

If P1 FOSD P2 then the value of portfolio P1 is larger than the value of portfolio P2 in every state of
the world, and so the portfolio must be less risky.

Subadditivity

The required reserves for the combination of two portfolios is less than the required reserves for each
treated separately

ρ(P1 +P2)≤ ρ(P1)+ρ(P2). (8.43)

Definition 8.6 (Coherent Risk Measure). Any risk measure which satisfies these four properties is
coherent.

Coherency seems like a good thing for a risk measure. The first three conditions are indisputable.
For example, in the third, if P1 FOSD P2, then P1 always has a higher return, and so must be less risky.
The last is somewhat controversial.
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Theorem 8.2 (Value-at-Risk is not Coherent). Value-at-Risk is not coherent since it fails the subad-
ditivity criteria. It is possible to have a VaR which is superadditive where the Value-at-Risk of the
combined portfolio is greater than the sum of the Values-at-Risk of either portfolio.

Examples of the superadditivity of VaR usually require a portfolio for non-linear exposures. The
simplest example where subadditivity fails is in portfolios of defaults bonds. Suppose P1 and P2
are portfolios where each contains a single bond with a face value of $1,000 paying 0% interest.
The bonds in the portfolios are from two companies. Assume that the default of one company is
independent of the default of the other and that each company defaults with probability 3%. If a
company defaults, only 60% of the bond value is recovered. The 5% VaR of both P1 and P2 is 0 since
the companies pays the full $1,000 97% of the time. The VaR of P3 = 50%×P1+50%×P2, however,
is $200 since at least one company defaults 5.91% of the time. The distribution of P3 is:

Probability Portfolio Value
0.09% $600
5.82% $800

94.09% $1,000

Expected Shortfall, on the other hand, is a coherent measure of risk.

Theorem 8.3 (Expected Shortfall is Coherent). Expected shortfall is a coherent risk measure.

The proof that Expected Shortfall is coherent is straight forward in specific models (for example,
if the returns are jointly normally distributed). The proof for an arbitrary distribution is challenging
and provides little intuition. However, coherency alone does not make Expected Shortfall a better
choice than VaR for measuring portfolio risk. VaR has many advantages as a risk measure: it only
requires the modeling of a quantile of the return distribution, VaR always exists and is finite, and there
are many well-established methodologies for accurately estimating VaR. Expected Shortfall requires
an estimate of the mean in the tail which is more difficult to estimate accurately than the VaR. The
ES may not exist in some cases if the distribution is very heavy-tailed. Additionally, in most realistic
cases, increases in the Expected Shortfall is accompanied with increases in the VaR, and so these two
measures often agree about the risk in a portfolio.

Shorter Problems

Exercise 8.1. Discuss any properties the generalized error should have when evaluating Value-at-Risk
models.

Exercise 8.2. Define and contrast Historical Simulation and Filtered Historical Simulation?

Exercise 8.3. Define Expected Shortfall. How does this extend the idea of Value-at-Risk? Why is it
preferred to Value-at-Risk?

Exercise 8.4. Why are HITs useful for testing a Value-at-Risk model?

Exercise 8.5. Define conditional Value-at-Risk. Describe two methods for estimating this and com-
pare their strengths and weaknesses.

Exercise 8.6. How are Value-at-Risk forecasts assessed? Describe two methods that can be sued to
detect flawed Value-at-Risk models.
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Exercise 8.7. Precisely answer the following questions.

1. What is VaR?

2. What is Expected Shortfall?

3. Describe two methods to estimate the VaR of a portfolio? Compare the strengths and weak-
nesses of these two approaches.

4. Suppose two bankers provide you with VaR forecasts (which are different) and you can get data
on the actual portfolio returns. How could you test for superiority? What is meant by better
forecast in this situation?

Exercise 8.8. The figure below plots the daily returns on IBM from 1 January 2007 to 31 December
2007 (251 trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first
model (denoted “HS”) uses Historical Simulation with a 250-day window of data. The second model
uses a GARCH(1,1) model, assuming that daily returns have a constant conditional mean, and are
conditionally Normally distributed (denoted “Normal-GARCH” in the figure).

Jan07 Feb07 Mar07 Apr07 May07 Jun07 Jul07 Aug07 Sep07 Oct07 Nov07 Dec07
−6

−4

−2

0

2

4

6

P
er

ce
nt

 r
et

ur
n

Daily returns on IBM in 2007, with 5% VaR forecasts
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HS forecast
Normal−GARCH forecast

1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative to
the Historical Simulation model and the Normal-GARCH model.

2. For each of the two VaR forecasts in the figure, a sequence of HIT variables was constructed:

HIT HS
t = 1

{
rt ≤ V̂aR

HS
t

}
HIT GARCH

t = 1
{

rt ≤ V̂aR
GARCH
t

}
where 1{rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a
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and the following regression was run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0956

(0.0186)
+ut

HIT GARCH
t = 0.0438

(0.0129)
+ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts from
these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.1018

(0.0196)
−0.0601

(0.0634)
HIT HS

t−1 +ut

HIT GARCH
t = 0.0418

(0.0133)
+0.0491

(0.0634)
HIT GARCH

t−1 +ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 6.9679 for the first regression, and 0.8113 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

q 95% critical value
1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96

Exercise 8.9. Figure 8.10 plots the daily returns from 1 January 2008 to 31 December 2008 (252
trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first model (de-
noted “HS”) uses historical simulation with a 250-day window of data. The second model uses a
GARCH(1,1) model, assuming that daily returns have a constant conditional mean, and are condi-
tionally Normally distributed (denoted “Normal-GARCH” in the figure).

1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative to
the Historical Simulation model and the Normal-GARCH model.
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2. For each of the two VaR forecasts in the figure, a sequence of HIT variables was constructed:

HIT HS
t = 1

{
rt ≤ V̂aR

HS
t

}
HIT GARCH

t = 1
{

rt ≤ V̂aR
GARCH
t

}
where 1{rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a

and the following regression was run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0555

(0.0144)
+ut

HIT GARCH
t = 0.0277

(0.0103)
+ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts from
these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0462

(0.0136)
+0.1845

(0.1176)
HIT HS

t−1 +ut

HIT GARCH
t = 0.0285

(0.0106)
−0.0233

(0.0201)
HIT GARCH

t−1 +ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 8.330 for the first regression, and 4.668 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

4. Comment on the similarities and differences between what you found when testing using only
a constant and when using a constant and the lagged HIT .

q 95% critical value
1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96
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Figure 8.10: Returns, Historical Simulation VaR and Normal GARCH VaR.

Exercise 8.10. Answer the following question:

1. Assume that X is distributed according to some distribution F that is continuous and strictly
increasing. Define U ≡ F (X) . Show that U ∼ Uniform(0,1) .

2. Assume that V ∼Uni f orm(0,1) , and that G is some continuous and strictly increasing distri-
bution function. If we define Y ≡ G−1 (V ), show that Y ∼ G.

For the next two parts, consider the problem of forecasting the time taken for the price of a
particular asset (Pt) to reach some threshold (P∗). Denote the time (in days) taken for the
asset to reach the threshold as Zt . Assume that the true distribution of Zt is Exponential with
parameter β ∈ (0,∞) :

Zt ∼ Exponential(β )

so F (z;β ) =

{
1− exp{−β z} , z≥ 0

0, z < 0

Now consider a forecaster who gets the distribution correct, but the parameter wrong. Denote
her distribution forecast as F̂ (z) = Exponential

(
β̂

)
.
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3. If we define U ≡ F̂ (Z) , show that Pr [U ≤ u] = 1− (1−u)β/β̂ for u ∈ (0,1) , and interpret.

4. Now think about the case where β̂ is an estimate of β , such that β̂
p→ β as n→∞. Show that

Pr [U ≤ u]
p→ u as n→∞, and interpret.

Exercise 8.11. A Value-at-Risk model was fit to some return data, and the series of 5% VaR violations
was computed. Denote these H̃IT t . The total number of observations was T = 50, and the total
number of violations was 4.

1. Test the null that the model has unconditionally correct coverage using a t-test.

2. Test the null that the model has unconditionally correct coverage using a LR test. The likelihood
for a Bernoulli(p) random Y is

f (y; p) = py (1− p)1−y .

The following regression was estimated

H̃IT t = 0.0205+0.7081H̃IT t−1 + η̂t

The estimated asymptotic covariance of the parameters is

σ̂
2
Σ̂
−1
XX =

[
0.0350 −0.0350
−0.0350 0.5001

]
, and Σ̂

−1
XX ŜΣ̂

−1
XX =

[
0.0216 −0.0216
−0.0216 2.8466

]

where σ̂2 = 1
T
∑T

t=1 η̂2
t , Σ̂XX = 1

T X′X and Ŝ = 1
T
∑T

t=1 η̂2
t X′tXt .

3. Is there evidence that the model is dynamically misspecified, ignoring the unconditional rate of
violations?

4. Compute a joint test that the model is completely correctly specified. Note that[
a b
b c

]−1

=
1

ac−b2

[
c −b
−b a

]
.

Note: The 5% critical values of a χ2
v are

ν CV
1 3.84
2 5.99
3 7.81

47 64.0
48 65.1
49 66.3
50 67.5

Exercise 8.12. Suppose you have a sample of 500 observations to evaluate a Value-at-Risk model
using Out-of-Sample forecasts. You observe 36 95% VaR violations in this period.
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1. What features the VaR violations of a correctly specified VaR model have?

2. Perform a test that the model is well specified using the sample average.

3. The likelihood of a Bernoulli(p) random variable is

L(y; p) = yp (1− y)(1−p) .

How can you use this likelihood to implement a better test? Compute the test statistic and draw
conclusions about the accuracy of the model.

4. Explain the differences between these two approaches.

5. Fully describe one method that would allow you to use the time series of VaR violations to test
whether the model has correctly specified dynamics.
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