
Chapter 4

Analysis of a Single Time Series

Note: The primary reference for these notes is Enders (2004). An alternative and more technical
treatment can be found in Hamilton (1994).

Most data used in financial econometrics occur sequentially through time. In-
terest rates, asset returns, and foreign exchange rates are all examples of time
series. This chapter introduces time-series econometrics and focuses primar-
ily on linear models, although some common non-linear models are described
in the final section. The analysis of time-series data begins by defining two key
concepts in the analysis of time series: stationarity and ergodicity. The chap-
ter next turns to Autoregressive Moving Average models (ARMA) and covers the
structure of these models, stationarity conditions, model selection, estimation,
inference, and forecasting. Finally, The chapter concludes by examining non-
stationary time series.

4.1 Stochastic Processes

A stochastic process is an arbitrary sequence of random data and is denoted

{yt } (4.1)

where {·} is used to indicate that the y s form a sequence. The simplest non-trivial stochastic

process specifies that yt
i.i.d.∼ D for some distribution D , for example normal. Another simple

stochastic process is the random walk,

yt = yt−1 + εt

where εt is an i.i.d. process.

4.2 Stationarity, Ergodicity, and the Information Set

Stationarity is a probabilistically meaningful measure of regularity. This regularity can be ex-
ploited to estimate unknown parameters and characterize the dependence between observa-
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tions across time. If the data generating process frequently changed in an unpredictable manner,
constructing a meaningful model would be difficult or impossible.

Stationarity exists in two forms, strict stationarity and covariance (also known as weak) sta-
tionarity. Covariance stationarity is important when modeling the mean of a process, although
strict stationarity is useful in more complicated settings, such as non-linear models.

Definition 4.1 (Strict Stationarity). A stochastic process {yt } is strictly stationary if the joint dis-
tribution of {yt , yt+1, . . . , yt+h} only depends only on h and not on t .

Strict stationarity requires that the joint distribution of a stochastic process does not depend
on time and so the only factor affecting the relationship between two observations is the gap
between them. Strict stationarity is weaker than i.i.d. since the process may be dependent but it is
nonetheless a strong assumption and implausible for many time series, including both financial
and macroeconomic data.

Covariance stationarity, on the other hand, only imposes restrictions on the first two mo-
ments of a stochastic process.

Definition 4.2 (Covariance Stationarity). A stochastic process {yt } is covariance stationary if

E [yt ] = µ for t = 1, 2, . . . (4.2)

V [yt ] = σ2 <∞ for t = 1, 2, . . .

E [(yt − µ)(yt−s − µ)] = γs for t = 1, 2, . . . , s = 1, 2, . . . , t − 1.

Covariance stationarity requires that both the unconditional mean and unconditional variance
are finite and do not change with time. Note that covariance stationarity only applies to uncon-
ditional moments and not conditional moments, and so a covariance process may have a varying
conditional mean (i.e. be predictable).

These two types of stationarity are related although neither nests the other. If a process is
strictly stationary and has finite second moments, then it is covariance stationary. If a process
is covariance stationary and the joint distribution of the studentized residuals (demeaned and
standardized by their standard deviation) does not depend on time, then the process is strictly
stationary. However, one type can occur without the other, both can occur or neither may be
applicable to a particular time series. For example, if a process has higher order moments which
depend on time (e.g., time-varying kurtosis), it may be covariance stationary but not strictly sta-
tionary. Alternatively, a sequence of i.i.d. Student’s t random variables with 2 degrees of freedom
is strictly stationary but not covariance stationary since the variance of a t2 is infinite.
γs = E [(yt − µ)(yt−s − µ)] is the covariance of yt with itself at a different point in time, known

as the sth autocovariance. γ0 is the lag-0 autocovariance, the same quantity as the long-run vari-
ance of yt (i.e. γ0 = V [yt ]).1

Definition 4.3 (Autocovariance). The autocovariance of a covariance stationary scalar process
{yt } is defined

γs = E [(yt − µ)(yt−s − µ)] (4.3)

where µ = E [yt ]. Note that γ0 = E [(yt − µ)(yt − µ)] = V [yt ].

1The use of long-run variance is used to distinguish V[yt ] from the innovation variance, V[εt ], also known as the
short-run variance.
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Ergodicity is another important concept in the analysis of time series and is one form of
asymptotic independence.

Definition 4.4 (Ergodicity). Let {yt } be a stationary sequence. {yt } is ergodic if for any two
bounded functions f : Rk → R g : Rl → R

lim
j→∞

∣∣E [ f (yt , . . . , yt+k ) g
(

yt+ j , . . . , yt+l+ j

)]∣∣ (4.4)

= |E [ f (yt , . . . , yt+k )]|
∣∣E [g (yt+ j , . . . , yt+l+ j

)]∣∣
In essence, if an ergodic stochastic process is sampled at two points far apart in time, these

samples will be independent. The ergodic theorem provides a practical application of ergodicity.

Theorem 4.1 (Ergodic Theorem). If{yt } is ergodic and its rth momentµr is finite, then T −1
∑T

t=1 y r
t

p→
µr .

The ergodic theorem states that averages will converge to their expectation provided the ex-
pectation exists. The intuition for this results follows from the definition of ergodicity since sam-
ples far apart in time are (effectively) independent, and so errors average across time.

Not all series are ergodic. Let yt = η + εt where η ∼ N (0, 1), εt
i.i.d.∼ N (0, 1) and η and εt are

independent for any t . Note thatη is drawn only once (not every t ). Clearly, E [yt ] = 0. However,

T −1
∑T

t=1 yt
p→ η 6= 0, and so even though the average converges it does not converge to E[yt ]

since the effect of the initial draw of η is present in every observation of {yt }.
The third important building block of time-series models is white noise. White noise gener-

alizes i.i.d. noise and allows for dependence in a series as long as three conditions are satisfied:
the series is mean zero, uncorrelated and has finite second moments.

Definition 4.5 (White Noise). A process {εt } is known as white noise if

E [εt ] = 0 for t = 1, 2, . . . (4.5)

V [εt ] = σ2 <∞ for t = 1, 2, . . .

E
[
εt εt− j

]
= Cov(εt , εt− j ) = 0 for t = 1, 2, . . . , j 6= 0.

An i.i.d. series with finite second moments is trivially white noise, but other important pro-
cesses, such as residuals following an ARCH (Autoregressive Conditional Heteroskedasticity) pro-
cess, may also be white noise although not independent since white noise only requires linear
independence.2 A white noise process is also covariance stationary since it satisfies all three con-
ditions: the mean, variance, and autocovariances are all finite and do not depend on time.

The final important concepts are conditional expectation and the information set. The in-
formation set at time t is denoted Ft and contains all time t measurable events3, and so the
information set includes realization of all variables which have occurred on or before t . For
example, the information set for January 3, 2008 contains all stock returns up to an including
those which occurred on January 3. It also includes everything else known at this time such as

2Residuals generated from an ARCH process have dependence in conditional variances but not mean.
3A measurable event is any event that can have probability assigned to it at time t . In general this includes any

observed variable but can also include time t beliefs about latent (unobserved) variables such as volatility or the
final revision of the current quarter’s GDP.
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interest rates, foreign exchange rates or the scores of recent football games. Many expectations
will often be made conditional on the time-t information set, expressed E

[
yt+h |Ft

]
, or in ab-

breviated form as Et [yt+h ]. The conditioning information set matters when taking expectations
and E [yt+h ], Et [yt+h ] and Et+h [yt+h ] are not the same. Conditional variance is similarly defined,
V
[

yt+h |Ft

]
= Vt [yt+h ] = Et

[
(yt+h − Et [yt+h ])2

]
.

4.3 ARMA Models

Autoregressive moving average (ARMA) processes form the core of time-series analysis. The
ARMA class can be decomposed into two smaller classes, autoregressive (AR) processes and mov-
ing average (MA) processes.

4.3.1 Moving Average Processes

The 1storder moving average, written MA(1), is the simplest non-degenerate time-series process,

yt = φ0 + θ1εt−1 + εt

where φ0 and θ1 are parameters and εt a white noise series. This process stipulates that the
current value of yt depends on both a new shock and the previous shock. For example, if θ is
negative, the current realization will “bounce back” from the previous shock.

Definition 4.6 (First Order Moving Average Process). A first order Moving Average process (MA(1))
has dynamics which follow

yt = φ0 + θ1εt−1 + εt (4.6)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

It is simple to derive both the conditional and unconditional means in this process. The con-
ditional mean is

Et−1 [yt ] = Et−1 [φ0 + θ1εt−1 + εt ] (4.7)

= φ0 + θ1Et−1 [εt−1] + Et−1 [εt ]
= φ0 + θ1εt−1 + 0

= φ0 + θ1εt−1

where Et−1 [εt ] = 0 follows by assumption that the shock is unpredictable using the time-t − 1
information set, and since εt−1 is in the time-t − 1 information set (εt−1 ∈ Ft−1), it passes
through the time-t − 1 conditional expectation. The unconditional mean is

E [yt ] = E [φ0 + θ1εt−1 + εt ] (4.8)

= φ0 + θ1E [εt−1] + E [εt ]
= φ0 + θ10 + 0

= φ0.
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Comparing these two results, the unconditional mean of yt , E [yt ], is φ0 while the conditional
mean Et−1 [yt ] = φ0 + θ1εt−1. This difference reflects the persistence of the previous shock in
the current period. The variances can be similarly derived,

V [yt ] = E
[
(φ0 + θ1εt−1 + εt − E [φ0 + θ1εt−1 + εt ])2

]
(4.9)

= E
[
(φ0 + θ1εt−1 + εt − φ0)2

]
= E

[
(θ1εt−1 + εt )2

]
= θ 2

1 E
[
ε2

t−1

]
+ E

[
ε2

t

]
+ 2θ1E [εt−1εt ]

= σ2θ 2
1 + σ

2 + 0

= σ2
(

1 + θ 2
1

)
where E [εt−1εt ] follows from the white noise assumption. The conditional variance is

Vt−1 [yt ] = Et−1

[
(φ0 + θ1εt−1 + εt − Et−1 [φ0 + θ1εt−1 + εt ])2

]
(4.10)

= Et−1

[
(φ0 + θ1εt−1 + εt − φ0 − θ1εt−1)2

]
= Et−1

[
ε2

t

]
= σ2

t

where σ2
t is the conditional variance of εt . White noise does not have to be homoskedastic, al-

though if εt is homoskedastic then Vt−1 [yt ] = E
[
σ2

t

]
= σ2. Like the mean, the unconditional

variance and the conditional variance are different. The unconditional variance is unambigu-
ously larger than the average conditional variance which reflects the extra variability introduced
by the moving average term.

Finally, the autocovariance can be derived

E [(yt − E [yt ]) (yt−1 − E [yt−1])] = E [(φ0 + θ1εt−1 + εt − φ0) (φ0 + θ1εt−2 + εt−1 − φ0)] (4.11)

= E
[
θ1ε

2
t−1 + θ1εt εt−2 + εt εt−1 + θ 2

1 εt−1εt−2

]
= θ1E

[
ε2

t−1

]
+ θ1E [εt εt−2] + E [εt εt−1] + θ 2

1 E [εt−1εt−2]
= θ1σ

2 + 0 + 0 + 0

= θ1σ
2

E [(yt − E [yt ]) (yt−2 − E [yt−2])] = E [(φ0 + θ1εt−1 + εt − φ0) (φ0 + θ1εt−3 + εt−2 − φ0)] (4.12)

= E [(θ1εt−1 + εt ) (θ1εt−3 + εt−2)]

= E
[
θ1εt−1εt−2 + θ1εt−3εt + εt εt−2 + θ 2

1 εt−1εt−3

]
= θ1E [εt−1εt−2] + θ1E [εt−3εt ] + E [εt εt−2] + θ 2

1 E [εt−1εt−3]
= 0 + 0 + 0 + 0

= 0

By inspection of eq. (4.12) it follows that γs = E [(yt − E [yt ])(yt−s − E [yt−s ])] = 0 for s ≥ 2.
The MA(1) can be generalized into the class of MA(Q ) processes by including additional lagged

errors.
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Definition 4.7 (Moving Average Process of Order Q ). A Moving Average process of order Q, ab-
breviated MA(Q), has dynamics which follow

yt = φ0 +
Q∑

q=1

θqεt−q + εt (4.13)

where εt is white noise series with the additional property that Et−1 [εt ] = 0.

The following properties hold in higher order moving averages:

• E [yt ] = φ0

• V [yt ] = (1 +
∑Q

q=1 θ
2
q )σ

2

• E [(yt − E [yt ])(yt−s − E [yt−s ])] = σ2
∑Q−s

i=0 θiθi+s for s ≤ Q where θ0 = 1.

• E [(yt − E [yt ])(yt−s − E [yt−s ])] = 0 for s > Q

4.3.2 Autoregressive Processes

The other subclass of ARMA processes is the autoregressive process.

Definition 4.8 (First Order Autoregressive Process). A first order autoregressive process, abbre-
viated AR(1), has dynamics which follow

yt = φ0 + φ1 yt−1 + εt (4.14)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

Unlike the MA(1) process, y appears on both sides of the equation. However, this is only a con-
venience and the process can be recursively substituted to provide an expression that depends
only on the errors, εt and an initial condition.

yt = φ0 + φ1 yt−1 + εt

yt = φ0 + φ1 (φ0 + φ1 yt−2 + εt−1) + εt

yt = φ0 + φ1φ0 + φ2
1 yt−2 + εt + φ1εt−1

yt = φ0 + φ1φ0 + φ2
1 (φ0 + φ1 yt−3 + εt−2) + εt + φ1εt−1

yt = φ0 + φ1φ0 + φ2
1φ0 + φ3

1 yt−3 + εt + φ1εt−1 + φ2
1εt−2

...
...

yt =
t−1∑
i=0

φi
1φ0 +

t−1∑
i=0

φi
1εt−i + φt

1 y0

Using backward substitution, an AR(1) can be expressed as an MA(t). In many cases the initial
condition is unimportant and the AR process can be assumed to have begun long ago in the past.
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As long as |φ1| < 1, limt→∞φ
t y0 → 0 and the effect of an initial condition will be small. Using

the “infinite history” version of an AR(1), and assuming |φ1| < 1, the solution simplifies to

yt = φ0 + φ1 yt−1 + εt

yt =
∞∑

i=0

φi
1φ0 +

∞∑
i=0

φi
1εt−i

yt =
φ0

1− φ1
+
∞∑

i=0

φi
1εt−i (4.15)

where the identity
∑∞

i=0φ
i
1 = (1 − φ1)−1 is used in the final solution. This expression of an AR

process is known as an MA(∞) representation and it is useful for deriving standard properties.
The unconditional mean of an AR(1) is

E [yt ] = E

[
φ0

1− φ1
+
∞∑

i=0

φi
1εt−i

]
(4.16)

=
φ0

1− φ1
+
∞∑

i=0

φi
1E [εt−i ]

=
φ0

1− φ1
+
∞∑

i=0

φi
10

=
φ0

1− φ1
.

The unconditional mean can be alternatively derived noting that, as long as {yt } is covariance
stationary, that E [yt ] = E [yt−1] = µ, and so

E [yt ] = E [φ0 + φ1 yt−1 + εt−1] (4.17)

E [yt ] = φ0 + φ1E [yt−1] + E [εt−1]
µ = φ0 + φ1µ + 0

µ− φ1µ = φ0

µ (1− φ1) = φ0

E [yt ] =
φ0

1− φ1

TheFt−1-conditional expectation is

Et−1 [yt ] = Et−1 [φ0 + φ1 yt−1 + εt ] (4.18)

= φ0 + φ1Et−1 [yt−1] + Et−1 [εt ]
= φ0 + φ1 yt−1 + 0

= φ0 + φ1 yt−1
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since yt−1 ∈ Ft−1. The unconditional and conditional variances are

V [yt ] = E
[
(yt − E [yt ])2

]
(4.19)

= E

( φ0

1− φ1
+
∞∑

i=0

φi
1εt−i −

φ0

1− φ1

)2


= E

( ∞∑
i=0

φi
1εt−i

)2


= E

 ∞∑
i=0

φ2i
1 ε

2
t−i +

∞∑
i=0

∞∑
j=0,i 6= j

φi+ j
1 εt−iεt− j


= E

[
∞∑

i=0

φ2i
1 ε

2
t−i

]
+ E

 ∞∑
i=0

∞∑
j=0,i 6= j

φi+ j
1 εt−iεt− j


=
∞∑

i=0

φ2i
1 E
[
ε2

t−i

]
+
∞∑

i=0

∞∑
j=0,i 6= j

φi+ j
1 E

[
εt−iεt− j

]
=
∞∑

i=0

φ2i
1 σ

2 +
∞∑

i=0

∞∑
j=0,i 6= j

φi+ j
1 0

=
σ2

1− φ2
1

where the expression for the unconditional variance uses the identity that
∑∞

i=0φ
2i
1 =

1
1−φ2

1
and

E[εt−iεt− j ] = 0 follows from the white noise assumption. Again, assuming covariance station-
arity and so V[yt ] = V[yt−1], the variance can be directly computed,

V [yt ] = V [φ0 + φ1 yt−1 + εt ] (4.20)

V [yt ] = V [φ0] + V [φ1 yt−1] + V [εt ] + 2Cov [φ1 yt−1, εt ]
V [yt ] = 0 + φ2

1 V [yt−1] + σ2 + 2 · 0
V [yt ] = φ2

1 V [yt ] + σ2

V [yt ]− φ2
1 V [yt ] = σ2

V [yt ] (1− φ2
1 ) = σ

2

V [yt ] =
σ2

1− φ2
1

where Cov [yt−1, εt ] = 0 follows from the white noise assumption since yt−1 is a function of
εt−1, εt−2, . . .. The conditional variance is
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Vt−1 [yt ] = Et−1

[
(φ1 yt−1 + εt − φ1 yt−1)2

]
(4.21)

= Et−1

[
ε2

t

]
= σ2

t

Again, the unconditional variance is uniformly larger than the average conditional variance
(E
[
σ2

t

]
= σ2) and the variance explodes as |φ1| approaches 1 or -1. Finally, the autocovariances

can be derived,

E [(yt − E[yt ])(yt−s − E[yt−s ])] = E

[(
φ0

1− φ1
+
∞∑

i=0

φi
1εt−i −

φ0

1− φ1

)
(4.22)

×

(
φ0

1− φ1
+
∞∑

i=0

φi
1εt−s−i −

φ0

1− φ1

)]
(4.23)

= E

[(
∞∑

i=0

φi
1εt−i

)(
∞∑

i=0

φi
1εt−s−i

)]

= E

[(
s−1∑
i=0

φi
1εt−i +

∞∑
i=s

φi
1εt−i

)(
∞∑

i=0

φi
1εt−s−i

)]

= E

[(
s−1∑
i=0

φi
1εt−i +

∞∑
i=0

φs
1φ

i
1εt−s−i

)(
∞∑

i=0

φi
1εt−s−i

)]

= E

[(
s−1∑
i=0

φi
1εt−i

)(
∞∑

i=0

φi
1εt−s−i

)

+ φs
1

(
∞∑

i=0

φi
1εt−s−i

)(
∞∑

i=0

φi
1εt−s−i

)]
(4.24)

= E

[(
s−1∑
i=0

φi
1εt−i

)(
∞∑

i=0

φi
1εt−s−i

)]

+ E

[
φs

1

(
∞∑

i=0

φi
1εt−s−i

)(
∞∑

i=0

φi
1εt−s−i

)]
(4.25)

= 0 + φs
1 E

[(
∞∑

i=0

φi
1εt−s−i

)(
∞∑

i=0

φi
1εt−s−i

)]
= 0 + φs

1 V [yt−s ]

= φs
1

σ2

1− φ2
1

An alternative approach to deriving the autocovariance is to note that yt −µ =
∑s−i

i=0 φ
i
1εt−i +

φs (yt−s − µ)where µ = E[yt ] = E[yt−s ]. Using this identify, the autocovariance can be derived
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E [(yt − E[yt ])(yt−s − E[yt−s ])] = E

[(
s−i∑
i=0

φi
1εt−i + φs (yt−s − µ)

)
(yt−s − µ)

]
(4.26)

= E

[(
s−i∑
i=0

φi
1εt−i

)
(yt−s − µ) + (φs (yt−s − µ) (yt−s − µ))

]

= E

[(
s−i∑
i=0

φi
1εt−i

)
(yt−s − µ)

]
+ E [(φs (yt−s − µ) (yt−s − µ))]

= 0 + φs E [((yt−s − µ) (yt−s − µ))]
= φs V [yt−s ]

= φs
1

σ2

1− φ2
1

where the white noise assumption is used to ensure that E [εt−u (yt−s − µ)] = 0 when u > s .
The AR(1) can be extended to the AR(P ) class by including additional lags of yt .

Definition 4.9 (Autoregressive Process of Order P ). An Autoregressive process of order P (AR(P ))
has dynamics which follow

yt = φ0 +
P∑

p=1

φp yt−p + εt (4.27)

where εt is white noise series with the additional property that Et−1 [εt ] = 0.

Some of the more useful properties of general AR process are:

• E[yt ] =
φ0

1−
∑P

p=1 φp

• V[yt ] = σ2

1−
∑P

p=1 φpρp
where ρp is the pth autocorrelation.

• V[yt ] is infinite if
∑P

p=1φp ≥ 1

• E [(yt − E[yt ])(yt−s − E[yt−s ])] 6= 0 for any s (in general, although certain parameterizations
may produce some 0 autocovariances).

These four properties point to some important regularities of AR processes. First, the mean is
only finite if

∑P
p=1φp < 1. Second, the autocovariances are (generally) not zero, unlike those of

an MA processes (γs = 0 for |s | > Q ). This difference in the behavior of the autocovariances plays
an important role in model building. Explicit expressions for the variance and autocovariance of
higher order AR processes can be found in appendix 4.A.

4.3.3 Autoregressive-Moving Average Processes

Putting these two processes together yields the complete class of ARMA processes.
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Definition 4.10 (Autoregressive-Moving Average Process). An Autoregressive Moving Average
process with orders P and Q (ARMA(P, Q )) has dynamics which follow

yt = φ0 +
P∑

p=1

φp yt−p +
Q∑

q=1

θqεt−q + εt (4.28)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

Again, consider the simplest ARMA(1,1) process that includes a constant term,

yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

To derive the properties of this model it is useful to convert the ARMA(1,1) into its infinite lag
representation using recursive substitution,

yt = φ0 + φ1 yt−1 + θ1εt−1 + εt (4.29)

yt = φ0 + φ1 (φ0 + φyt−2 + θ1εt−2 + εt−1) + θ1εt−1 + εt

yt = φ0 + φ1φ0 + φ2
1 yt−2 + φ1θ1εt−2 + φ1εt−1 + θ1εt−1 + εt

yt = φ0 + φ1φ0 + φ2
1 (φ0 + φyt−3 + θ1εt−3 + εt−2) + φ1θ1εt−2 + φ1εt−1 + θ1εt−1 + εt

yt = φ0 + φ1φ0 + φ2
1φ0 + φ3

1 yt−3 + φ2
1θ1εt−3 + φ2

1εt−2 + φ1θ1εt−2 + φ1εt−1 + θ1εt−1 + εt

...
...

yt =
∞∑

i=0

φi
1φ0 + εt +

∞∑
i=0

φi
1 (φ1 + θ1) εt−i−1

yt =
φ0

1− φ1
+ εt +

∞∑
i=0

φi
1 (φ1 + θ1) εt−i−1.

Using the infinite lag representation, the unconditional and conditional means can be com-
puted,

E [yt ] = E

[
φ0

1− φ1
+ εt +

∞∑
i=0

φi
1 (φ1 + θ1) εt−i−1

]
(4.30)

=
φ0

1− φ1
+ E [εt ] +

∞∑
i=0

φi
1 (φ1 + θ1)E [εt−i−1]

=
φ0

1− φ1
+ 0 +

∞∑
i=0

φi
1 (φ1 + θ1) 0

=
φ0

1− φ1
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and

Et−1 [yt ] = Et−1 [φ0 + φ1 yt−1 + θ1εt−1 + εt ] (4.31)

= φ0 + φ1Et−1 [yt−1] + θ1Et−1 [εt−1] + Et−1 [εt ]
= φ0 + φ1 yt−1 + θ1εt−1 + 0

= φ0 + φ1 yt−1 + θ1εt−1

Since yt−1 and εt−1 are in the time-t − 1 information set, these variables pass through the con-
ditional expectation. The unconditional variance can be tediously derived (see appendix 4.A.3
for the complete derivation)

V [yt ] = σ2

(
1 + 2φ1θ1 + θ 2

1

1− φ2
1

)
(4.32)

The conditional variance is identical to that in the AR(1) or MA(1), Vt−1 [yt ] = σ2
t , and, if εt is

homoskedastic, Vt−1 [yt ] = σ2.
The unconditional mean of an ARMA is the same as an AR since the moving average terms,

which are all mean zero, make no contribution. The variance is more complicated, and it may
be larger or smaller that an AR(1) with the same autoregressive parameter (φ1). The variance will
only be smaller ifφ1 and θ1 have opposite signs and 2φ1θ1 < θ

2
1 . Deriving the autocovariance is

straightforward but tedious and is presented in appendix 4.A.

4.4 Difference Equations

Before turning to the analysis of the stationarity conditions for ARMA processes, it is useful to
develop an understanding of the stability conditions in a setting without random shocks.

Definition 4.11 (Linear Difference Equation). An equation of the form

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P + xt . (4.33)

is known as a Pth order linear difference equation where the series {xt } is known as the driving
process.

Linear difference equation nest ARMA processes which can be seen by setting xt equal to the
shock plus the moving average component of the ARMA process,

xt = θ1εt−1 + θ2εt−2 + . . . + θQεt−Q + εt .

Stability conditions depend crucially on the solution to the linear difference equation.

Definition 4.12 (Solution). A solution to a linear difference equation expresses the linear differ-
ence equation

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P + xt . (4.34)

as a function of only {xi}t
t=1, a constant and, when yt has finite history, an initial value y0.
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Consider a first order linear difference equation

yt = φ0 + φ1 yt−1 + xt .

Starting from an initial value y0,

y1 = φ0 + φ1 y0 + x1

y2 = φ0 + φ1(φ0 + φ1 y0 + x1) + x2

= φ0 + φ1φ0 + φ2
1 y0 + x2 + φ1 x1

y3 = φ0 + φ1 y2 + x2

= φ0 + φ1(φ0 + φ1φ0 + φ2
1 y0 + φ1 x1 + x2) + x2

= φ0 + φ1φ0 + φ2
1φ0 + φ3

1 y0 + x3 + φ1 x2 + φ2
1 x1

Continuing these iterations, a pattern emerges:

yt = φt
1 y0 +

t−1∑
i=0

φi
1φ0 +

t−1∑
i=0

φi
1 xt−i (4.35)

This is a solution since it expresses yt as a function of only {xt }, y0 and constants. When no initial
condition is given (or the series is assumed to be infinite), the solution can be found by solving
backward

yt = φ0 + φ1 yt−1 + xt

yt−1 = φ0 + φ1 yt−2 + xt−1 ⇒
yt = φ0 + φ1(φ0 + φ1 yt−2 + xt−1) + xt

= φ0 + φ1φ0 + φ2
1 yt−2 + xt + φ1 xt−1

yt−2 = φ0 + φ1 yt−3 + xt−2 ⇒
yt = φ0 + φ1φ0 + φ2

1 (φ0 + φ1 yt−3 + xt−2) + xt + φ1 xt−1

= φ0 + φ1φ0 + φ2
1φ0 + φ3

1 yt−3 + xt + φ1 xt−1 + φ2
1 xt−2

which leads to the approximate solution

yt =
s−1∑
i=0

φi
1φ0 +

s−1∑
i=0

φi
1 xt−i + φs

1 yt−s .

To understand the behavior of this solution, it is necessary to take limits. If |φ1| < 1, lims→∞φ
s
1 yt−s

goes to zero (as long as yt−s is bounded) and the solution simplifies to

yt = φ0

∞∑
i=0

φi
1 +

∞∑
i=0

φi
1 xt−i . (4.36)



230 Analysis of a Single Time Series

Noting that, as long as |φ1| < 1,
∑∞

i=0φ
i
1 = 1/(1− φ1),

yt =
φ0

1− φ1
+
∞∑

i=0

φi
1 xt−i (4.37)

is the solution to this problem with an infinite history. The solution concept is important because
it clarifies the relationship between observations in the distant past and the current observation,
and if lims→∞φ

s
1 yt−s does not converge to zero then observations arbitrarily far in the past have

an influence on the value of y today.
When |φ1| > 1 then this system is said to be nonconvergent sinceφt

1 diverges as t grows large
and values in the past are not only important, they will dominate when determining the current
value. In the special case whereφ1 = 1,

yt = φ0t +
∞∑

i=0

xt−i ,

which is a random walk when {xt } is a white noise process, and the influence of a single xt never
diminishes. Direct substitution can be used to find the solution of higher order linear difference
equations at the cost of more tedium. A simpler alternative is to focus on the core component of
a linear difference equation, the linear homogeneous equation.

4.4.1 Homogeneous Difference Equations

When the number of lags grows large (3 or greater), solving linear difference equations by sub-
stitution is tedious. The key to understanding linear difference equations is the study of the ho-
mogeneous portion of the equation. In the general linear difference equation,

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P + xt

the homogenous portion is defined as the terms involving only y ,

yt = φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P . (4.38)

The intuition behind studying this portion of the system is that given the sequence of {xt }, all
of the dynamics and the stability of the system are determined by the relationship between con-
temporaneous yt and its lagged values which allows the determination of the parameter values
where the system is stable. Again, consider the homogeneous portions of the simple 1storder
system,

yt = φ1 yt−1 + xt

which has the homogeneous portion

yt = φ1 yt−1.

To find solutions to this equation, one can try trial and error: one obvious solution is 0 since
0 = φ · 0. It is easy to show that
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yt = φt
1 y0

is also a solution by examining the solution to the linear difference equation in eq. (4.35). But
then so is any solution of the form cφt

1 for an arbitrary constant c. How?

yt = cφt
1

yt−1 = cφt−1
1

and

yt = φ1 yt−1

Putting these two together shows that

yt = φ1 yt−1

cφt
1 = φ1 yt−1

cφt
1 = φ1cφt−1

1

cφt
1 = cφt

1

and there are many solutions. However, from these it is possible to discern when the solution
will converge to zero and when it will explode:

• If |φ1| < 1 the system converges to 0. If φ1 is also negative, the solution oscillates, while if
φ1 is greater than 0, the solution decays exponentially.

• If |φ1| > 1 the system diverges, again oscillating if negative and growing exponentially if
positive.

• If φ1 = 1, the system is stable and all values are solutions. For example 1 = 1 · 1, 2 = 1 · 2,
etc.

• If φ1 = −1, the system is metastable. The values, in absolute terms, are unchanged, but it
oscillates between + and -.

These categories will play important roles in examining the dynamics of larger equations since
they determine how past shocks will affect current values of yt . When the order is greater than 1,
there is an easier approach to examining the stability of the system. Consider the second order
linear difference system,

yt = φ0 + φ1 yt−1 + φ2 yt−2 + xt

and again focus on the homogeneous portion,

yt = φ1 yt−1 + φ2 yt−2.

This equation can be rewritten
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yt − φ1 yt−1 − φ2 yt−2 = 0

so any solution of the form

c z t − φ1c z t−1 − φ2c z t−2 = 0 (4.39)

c z t−2
(

z 2 − φ1z − φ2

)
= 0

will solve this equation.4 Dividing through by c z t−2, this is equivalent to
z 2 − φ1z − φ2 = 0 (4.40)

and he solutions to this quadratic polynomial are given by the quadratic formula,

c1, c2 =
φ1 ±

√
φ2

1 + 4φ2

2
(4.41)

The roots of the equation, c1 and c2, play the same role as φ1 in the 1storder case.5 If |c1| <
1 and |c2| < 1, the system is convergent. With two roots both smaller than 1 there are three
interesting cases:

Case 1: Both roots are real and positive. In this case, the system will exponentially dampen
and not oscillate.

Case 2: Both roots are imaginary (of the form c + d i where i =
√
−1) and distinct, or real

and at least one negative. In this case, the absolute value of the roots (also called the modulus,
defined as

√
c 2 + d 2 for an imaginary number c + d i ) is less than 1, and so the system will be

convergent but oscillate.
Case 3: Real but the same. This occurs when φ2

1 + 4φ2 = 0. Since there is only one root, the
system is convergent if it is less than 1 in absolute value, which require that |φ1| < 2.

If either are greater than 1 in absolute terms, the system is divergent.

4.4.2 Lag Operators

Before proceeding to higher order models, it is necessary to define the lag operator. Lag opera-
tions are a particularly useful tool in the analysis of time series and are nearly self-descriptive.6

Definition 4.13 (Lag Operator). The lag operator is denoted L and is defined as the operator that
has the following properties:

L yt = yt−1

L 2 yt = yt−2

L i yt = yt−i

L (L (yt )) = L (yt−1) = yt−2 = L 2 yt

(1− L − L 2)yt = yt − L yt − L 2 yt = yt − yt−1 − yt−2

4The solution can only be defined up to a constant, c , since the right hand side is 0. Thus, multiplying both by a
constant, the solution will still be valid.

5In the first order case, yt = φ1 yt−1, so yt − φ1 yt−1 = 0. The solution has the property that z t − φ1z t−1 = 0 so
z − φ1 = 0, which has the single solution c = φ1.

6In some texts, the lag operator is known as the backshift operator, and L is replaced with B .



4.4 Difference Equations 233

The last equation above is particularly useful when studying autoregressive processes. One ad-
ditional property of the lag operator is that the lag of a constant is just the constant, i.e. L c = c .

4.4.3 Higher Order Linear Homogenous Equations

Stability analysis can be applied to higher order systems by forming the characteristic equation
and finding the characteristic roots.

Definition 4.14 (Characteristic Equation). Let yt follow a Pth order linear difference equation

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P + xt (4.42)

which can be rewritten as

yt − φ1 yt−1 − φ2 yt−2 − . . .− φP yt−P = φ0 + xt (4.43)

(1− φ1L − φ2L 2 − . . .− φP L P )yt = φ0 + xt

The characteristic equation of this process is

z P − φ1z P−1 − φ2z P−2 − . . .− φP−1z − φP = 0 (4.44)

The characteristic roots are the solutions to this equation and most econometric packages
will return the roots of the characteristic polynomial when an ARMA model is estimated.

Definition 4.15 (Characteristic Root). Let

z P − φ1z P−1 − φ2z P−2 − . . .− φP−1z − φP = 0 (4.45)

be the characteristic polynomial associated with a P th order linear difference equation. The P
characteristic roots, c1, c2, . . . , cP are defined as the solution to this polynomial

(z − c1)(z − c2) . . . (z − cP ) = 0 (4.46)

The conditions for stability are the same for higher order systems as they were for first and second
order systems: all roots cp , p = 1, 2, . . . , P must satisfy |cp | < 1 (again, if complex, | · | means
modulus). If any |cp | > 1 the system is divergent. If one of more |cp | = 1 and none are larger, the
system will exhibit unit root (random walk) behavior.

These results are the key to understanding important properties of linear time-series models
which turn out to be stationary if the corresponding linear homogeneous system is convergent,
i.e. |cp | < 1, p = 1, 2, . . . , P .

4.4.4 Example: Characteristic Roots and Stability

Consider 6 linear difference equations, their characteristic equation, and the roots:

• yt = 0.9yt−1 + xt

– Characteristic Equation: z-0.9=0
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Dynamics of linear difference equations
yt = 0.9yt−1 yt = −0.5yt−1
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Figure 4.1: These six plots correspond to the dynamics of the six linear homogeneous systems
described in the text. All processes received a unit shock at t = 1 (x1 = 1) and no other shocks
(x j = 0, j 6= 1). Pay close attention to the roots of the characteristic polynomial and the behavior
of the system (exponential decay, oscillation and/or explosion).

– Characteristic Root: z=0.9

• yt = −0.5yt−1 + xt

– Characteristic Equation: z+0.5=0

– Characteristic Root: z=-0.5

• yt = 0.5yt−1 + 0.4yt−2 + xt

– Characteristic Equation: z 2 − 0.5z − 0.4 = 0

– Characteristic Roots: z = 0.93,−.43

• yt = 0.64yt−1 − 0.1024yt−2 + xt

– Characteristic Equation: z 2 − 0.64z + 0.1024 = 0

– Characteristic Roots: z = 0.32, 0.32 (identical)
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• yt = −0.5yt−1 − 0.4yt−2 + xt

– Characteristic Equation: z 2 + 0.5z + 0.4 = 0

– Characteristic Roots (Modulus): z = −0.25 + 0.58i (0.63),−0.25− 0.58i (0.63)

• yt = 1.6yt−1 − 0.5yt−2 + xt

– Characteristic Equation: z 2 − 1.6z + 0.5 = 0

– Characteristic Roots: z = 1.17, 0.42

The plots in figure 4.1 show the effect of a unit (1) shock at t = 1 to the 6 linear difference systems
above (all other shocks are 0). The value of the root makes a dramatic difference in the observed
behavior of the series.

4.4.5 Stationarity of ARMA models

Stationarity conditions for ARMA processes can be determined using the results for the conver-
gence of linear difference equations. First, note that any ARMA process can be written using a
lag polynomial

yt = φ0 + φ1 yt−1 + . . . + φP yt−P + θ1εt−1 + . . . + θQεt−Q + εt

yt − φ1 yt−1 − . . .− φP yt−P = φ0 + θ1εt−1 + . . . + θQεt−Q + εt

(1− φ1L − φ2L 2 − . . .− φP L P )yt = φ0 + (1 + θ1L + θ2L 2 + . . . + θQ LQ )εt

This is a linear difference equation, and the stability conditions depend on the roots of the char-
acteristic polynomial

z P − φ1z P−1 − φ2z P−2 − . . .− φP−1z − φP

An ARMA process driven by a white noise shock will be covariance stationary as long as the
characteristic roots are less than one in modulus. In the simple AR(1) case, this corresponds to
|z1| < 1. In the AR(2) case, the region is triangular with a curved bottom and corresponds to the
points (z1, z2) = (−2,−1), (1, 0), (2,−2) (see figure 4.2). For higher order models, stability must be
checked by numerically solving the characteristic equation.

The other particularly interesting point is that all MA processes driven by covariance station-
ary shocks are stationary since the homogeneous portions of an MA process has no root and thus
cannot diverge.

4.5 Data and Initial Estimates

Two series will be used throughout the stationary time-series analysis section: returns on the
value weighted market and the spread between the average interest rates on portfolios of Aaa-
rated and Baa-rated corporate bonds, commonly known as the default spread or default pre-
mium. The VWM returns were taken from CRSP and are available from January 1927 through
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Stationarity of an AR(2)
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Figure 4.2: The triangular region corresponds to the values of the parameters in the AR(2) yt =
φ1 yt−1 +φ2 yt−2 + εt . The dark region corresponds to real roots and the light region corresponds
to imaginary roots.

July 2008 and the bond yields are available from Moody’s via FRED II and are available from Jan-
uary 1919 until July 2008. Both series are monthly.

Figure 4.3 contains plots of the two series. Table 4.1 contains parameter estimates for an
AR(1), an MA(1) and an ARMA(1,1) for each series. The default spread exhibits a large autoregres-
sive coefficient (.97) that is highly significant, but it also contains a significant moving average
term and in an ARMA(1,1) both parameters are significant. The market portfolio exhibits some
evidence of predictability although it is much less persistent than the default spread.7

4.6 Autocorrelations and Partial Autocorrelations

Autoregressive processes, moving average processes and ARMA processes all exhibit different
patterns in their autocorrelations and partial autocorrelations. These differences can be ex-
ploited to select a parsimonious model from the general class of ARMA processes.

7For information on estimating an ARMA in MATLAB, see the MATLAB supplement to this course.
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Figure 4.3: Plots of the returns on the VWM and the default spread, the spread between the yield
of a portfolio of Baa-rated bonds and the yield of a portfolio of Aaa-rated bonds.

VWM Baa-Aaa
φ̂0 φ̂1 θ̂1 σ̂ φ̂0 φ̂1 θ̂1 σ̂

0.284
(0.108)

0.115
(0.052)

5.415 0.026
(0.284)

0.978
(0.000)

0.149

0.320
(0.096)

0.115
(0.042)

5.415 1.189
(0.000)

0.897
(0.000)

0.400

0.308
(0.137)

0.039
(0.870)

0.077
(0.724)

5.417 0.036
(0.209)

0.969
(0.000)

0.202
(0.004)

0.146

Table 4.1: Parameter estimates and p-values from an AR(1), MA(1) and ARMA(1,1) for the VWM
and Baa-Aaa spread.

4.6.1 Autocorrelations and the Autocorrelation Function

Autocorrelations are to autocovariances as correlations are to covariances. That is, the sth auto-
correlation is the sth autocovariance divided by the product of the variance of yt and yt−s , and
when a processes is covariance stationary, V[yt ] = V[yt−s ], and so

√
V[yt ]V[yt−s ] = V[yt ].

Definition 4.16 (Autocorrelation). The autocorrelation of a covariance stationary scalar process
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is defined

ρs =
γs

γ0
=

E[(yt − E [yt ])(yt−s − E [yt−s ])]
V[yt ]

(4.47)

where γs is the sth autocovariance.

The autocorrelation function (ACF) relates the lag length (s ) and the parameters of the model
to the autocorrelation.

Definition 4.17 (Autocorrelation Function). The autocorrelation function (ACF), ρ(s ), is a func-
tion of the population parameters that defines the relationship between the autocorrelations of
a process and lag length.

The variance of a covariance stationary AR(1) is σ2(1 − φ2
1 )
−1 and the sth autocovariance is

φsσ2(1− φ2
1 )
−1, and so the ACF is

ρ(s ) =
φsσ2(1− φ2)−1

σ2(1− φ2)−1
= φs . (4.48)

Deriving ACFs of ARMA processes is a straightforward, albeit tedious, task. Further details on the
derivation of the ACF of a stationary ARMA processes are presented in appendix 4.A.

4.6.2 Partial Autocorrelations and the Partial Autocorrelation Function

Partial autocorrelations are similar to autocorrelations with one important difference: the sth par-
tial autocorrelation still relates yt and yt−s but it eliminates the effects of yt−1, yt−2, . . ., yt−(s−1).

Definition 4.18 (Partial Autocorrelation). The sth partial autocorrelation (ϕs ) is defined as the
population value of the regression coefficient onφs in

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φs−1 yt−(s−1) + φs yt−s + εt .

Like the autocorrelation function, the partial autocorrelation function (PACF) relates the par-
tial autocorrelation to population parameters and lag length.

Definition 4.19 (Partial Autocorrelation Function). The partial autocorrelation function (PACF),
ϕ(s ), defines the relationship between the partial autocorrelations of a process and lag length.
The PACF is denoted.

The partial autocorrelations are directly interpretable as population regression coefficients.
The sth partial autocorrelations can be computed using s + 1 autocorrelations. Recall that the
population values ofφ1,φ2, . . .,φs in

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φs−1 yt−(s−1) + φs yt−s + εt

can be defined in terms of the covariance between yt , yt−1, yt−2, . . ., yt−s . Let Γ denote this co-
variance matrix,
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Γ =



γ0 γ1 γ2 γ3 . . . γs−1 γs

γ1 γ0 γ1 γ2 . . . γs−2 γs−1

γ2 γ1 γ0 γ1 . . . γs−3 γs−2
...

...
...

... . . .
...

...
γs−1 γs−2 γs−3 γs−4 . . . γ0 γ1

γs γs−1 γs−2 γs−3 . . . γ1 γ0


The matrix Γ is known as a Toeplitz matrix which reflects the special symmetry it exhibits which
follows from stationarity, and so E[(yt − µ)(yt−s − µ)] = γs = γ−s = E[(yt − µ)(yt+s − µ)]. Γ can
be decomposed in terms of γ0 (the long-run variance) and the matrix of autocorrelations,

Γ = γ0



1 ρ1 ρ2 ρ3 . . . ρs−1 ρs

ρ1 1 ρ1 ρ2 . . . ρs−2 ρs−1

ρ2 ρ1 1 ρ1 . . . ρs−3 ρs−2
...

...
...

... . . .
...

...
ρs−1 ρs−2 ρs−3 ρs−1 . . . 1 ρ1

ρs ρs−1 ρs−2 ρs−3 . . . ρ1 1


directly by applying the definition of an autocorrelation. The population regression parameters
can be computed by partitioning Γ into four blocks, γ0, the long-run variance of yt , Γ 01 = Γ ′10,
the vector of covariances between yt and yt−1, yt−2, . . . , yt−s , and Γ 11, the covariance matrix of
yt−1, yt−2, . . . , yt−s .

Γ =
[
γ0 Γ 01

Γ 10 Γ 11

]
= γ0

[
1 R01

R10 R11

]
where R are vectors or matrices of autocorrelations. Using this formulation, the population re-
gression parametersφ = [φ1,φ2, . . . ,φs ]′ are defined as

φ = Γ−1
11 Γ 10 = γ−1

0 R−1
11 γ0R10 = R−1

11 R10. (4.49)

The sth partial autocorrelation (ϕs ) is the sth element in φ (when Γ is s by s ), e′s R−1
11 R10 where es

is a s by 1 vector of zeros with one in the sth position.
For example, in a stationary AR(1) model, yt = φ1 yt−1 + εt , the PACF is

ϕ(s ) = φ|s |1 s = 0, 1,−1

= 0 otherwise

That ϕ0 = φ0 = 1 is obvious: the correlation of a variable with itself is 1. The first partial auto-
correlation is defined as the population parameter ofφ1 in the regression yt = φ0 +φ1 yt−1 + εt .
Since the data generating process is an AR(1),ϕ1 = φ1, the autoregressive parameter. The second
partial autocorrelation is defined as the population value ofφ2 in the regression

yt = φ0 + φ1 yt−1 + φ2 yt−2 + ε2.
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Since the DGP is an AR(1), once yt−1 is included, yt−2 has no effect on yt and the population value
of both φ2 and the second partial autocorrelation, ϕ2, is 0. This argument holds for any higher
order partial autocorrelation.

Note that the first partial autocorrelation and the first autocorrelation are bothφ1 in

yt = φ0 + φ1 yt−1 + εt ,

and at the second (and higher) lag these differ. The autocorrelation at s = 2 is the population
value ofφ2 in the regression

yt = φ0 + φ2 yt−2 + ε

while the second partial autocorrelation is the population value of fromφ2 in the regression

yt = φ0 + φ1 yt−1 + φ2 yt−2 + ε.

If the DGP were an AR(1), the second autocorrelation would be ρ2 = φ2
1 while the second

partial autocorrelation would be ϕ2 = 0.

4.6.2.1 Examples of ACFs and PACFs

The key to understanding the value of ACFs and PACFs lies in the distinct behavior the autocor-
relations and partial autocorrelations of AR and MA processes exhibit.

• AR(P)

– ACF dies exponentially (may oscillate, referred to as sinusoidally)

– PACF is zero beyond P

• MA(Q)

– ACF is zero beyond Q

– PACF dies exponentially (may oscillate, referred to as sinusoidally)

Table 4.2 provides a summary of the ACF and PACF behavior of ARMA models and this difference
forms the basis of the Box-Jenkins model selection strategy.

4.6.3 Sample Autocorrelations and Partial Autocorrelations

Sample autocorrelations are computed using sample analogues of the population moments in
the definition of an autocorrelation. Define y ∗t = yt − ȳ to be the demeaned series where ȳ =
T −1

∑T
t=1 yt . The sth sample autocorrelation is defined

ρ̂s =
∑T

t=s+1 y ∗t y ∗t−s∑T
t=1 (y

∗
t )

2
(4.50)

although in small samples one the the corrected versions
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Process ACF PACF

White Noise All 0 All 0
AR(1) ρs = φs 0 beyond lag 2
AR(P) Decays toward zero exponentially Non-zero through lag P, 0 thereafter

MA(1) ρ1 6= 0, ρs = 0, s > 1 Decays toward zero exponentially
MA(Q) Non-zero through lag Q, 0 thereafter Decays toward zero exponentially

ARMA(P,Q) Exponential Decay Exponential Decay

Table 4.2: Behavior that the ACF and PACF for various members of the ARMA family.

ρ̂s =

∑T
t=s+1 y ∗t y ∗t−s

T−S∑T
t=1(y ∗t )

2

T

(4.51)

or

ρ̂s =
∑T

t=s+1 y ∗t y ∗t−s√∑T
t=s+1 (y

∗
t )

2∑T−s
t=1 (y

∗
t )

2
. (4.52)

may be more accurate.

Definition 4.20 (Sample Autocorrelogram). A plot of the sample autocorrelations against the lag
index in known as a sample autocorrelogram.

Inference on estimated autocorrelation coefficients depends on the null hypothesis tested
and whether the data are homoskedastic. The most common assumptions are that the data are
homoskedastic and that all of the autocorrelations are zero. In other words, yt − E [yt ] is white
noise process. Under the null H0 : ρs = 0, s 6= 0, inference can be made noting that V [ρ̂s ] = T −1

using a standard t -test,

ρ̂s√
V[ρ̂s ]

=
ρ̂s√
T −1

= T
1
2 ρ̂s

d→ N (0, 1). (4.53)

A alternative null hypothesis is that the autocorrelations on lags s and above are zero but that
the autocorrelations on lags 1, 2, . . . , s − 1 are unrestricted, H0 : ρ j = 0, j ≥ s . Under this null,
and again assuming homoskedasticity,

V[ρ̂s ] = T −1 for s = 1 (4.54)

= T −1(1 + 2
s−1∑
j=1

ρ̂2
j ) for s > 1

If the null is H0 : ρs = 0 with no further restrictions on the other autocorrelations, the variance
of the sth autocorrelation is (assuming homoskedasticity)
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Autocorrelation and Partial Autocorrelation function
ACF PACF
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Figure 4.4: Autocorrelation function and partial autocorrelation function for 4 processes. Note
the difference between how the ACF and PACF respond in AR and MA models.

V[ρ̂s ] = T −1(1 + 2
∞∑

j=1, j 6=s

ρ̂2
j ) (4.55)

which is infeasible. The usual practice is to truncate the variance estimator at some finite lag
L where L is a function of the sample size, often assumed that L ∝ T

1
3 (if L is not an integer,

rounding to the nearest one).8

8The choice of L ∝ T
1
3 is motivated by asymptotic theory where T

1
3 has been shown to be the optimal rate in the

sense that it minimizes the asymptotic mean square error of the variance estimator.
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Autocorrelation and Partial Autocorrelation function
ACF PACF
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Figure 4.5: Autocorrelation function and partial autocorrelation function for 3 processes, an
MA(1), and ARMA(1,1) and a random walk. Note the difference between how the ACF and PACF
respond in AR and MA models.

Once the assumption of homoskedasticity is relaxed inference becomes more complicated.
First consider the most restrictive null H0 : ρs = 0, s 6= 0. If {yt } is a heteroskedastic white noise
process (plus possibly a non-zero mean), inference can be made using White’s heteroskedasticity
robust covariance estimator (see chapter 3) so that

V[ρ̂s ] = T −1

(
T −1

T∑
t=1

y ∗2
t−s

)−1(
T −1

T∑
t=1

y ∗t
2 y ∗2

t−s

)(
T −1

T∑
t=1

y ∗2
t−s

)−1

(4.56)

=
∑T

t=s+1 y ∗t
2 y ∗2

t−s(∑T
t=s+1 y ∗2

t−s

)2 .

This covariance estimator is identical to White’s covariance estimator for the regression

yt = ρs yt−s + εt

since under the null that ρs = 0, yt = εt .
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To test one of the more complicated null hypotheses a Heteroskedasticity-Autocorrelation
Consistent (HAC) covariance estimator is required, the most common of which is the Newey-
West covariance estimator.

Definition 4.21 (Newey-West Variance Estimator). Let zt be a series that may be autocorrelated
and define z ∗t = zt − z̄ where z̄ = T −1

∑T
t=1 zt . The L-lag Newey-West variance estimator for

the variance of z̄ is

σ̂2
N W = T −1

T∑
t=1

z ∗t
2 + 2

L∑
l=1

wl T −1
T∑

t=l+1

z ∗t z ∗t−l (4.57)

= γ̂0 + 2
L∑

l=1

wl γ̂l

where γ̂l = T −1
∑T

t=l+1 z ∗t z ∗t−l and wl = L+1−l
L+1 .

The Newey-West estimator has two important properties. First, it is always greater than 0.

This is a desirable property of any variance estimator. Second, as long as L → ∞, the σ̂2
N W

p→
V[yt ]. The only remaining choice is which value to choose for L . Unfortunately this is problem
dependent and it is important to use as small a value for L as the data will permit. Newey-West
estimators tend to perform poorly in small samples and are worse, often substantially, than sim-
pler estimators such as White’s heteroskedasticity-consistent covariance estimator. This said,
they also work in situations where White’s estimator fails: when a sequence is autocorrelated
White’s estimator is not consistent.9 Long-run variance estimators are covered in more detail in
the Multivariate Time Series chapter (chapter 5).

When used in a regression, the Newey-West estimator extends White’s covariance estimator
to allow {yt−sεt } to be both heteroskedastic and autocorrelated, setting z ∗t = y ∗t y ∗t−s ,

V[ρ̂s ] = T −1

(
T −1

T∑
t=s+1

y ∗2
t−s

)−1

(4.58)

×

(
T −1

T∑
t=s+1

y ∗t
2 y ∗2

t−s + 2
L∑

j=1

w j T −1
T∑

t=s+ j+1

y ∗t y ∗t−s

(
y ∗t− j y ∗t−s− j

))

×

(
T −1

T∑
t=s+1

y ∗2
t−s

)−1

=

∑T
t=s+1 y ∗t

2 y ∗2
t−s + 2

∑L
j=1 w j

∑T
t=s+ j+1 y ∗t y ∗t−s

(
y ∗t− j y ∗t−s− j

)(∑T
t=s+1 y ∗2

t−s

)2 .

Note that only the center term has been changed and that L must diverge for this estimator to
be consistent – even if {yt } follows an MA process, and the efficient choice sets L ∝ T

1
3 .

Tests that multiple autocorrelations are simultaneously zero can also be conducted. The
standard method to test that s autocorrelations are zero, H0 = ρ1 = ρ2 = . . . = ρs = 0, is
the Ljung-Box Q statistic.

9The Newey-West estimator nests White’s covariance estimator as a special case by choosing L = 0.
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Definition 4.22 (Ljung-Box Q statistic). The Ljung-Box Q statistic, or simply Q statistic, tests the
null that the first s autocorrelations are all zero against an alternative that at least one is non-
zero: H0 : ρk = 0 for k = 1, 2, . . . , s versus H1 : ρk 6= 0 for k = 1, 2, . . . , s . The test statistic is
defined

Q = T (T + 2)
s∑

k=1

ρ̂2
k

T − k
(4.59)

and Q has a standard χ2
s distribution.

The Q statistic is only valid under an assumption of homoskedasticity so caution is warranted
when using it with financial data. A heteroskedasticity robust version of the Q -stat can be formed
using an LM test.

Definition 4.23 (LM test for serial correlation). Under the null, E[y ∗t y ∗t− j ] = 0 for 1 ≤ j ≤ s . The

LM-test for serial correlation is constructed by defining the score vector st = y ∗t
[

y ∗t−1 y ∗t−2 . . . y ∗t−s

]′
,

LM = T s̄′Ŝs̄
d→ χ2

s (4.60)

where s̄ = T −1
∑T

t=1 st and Ŝ = T −1
∑T

t=1 st s′t .10

Like the Ljung-Box Q statistic, this test has an asymptotic χ2
s distribution with the added advan-

tage of being heteroskedasticity robust.
Partial autocorrelations can be estimated using regressions,

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + ϕ̂s yt−s + εt

where ϕ̂s = φ̂s . To test whether a partial autocorrelation is zero, the variance of φ̂s , under the
null and assuming homoskedasticity, is approximately T −1 for any s , and so a standard t -test
can be used,

T
1
2 φ̂s

d→ N (0, 1). (4.61)

If homoskedasticity cannot be assumed, White’s covariance estimator can be used to control for
heteroskedasticity.

Definition 4.24 (Sample Partial Autocorrelogram). A plot of the sample partial autocorrelations
against the lag index in known as a sample partial autocorrelogram.

4.6.3.1 Example: Autocorrelation, partial autocorrelation and Q Statistic

Figure 4.6 contains plots of the first 20 autocorrelations and partial autocorrelations of the VWM
market returns and the default spread. The market appears to have a small amount of persis-
tence and appears to be more consistent with a moving average than an autoregression. The
default spread is highly persistent and appears to be a good candidate for an AR(1) since the au-
tocorrelations decay slowly and the partial autocorrelations drop off dramatically after one lag,
although an ARMA(1,1) cannot be ruled out.

10Refer to chapters 2 and 3 for more on LM-tests.
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Autocorrelations and Partial Autocorrelations
VWM
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Figure 4.6: These for pictures plot the first 20 autocorrelations (left) and partial autocorrelations
(right) of the VWM (top) and the Baa-Aaa spread (bottom). Approximate standard errors, assum-
ing homoskedasticity, are in parenthesis.

4.6.4 Model Selection: The Box-Jenkins Methodology

The Box and Jenkins methodology is the most common approach for time-series model selec-
tion. It consists of two stages:

• Identification: Visual inspection of the series, the autocorrelations and the partial autocor-
relations.

• Estimation: By relating the sample autocorrelations and partial autocorrelations to the ACF
and PACF of ARMA models, candidate models are identified. These candidates are esti-
mated and the residuals are tested for neglected dynamics using the residual autocorrela-
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tions, partial autocorrelations and Q statistics or LM-tests for serial correlation. If dynam-
ics are detected in the residuals, a new model is specified and the procedure is repeated.

The Box-Jenkins procedure relies on two principles: parsimony and invertibility.

Definition 4.25 (Parsimony). Parsimony is a property of a model where the specification with
the fewest parameters capable of capturing the dynamics of a time series is preferred to other
representations equally capable of capturing the same dynamics.

Parsimony is an intuitive principle and using the smallest model has other benefits, particularly
when forecasting. One consequence of the parsimony principle is that parameters which are
not needed are excluded. For example, if the data generating process were and AR(1), selecting
an AR(2) would adequately describe the process. The parsimony principle indicates the AR(1)
should be preferred to an AR(2) since both are equally capable of capturing the dynamics of the
data. Further, recall that an AR(1) can be reformulated as an MA(T ) where θs = φs

1 . Both the
AR(1) and MA(T ) are capable of capturing the dynamics of the data if the DGP is an AR(1), al-
though the number of parameters in each is very different. The parsimony principle provides
guidance on selecting the AR(1) over the MA(T ) since it contains (many) fewer parameters yet
provides an equivalent description of the relationship between current and past values of the
data.

Definition 4.26 (Invertibility). A moving average is invertible if it can be written as a finite or
convergent autoregression. Invertibility requires the roots of

(1− θ1z − θ2z 2 − . . .− θQ z Q ) = 0

to be greater than one in modulus (absolute value).

Invertibility is a technical requirement stemming from the use of the autocorrelogram and
partial autocorrelogram to choose the model, and it plays an important role in achieving unique
identification of the MA component of a model. For example, the ACF and PACF of

yt = 2εt−1 + εt

and
yt = .5εt−1 + εt

are identical. The first autocorrelation is θ1/(1 + θ 2
1 ), and so in the first specification ρ1 = 2/(1 +

22) = .4 and in the secondρ1 = .5/(1+ .52) = .4 while all other autocorrelations are zero. The par-
tial autocorrelations are similarly identical – partial correlation are functions of autocorrelations
– and so two processes are indistinguishable. Invertibility rules out the first of these two models
since the root of 1− 2z = 0 is 1

2 < 1.
Information criteria such as the AIC or S/BIC can also be used to choose a model. Recall the

definitions of the AIC and BIC:

Definition 4.27 (Akaike Information Criterion). The Akaike Information Criteria (AIC) is

AI C = ln σ̂2 +
2k

T
(4.62)

where σ̂2 is the estimated variance of the regression error and k is the number of parameters in
the model.



248 Analysis of a Single Time Series

Definition 4.28 (Schwarz/Bayesian Information Criterion). The Schwarz Information Criteria
(SIC), also known as the Bayesian Information Criterion (BIC) is

B I C = ln σ̂2 +
k ln T

T
(4.63)

where σ̂2 is the estimated variance of the regression error and k is the number of parameters in
the model.

ICs are often applied by estimating the largest model which is thought to correctly capture the
dynamics and then dropping lags until the AIC or S/BIC fail to decrease. Specific-to-General
(StG) and General-to-Specific (GtS) are also applicable to time-series modeling and suffer from
the same issues as those described in chapter 3, section 3.13.

4.7 Estimation

ARMA models are typically estimated using maximum likelihood (ML) estimation assuming that
the errors are normal, using either conditional maximum likelihood, where the likelihood of yt

given yt−1, yt−2, . . . is used, or exact maximum likelihood where the joint distribution of [y1, y2, . . . , yt−1, yt ]
is used.

4.7.1 Conditional Maximum Likelihood

Conditional maximum likelihood uses the distribution of yt given yt−1, yt−2, . . . to estimate the
parameters of an ARMA. The data are assumed to be conditionally normal, and so the likelihood
is

f (yt |yt−1, yt−2, . . . ;φ, θ ,σ2) = (2πσ2)−
1
2 exp

(
− ε

2
t

2σ2

)
(4.64)

= (2πσ2)−
1
2 exp

(
−
(yt − φ0 −

∑P
i=1φi yt−i −

∑Q
j=1 θ jεt− j )2

2σ2

)

Since the {εt } series is assumed to be a white noise process, the joint likelihood is simply the
product of the individual likelihoods,

f (yt |yt−1, yt−2 . . . ;φ, θ ,σ2) =
T∏

t=1

(2πσ2)−
1
2 exp

(
− ε

2
t

2σ2

)
(4.65)

and the conditional log-likelihood is

l (φ, θ ,σ2; yt |yt−1, yt−2 . . .) = −1

2

T∑
t=1

ln 2π + lnσ2 +
ε2

t

σ2
. (4.66)
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Recall that the first-order condition for the mean parameters from a normal log-likelihood does
not depend onσ2 and that given the parameters in the mean equation, the maximum likelihood
estimate of the variance is

σ̂2 = T −1
T∑

t=1

(yt − φ0 − φ1 yt−1 − . . .− φP yt−P − θ1εt−1 − . . .− θQεt−Q )2 (4.67)

= T −1
T∑

t=1

ε2
t . (4.68)

This allows the variance to be concentrated out of the log-likelihood so that it becomes

l (yt |yt−1, yt−2 . . . ;φ, θ ,σ2) = −1

2

T∑
t=1

ln 2π + ln(T −1
T∑

t=1

ε2
t ) +

ε2
t

T −1
∑T

t=1 ε
2
t

(4.69)

= −1

2

T∑
t=1

ln 2π− 1

2

T∑
t=1

ln(T −1
T∑

t=1

ε2
t )−

T

2

T∑
t=1

ε2
t∑T

t=1 ε
2
t

= −1

2

T∑
t=1

ln 2π− 1

2

T∑
t=1

ln(T −1
T∑

t=1

ε2
t )−

T

2

∑T
t=1 ε

2
t∑T

t=1 ε
2
t

= −1

2

T∑
t=1

ln 2π− 1

2

T∑
t=1

ln(T −1
T∑

t=1

ε2
t )−

T

2

= −1

2

T∑
t=1

ln 2π− T

2
− 1

2

T∑
t=1

ln(T −1
T∑

t=1

ε2
t )

= −1

2

T∑
t=1

ln 2π− T

2
− T

2
ln σ̂2.

Eliminating terms that do not depend on model parameters shows that maximizing the like-
lihood is equivalent to minimizing the error variance,

max
φ,θ ,σ2

l (yt |yt−1, yt−2 . . . ;φ, θ ,σ2) = −T

2
ln σ̂2. (4.70)

where ε̂t = yt −φ0 −φ1 yt−1 − . . .−φP yt−P − θ1εt−1 − . . .− θQεt−Q , and so . estimation using
conditional maximum likelihood is equivalent to least squares, although unlike linear regression
the objective is nonlinear due to the moving average terms and so a nonlinear maximization
algorithm is required. If the model does not include moving average terms (Q = 0), then the
conditional maximum likelihood estimates of an AR(P ) are identical the least squares estimates
from the regression

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φP yt−P + εt . (4.71)

Conditional maximum likelihood estimation of ARMA models requires either backcast val-
ues or truncation since some of the observations have low indices (e.g., y1) that depend on ob-
servations not in the sample (e.g., y0, y−1, ε0, ε−1, etc.). Truncation is the most common and the
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likelihood is only computed for t = P + 1, . . . , T , and initial values of εt are set to 0. When using
backcasts, missing values of y can be initialized at the long-run average, ȳ = T −1

∑T
t=1 yt , and

the initial values of εt are set to their unconditional expectation, 0. Using unconditional values
works well when data are not overly persistent and T is not too small. The likelihood can then
be recursively computed where estimated errors ε̂t used are using in moving average terms,

ε̂t = yt − φ0 − φ1 yt−1 − . . .− φP yt−P − θ1ε̂t−1 − . . .− θQ ε̂t−Q , (4.72)

where backcast values are used if any index is less than or equal to 0. The estimated residuals
are then plugged into the conditional log-likelihood (eq. (4.69)) and the log-likelihood value is
computed. The numerical maximizer will search for values of φ and θ that produce the largest
log-likelihood. Once the likelihood optimizing values have been found, the maximum likelihood
estimate of the variance is computed using

σ̂2 = T −1
T∑

t=1

(yt − φ̂0 − φ̂1 yt−1 − . . .− φ̂P yt−P − θ̂1ε̂t−1 − . . .− θ̂Q ε̂t−Q )2 (4.73)

or the truncated version which sums from P + 1 to T .

4.7.2 Exact Maximum Likelihood

Exact maximum likelihood directly utilizes the autocorrelation function of an ARMA(P,Q) to com-
pute the correlation matrix of all of the y data, which allows the joint likelihood to be evaluated.
Define

y = [yt yt−1 yt−2 . . . y2 y1]′

and let Γ be the T by T covariance matrix of y. The joint likelihood of y is given by

f (y|φ, θ ,σ2) = (2π)−
T
2 |Γ |−

T
2 exp

(
−y′Γ−1y

2

)
. (4.74)

The log-likelihood is

l (φ, θ ,σ2; y) = −T

2
ln(2π)− T

2
ln |Γ | − 1

2
y′Γ−1y. (4.75)

where Γ is a matrix of autocovariances,

Γ =



γ0 γ1 γ2 γ3 . . . γT−1 γT

γ1 γ0 γ1 γ2 . . . γT−2 γT−1

γ2 γ1 γ0 γ1 . . . γT−3 γT−2
...

...
...

... . . .
...

...
γT−1 γT−2 γT−3 γT−4 . . . γ0 γ1

γT γT−1 γT−2 γT−3 . . . γ1 γ0


and that are determined by the model parameters (excluding the constant), φ, θ , and σ2. A
nonlinear maximization algorithm can be used to search for the vector of parameters that max-
imizes this log-likelihood. The exact maximum likelihood estimator is generally believed to be
more precise than conditional maximum likelihood and does note require backcasts of data or
errors.
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4.8 Inference

Inference on ARMA parameters from stationary time series is a standard application of maxi-
mum likelihood theory. Defineψ = [φ θ σ2]′ as the parameter vector. Recall from 2 that maxi-
mum likelihood estimates are asymptotically normal,

√
T (ψ− ψ̂) d→ N (0, I−1) (4.76)

where

I = −E

[
∂ 2l (y;ψ)
∂ψ∂ψ′

]
.

where ∂ 2l (y;ψ)/∂ψ∂ψ′ is the second derivative matrix of the log-likelihood (or Hessian). In
practice I is not known and it must be replaced with a consistent estimate,

Î = T −1
T∑

t=1

−∂
2l (yt ; ψ̂)
∂ψ∂ψ′

.

Wald and t -tests on the parameter estimates can be computed using the elements of I, or likeli-
hood ratio tests can be used by imposing the null on the model and comparing the log-likelihood
values of the constrained and unconstrained estimators.

One important assumption in the above distribution theory is that the estimator is a max-
imum likelihood estimator; this requires the likelihood to be correctly specified, or, in other
words, for the data to be homoskedastic and normally distributed. This is generally an implau-
sible assumption when using financial data and a modification of the above theory is needed.
When one likelihood is specified for the data but they actually have a different distribution the
estimator is known as a Quasi Maximum Likelihood estimator (QML). QML estimators, like ML
estimators, are asymptotically normal under mild regularity conditions on the data but with a
different asymptotic covariance matrix,

√
T (ψ− ψ̂) d→ N (0, I−1J I−1) (4.77)

where

J = E

[
∂ l (y;ψ)
∂ψ

∂ l (y;ψ)
∂ψ′

]
J must also be estimated and the usual estimator is

Ĵ = T −1
T∑

t=1

∂ l (yt ;ψ)
∂ψ

∂ l (yt ;ψ)
∂ψ′

where ∂ l (yt ;ψ)
∂ψ

is the score of the log-likelihood. I−1J I−1 is known as a sandwich covariance
estimator, White’s covariance estimator.

A sandwich covariance estimator is needed when the model for the data is not completely
specified or is misspecified, and it accounts for the failure of Information Matrix Inequality to
hold (see chapters 2and 3). As was the case in linear regression, a sufficient condition for the
IME to fail in ARMA estimation is heteroskedastic residuals. Considering the prevalence of con-
ditionally heteroskedasticity in financial data, this is nearly a given.
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4.9 Forecasting

Forecasting is a common objective of many time-series models. The objective of a forecast is to
minimize a loss function.

Definition 4.29 (Loss Function). A loss function is a function of the observed data, yt+h and the
time-t constructed forecast, ŷt+h |t , L (yt , ŷt+h |t ), that has the three following properties:

• Property 1: The loss of any forecast is non-negative, so L (yt+h , ŷt+h |t ) ≥ 0.

• Property 2: There exists a point, y ∗t+h , known as the optimal forecast, where the loss func-
tion takes the value 0. That is L (yt+h , y ∗t+h ) = 0.

• Property 3: The loss is non-decreasing away from y ∗t+h . That is if y B
t+h > y A

t+h > y ∗t+h ,
then L (yt+h , y B

t+h ) > L (yt+h , y A
t+h ) > L (yt+h , y ∗t+h ). Similarly, if y D

t+h < y C
t+h < y ∗t+h , then

L (yt+h , y D
t+h ) > L (yt+h , y C

t+h ) > L (yt+h , y ∗t+h ).

The most common loss function is Mean Square Error (MSE) which chooses the forecast to
minimize

E[L (yt+h , ŷt+h |t )] = E[(yt+h − ŷt+h |t )2] (4.78)

where ŷt+h |t is the time-t forecast of yt+h . Notice that this is just the optimal projection problem
and the optimal forecast is the conditional mean, y ∗t+h |t = Et [yt+h ] (See chapter 3). It is simple
to verify that this loss function satisfies the properties of a loss function. Property 1 holds by
inspection and property 2 occurs when yt+h = ŷ ∗t+h |t . Property 3 follows from the quadratic
form. MSE is far and away the most common loss function but others, such as Mean Absolute
Deviation (MAD), Quad-Quad and Linex are used both in practice and in the academic literature.
The MAD loss function will be revisited in chapter 6 (Value-at-Risk). The Advanced Financial
Econometrics elective will study non-MSE loss functions in more detail.

The remainder of this section will focus exclusively on forecasts that minimize the MSE loss
function. Fortunately, in this case, forecasting from ARMA models is an easy exercise. For sim-
plicity consider the AR(1) process,

yt = φ0 + φ1 yt−1 + εt .

Since the optimal forecast is the conditional mean, all that is needed is to compute Et [yt+h ] for
any h . When h = 1,

yt+1 = φ0 + φ1 yt + εt+1

so the conditional expectation is

Et [yt+1] = Et [φ0 + φ1 yt + εt+1] (4.79)

= φ0 + φ1Et [yt ] + Et [εt+1]
= φ0 + φ1 yt + 0

= φ0 + φ1 yt

which follows since yt is in the time-t information set (Ft ) and Et [εt+1] = 0 by assumption.11

11This requires a sightly stronger assumption than εt is a white noise process.
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The optimal forecast for h = 2 is given by Et [yt+2],

Et [yt+2] = Et [φ0 + φ1 yt+1 + εt+2]
= φ0 + φ1Et [yt+1] + Et [εt+1]
= φ0 + φ1 (φ0 + φ1 yt ) + 0

= φ0 + φ1φ0 + φ2
1 yt

which follows by substituting in the expression derived in eq. (4.79) for Et [yt+1]. The optimal
forecast for any arbitrary h uses the recursion

Et [yt+h ] = φ0 + φ1Et [yt+h−1] (4.80)

and it is easily shown that Et [yt+h ] = φ0

∑h−1
i=0 φ

i
1 + φ

h
1 yt . If |φ1| < 1, as h → ∞, the forecast of

yt+h and Et [yt+h ] converges to φ0/(1− φ1), the unconditional expectation of yt . In other words,
for forecasts in the distant future there is no information about the location of yt+h other than
it will return to its unconditional mean. This is not surprising since yt is covariance stationary
when |φ1| < 1.

Next consider forecasts from an MA(2),

yt = φ0 + θ1εt−1 + θ2εt−2 + εt .

The one-step-ahead forecast is given by

Et [yt+1] = Et [φ0 + θ1εt + θ2εt−1 + εt+1]
= φ0 + θ1Et [εt ] + θ2Et [εt−1] + Et [εt+1]
= φ0 + θ1εt + θ2εt−1 + 0

which follows since εt and εt−1 are in theFt information set and Et [εt+1] = 0 by assumption. In
practice the one step ahead forecast would be given by

Et [yt+1] = φ̂0 + θ̂1ε̂t + θ̂2ε̂t−1

where both the unknown parameters and the unknown residuals would be replaced with their
estimates.12 The 2-step ahead forecast is given by

Et [yt+2] = Et [φ0 + θ1εt+1 + θ2εt + εt+2]
= φ0 + θ1Et [εt+1] + θ2Et [εt ] + Et [εt+2]
= φ0 + θ10 + θ2εt + 0

= φ0 + θ2εt .

The 3 or higher step forecast can be easily seen to be φ0. Since all future residuals have zero
expectation they cannot affect long horizon forecasts. Like the AR(1) forecast, the MA(2) forecast

12The residuals are a natural by-product of the parameter estimation stage.
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is mean reverting. Recall the unconditional expectation of an MA(Q) process is simply φ0. For
any h > Q the forecast of yt+h is just this value,φ0.

Finally consider the 1 to 3-step ahead forecasts from an ARMA(2,2),

yt = φ0 + φ1 yt−1 + φ2 yt−2 + θ1εt−1 + θ2εt−2 + εt .

Conditioning on the information setFt , the expectation of yt+1 is

Et [yt+1] = Et [φ0 + φ1 yt + φ2 yt−1 + θ1εt + θ2εt−1 + εt+1]
= Et [φ0] + Et [φ1 yt ] + Et [φ2 yt−1] + Et [θ1εt ] + Et [θ2εt−1] + Et [εt+1].

Noting that all of the elements are inFt except εt+1, which has conditional expectation 0,

Et [yt+1] = φ0 + φ1 yt + φ2 yt−1 + θ1εt + θ2εt−1

Note that in practice, the parameters and errors will all be replaced by their estimates (i.e. φ̂1 and
ε̂t ). The 2-step ahead forecast is given by

Et [yt+2] = Et [φ0 + φ1 yt+1 + φ2 yt + θ1εt+1 + θ2εt + εt+2]
= Et [φ0] + Et [φ1 yt+1] + Et [φ2 yt ] + θ1Et [εt+1] + θ2εt + Et [εt+2]
= φ0 + φ1Et [yt+1] + φ2 yt + θ1Et [εt+1] + θ2εt + Et [εt+2]
= φ0 + φ1 (φ0 + φ1 yt + φ2 yt−1 + θ1εt + θ2εt−1) + φ2 yt + θ10 + θ2εt + 0

= φ0 + φ1φ0 + φ2
1 yt + φ1φ2 yt−1 + φ1θ1εt + φ1θ2εt−1 + φ2 yt + θ2εt

= φ0 + φ1φ0 + (φ2
1 + φ2)yt + φ1φ2 yt−1 + (φ1θ1 + θ2)εt + φ1θ2εt−1.

In this case, there are three terms which are not known at time t . By assumption Et [εt+2] =
Et [εt+1] = 0 and Et [yt+1] has been computed above, so

Et [yt+2] = φ0 + φ1φ0 + (φ2
1 + φ2)yt + φ1φ2 yt−1 + (φ1θ1 + θ2)εt + φ1θ2εt−1

In a similar manner,

Et [yt+3] = φ0 + φ1Et [yt+2] + φ2Et [yt+1] + θ1εt+2 + θ2εt+1 + εt+3

Et [yt+3] = φ0 + φ1Et [yt+2] + φ2Et [yt+1] + 0 + 0 + 0

which is easily solved by plugging in the previously computed values for Et [yt+2] and Et [yt+1].
This pattern can be continued by iterating forward to produce the forecast for an arbitrary h .

Two things are worth noting from this discussion:

• If there is no AR component, all forecast for h > Q will beφ0.

• For large h , the optimal forecast converges to the unconditional expectation given by

lim
h→∞

Et [yt+h ] =
φ0

1− φ1 − φ2 − . . .− φP
(4.81)
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4.9.1 Forecast Evaluation

Forecast evaluation is an extensive topic and these notes only cover two simple yet important
tests: Mincer-Zarnowitz regressions and Diebold-Mariano tests.

4.9.1.1 Mincer-Zarnowitz Regressions

Mincer-Zarnowitz regressions (henceforth MZ) are used to test for the optimality of the forecast
and are implemented with a standard regression. If a forecast is correct, it should be the case
that a regression of the realized value on its forecast and a constant should produce coefficients
of 1 and 0 respectively.

Definition 4.30 (Mincer-Zarnowitz Regression). A Mincer-Zarnowitz (MZ) regression is a regres-
sion of a forecast, ŷt+h |t on the realized value of the predicted variable, yt+h and a constant,

yt+h = β1 + β2 ŷt+h |t + ηt . (4.82)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with β1 = 0
and β2 = 1.

For example, let ŷt+h |t be the h-step ahead forecast of y constructed at time t . Then running
the regression

yt+h = β1 + β2 ŷt+h |t + νt

should produce estimates close to 0 and 1. Testing is straightforward and can be done with any
standard test (Wald, LR or LM). An augmented MZ regression can be constructed by adding time-
t measurable variables to the original MZ regression.

Definition 4.31 (Augmented Mincer-Zarnowitz Regression). An Augmented Mincer-Zarnowitz
regression is a regression of a forecast, ŷt+h |t on the realized value of the predicted variable, yt+h ,
a constant and any other time-t measurable variables, xt = [x1t x2t . . . xK t ],

yt+h = β1 + β2 ŷt+h |t + β3 x1t + . . . + βK +2 xK t + ηt . (4.83)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with β1 =
β3 = . . . = βK +2 = 0 and β2 = 1.

It is crucial that the additional variables are time-t measurable and are in Ft . Again, any
standard test statistic can be used to test the null H0 : β2 = 1 ∩ β1 = β3 = . . . = βK +2 = 0 against
the alternative H1 : β2 6= 1 ∪ β j 6= 0, j = 1, 3, 4, . . . , K − 1, K − 2.

4.9.1.2 Diebold-Mariano Tests

A Diebold-Mariano test, in contrast to an MZ regression, examines the relative performance of
two forecasts. Under MSE, the loss function is given by L (yt+h , ŷt+h |t ) = (yt+h − ŷt+h |t )2. Let A
and B index the forecasts from two models ŷ A

t+h |t and ŷ B
t+h |t , respectively. The losses from each

can be defined as l A
t = (yt+h − ŷ A

t+h |t )
2 and l B

t = (yt+h − ŷ B
t+h |t )

2. If the models were equally good

(or bad), one would expect l̄ A ≈ l̄ B where l̄ is the average loss. If model A is better, meaning it
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has a lower expected loss E[L (yt+h , ŷ A
t+h |t )] < E[L (yt+h , ŷ B

t+h |t )], then, on average, it should be the

case that l̄ A < l̄ B . Alternatively, if model B were better it should be the case that l̄ B < l̄ A. The
DM test exploits this to construct a simple t -test of equal predictive ability.

Definition 4.32 (Diebold-Mariano Test). Define dt = l A
t − l B

t . The Diebold-Mariano test is a test
of equal predictive accuracy and is constructed as

D M =
d̄√
V̂[¯ ]d

where M (for modeling) is the number of observations used in the model building and estima-
tion, R (for reserve) is the number of observations held back for model evaluation and d̄ =
R−1

∑M+R
t=M+1 dt . Under the null that E[L (yt+h , ŷ A

t+h |t )] = E[L (yt+h , ŷ B
t+h |t )], and under some reg-

ularity conditions on {dt }, D M
d→ N (0, 1). V[dt ] is the long-run variance of dt and must be

computed using a HAC covariance estimator.

If the models are equally accurate, one would expect that E[dt ] = 0 which forms the null of
the DM test, H0 : E[dt ] = 0. To test the null, a standard t -stat is used although the test has two
alternatives: H A

1 : E[dt ] < 0 and H B
1 : E[dt ] > 0 which correspond to the superiority of model A

or B , respectively. D M is asymptotically normally distributed. Large negative values (less than
-2) indicate model A produces less loss on average and hence is superior, while large positive
values indicate the opposite. Values close to zero indicate neither is statistically superior.

In Diebold-Marino tests the variance must be estimated using a Heteroskedasticity-Autocorrelation
Consistent variance estimator.

Definition 4.33 (Heteroskedasticity Autocorrelation Consistent Covariance Estimator). Covari-
ance estimators which are robust to both ignored autocorrelation in residuals and to heteroskedas-
ticity are known as Heteroskedasticity-Autocorrelation Consistent (HAC) covariance. The most
common example of an HAC estimator is the Newey-West (or Bartlett) covariance estimator.

The typical variance estimator cannot be used in DM tests and a kernel estimator must be sub-
stituted (e.g., Newey-West).

Despite all of these complications, implementing a DM test is very easy. The first step is to
compute the series of losses, {l A

t } and {l B
t }, for both forecasts. Next compute dt = l A

t − l B
t .

Finally, regress dt on a constant and use Newey-West errors,

dt = β1 + εt .

The t -stat on β1 is the DM test statistic and can be compared to critical values of a normal dis-
tribution.

4.10 Nonstationary Time Series

Nonstationary time series present some particular difficulties and standard inference often fails
when a process depends explicitly on t . Nonstationarities can be classified into one of four cat-
egories:
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• Seasonalities

• Deterministic Trends (also known as Time Trends)

• Unit Roots (also known as Stochastic Trends)

• Structural Breaks

Each type has a unique feature. Seasonalities are technically a form of deterministic trend, al-
though their analysis is sufficiently similar to stationary time series that little is lost in treating
a seasonal time series as if it were stationary. Processes with deterministic trends have uncon-
ditional means which depend on time while unit roots processes have unconditional variances
that grow over time. Structural breaks are an encompassing class which may result in either or
both the mean and variance exhibiting time dependence.

4.10.1 Seasonality, Diurnality, and Hebdomadality

Seasonality, diurnality and hebdomadality are pervasive in economic time series. While many
data series have been seasonally adjusted to remove seasonalities, particularly US macroeco-
nomic series, there are many time-series where no seasonally adjusted version is available. Ig-
noring seasonalities is detrimental to the precision of parameters and forecasting and model
estimation and selection is often more precise when both seasonal and nonseasonal dynamics
are simultaneously modeled.

Definition 4.34 (Seasonality). Data are said to be seasonal if they exhibit a non-constant deter-
ministic pattern with an annual frequency.

Definition 4.35 (Hebdomadality). Data which exhibit day-of-week deterministic effects are said
to be hebdomadal.

Definition 4.36 (Diurnality). Data which exhibit intra-daily deterministic effects are said to be
diurnal.

Seasonal data are non-stationary, although seasonally de-trended data (usually referred to as
deseasonalized data) may be stationary. Seasonality is common in macroeconomic time series,
diurnality is pervasive in ultra-high frequency data (tick data) and hebdomadality is often be-
lieved to be a feature of asset prices. Seasonality is, technically, a form of non-stationarity since
the mean of a process exhibits explicit dependence on t through the seasonal component, and
the Box-Jenkins methodology is not directly applicable. However, a slight change in time scale,
where the seasonal pattern is directly modeled along with any non-seasonal dynamics produces
a residual series which is stationary and so the Box-Jenkins methodology may be applied.

For example, consider a seasonal quarterly time series. Seasonal dynamics may occur at lags
4, 8, 12, 16, . . ., while nonseasonal dynamics can occur at any lag 1, 2, 3, 4, . . .. Note that multiples
of 4 appear in both lists and so the identification of the seasonal and nonseasonal dynamics may
be difficult (although separate identification makes little practical difference).

The standard practice when working with seasonal data is to conduct model selection over
two sets of lags by choosing a maximum lag to capture the seasonal dynamics and by choosing
a maximum lag to capture nonseasonal ones. Returning to the example of a seasonal quarterly
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Figure 4.7: Plot of the money supply (M1), M1 growth (log differences), and the sample autocor-
relogram and sample partial autocorrelogram of M1 growth. There is a clear seasonal pattern at
12 months which appears consistent with a seasonal ARMA(1,1).

time series, a model may need to examine up to 4 lags to capture nonseasonal dynamics and
up to 4 lags of the seasonal component, and if the seasonal component is annual, these four
seasonal lags correspond to regressors as t − 4, t − 8, t − 12, and t − 16.

4.10.1.1 Example: Seasonality

Most U.S. data series are available seasonally adjusted, something that is not true for data from
many areas of the world, including the Euro zone. This example makes use of monthly data on
the U.S. money supply, M1, a measure of the money supply that includes all coins, currency held
by the public, travelers’ checks, checking account balances, NOW accounts, automatic transfer
service accounts, and balances in credit unions.

Figure 4.10.1.1 contains a plot of monthly M1, the growth of M1 (log differences), and the
sample autocorrelogram and sample partial autocorrelogram of M1. These figures show evi-
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Modeling seasonalities in M1 growth

yt = φ0 + φ1 yt−1 + φ12 yt−12 + θ12εt−12 + εt

φ̂0 φ̂1 φ̂12 θ̂12 SIC

0.000
(0.245)

−0.014
(0.000)

0.984
(0.000)

−0.640
(0.000)

−9.989

0.001
(0.059)

−0.011
(0.000)

0.873
(0.000)

−9.792

0.004
(0.002)

−0.008
(0.000)

0.653
(0.000)

−9.008

Table 4.3: Estimated parameters, p-values and SIC for three models with seasonalities. The SIC
prefers the larger specification with both seasonal AR and MA terms. Moreover, correctly mod-
eling the seasonalities frees the AR(1) term to model the oscillating short run dynamics (notice
the significant negative coefficient).

dence of an annual seasonality (lags 12, 24 and 36), and applying the Box-Jenkins methodology,
the seasonality appears to be a seasonal AR, or possibly a seasonal ARMA. The short run dynam-
ics oscillate and appear consistent with an autoregression since the partial autocorrelations are
fairly flat (aside from the seasonal component). Three specifications which may be appropriate
to model the process were fit: a 12 month seasonal AR, a 12 month seasonal MA and a 12-month
seasonal ARMA, all combined with an AR(1) to model the short run dynamics. Results are re-
ported in table 4.3

4.10.2 Deterministic Trends

The simplest form of nonstationarity is a deterministic trend. Models with deterministic time
trends can be decomposed into three components:

yt = deterministictrend + stationarycomponent + noise (4.84)

where {yt } would be stationary if the trend were absent. The two most common forms of time
trends are polynomial (linear, quadratic, etc) and exponential. Processes with polynomial time
trends can be expressed

yt = φ0 + δ1t + δ2t 2 + . . . + δS t S + stationarycomponent + noise,

and linear time trend models are the most common,

yt = φ0 + δ1t + stationarycomponent + noise.

For example, consider a linear time trend model with an MA(1) stationary component,

yt = φ0 + δ1t + θ1εt−1 + εt
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The long-run behavior of this process is dominated by the time trend, although it may still exhibit
persistent fluctuations around δ1t .

Exponential trends appear as linear or polynomial trends in the log of the dependent variable,
for example

ln yt = φ0 + δ1t + stationarycomponent + noise.

The trend is the permanent component of a nonstationary time series, and so any two observa-
tion are permanently affected by the trend line irrespective of the number of observations be-
tween them. The class of deterministic trend models can be reduced to a stationary process by
detrending.

Definition 4.37 (Trend Stationary). A stochastic process, {yt } is trend stationary if there exists a
nontrivial function g (t ,δ) such that {yt − g (t ,δ)} is stationary.

Detrended data may be strictly or covariance stationary (or both).

4.10.2.1 Modeling the time trend in GDP

U.S. GDP data was taken from FRED II from Q1 1947 until Q2 July 2008. To illustrate the use
of a time trend, consider two simple models for the level of GDP. The first models the level as
a quadratic function of time while the second models the natural log of GDP in an exponential
trend model.

G D Pt = φ0 + δ1t + δ2t 2 + εt

and
ln G D Pt = φ0 + δ1t + εt .

Figure 4.8 presents the time series of GDP, the log of GDP and errors from two models that
include trends. Neither time trend appears to remove the extreme persistence in GDP which may
indicate the process contains a unit root.

4.10.3 Unit Roots

Unit root processes are generalizations of the classic random walk. A process is said to have a
unit root if the distributed lag polynomial can be factored so that one of the roots is exactly one.

Definition 4.38 (Unit Root). A stochastic process, {yt }, is said to contain a unit root if

(1− φ1L − φ2L 2 − . . .− φP L P )yt = φ0 + (1− θ1L − θ2L 2 − . . .− θQ LQ )εt (4.85)

can be factored

(1− L )(1− φ̃1L − φ̃2L 2 − . . .− φ̃P−1L P−1)yt = φ0 + (1− θ1L − θ2L 2 − . . .− θQ LQ )εt . (4.86)

The simplest example of a unit root process is a random walk.
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Time trend models of GDP
G D P ε̂ from G D Pt = µ + δ1t + δ2t 2 + εt
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Figure 4.8: Two time trend models are presented, one on the levels of GDP and one on the natural
log. Note that the detrended residuals are still highly persistent. This is a likely sign of a unit root.

Definition 4.39 (Random Walk). A stochastic process {yt } is known as a random walk if

yt = yt−1 + εt (4.87)

where εt is a white noise process with the additional property that Et−1[εt ] = 0.

The basic properties of a random walk are simple to derive. First, a random walk is a martin-
gale since Et [yt+h ] = yt for any h .13 The variance of a random walk can be deduced from

V[yt ] = E[(yt − y0)2] (4.88)

= E[(εt + yt−1 − y0)2]
= E[(εt + εt−1 + yt−2 − y0)2]

13Since the effect of an innovation never declines in a unit root process, it is not reasonable to consider the infinite
past as in a stationary AR(1).
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= E[(εt + εt−1 + . . . + ε1)2]
= E[ε2

t + ε
2
t−1 + . . . + ε2

1]
= tσ2

and this relationship holds for any time index, and so V[ys ] = sσ2. The sth autocovariance (γs )
of a unit root process is given by

V[(yt − y0)(yt−s − y0)] = E[(εt + εt−1 + . . . + ε1)(εt−s + εt−s−1 + . . . + ε1)] (4.89)

= E[(ε2
t−s + ε

2
t−s−1 + . . . + ε2

1]
= (t − s )σ2

and the sth autocorrelation is then

ρs =
t − s

t
(4.90)

which tends to 1 for large t and fixed s . This is a useful property of a random walk process (and
any unit root process): The autocorrelations will be virtually constant at 1 with only a small de-
cline at large lags. Building from the simple unit root, one can define a unit root plus drift model,

yt = δ + yt−1 + εt

which can be equivalently expressed

yt = δt +
t∑

i=1

εi + y0

and so the random walk plus drift process consists of both a deterministic trend and a random
walk. Alternatively, a random walk model can be augmented with stationary noise so that

yt =
t∑

i=1

εi + ηt

which leads to the general class of random walk models plus stationary noise processes

yt =
t∑

i=1

εi +
t−1∑
j=1

θ jηt− j + ηt

=
t∑

i=1

εi + Θ(L )ηt

where Θ(L )ηt =
∑t−1

j=1 θ jηt− j + ηt is a compact expression for a lag polynomial in θ . Since
Θ(L )ηt can include any covariance stationary process, this class should be considered general.
More importantly, this process has two components: a permanent one,

∑t
i=1 εi and a transitory

oneΘ(L )ηt . The permanent behaves similarly to a deterministic time trend, although unlike the
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deterministic trend model, the permanent component of this specification depends on random
increments. For this reason, it is known as a stochastic trend.

Like the deterministic model, where the process can be detrended, a process with a unit root
can be stochastically detrended, or differenced, ∆yt = yt − yt−1. Differencing a random walk
produces a stationary series,

yt − yt−1 =
t∑

i=1

εi + Θ(L )ηt −
t−1∑
i=1

εi + Θ(L )ηt−1

∆yt = εt + (1− L )Θ(L )ηt

Over-differencing occurs when the difference operator is applied to a stationary series. While
over-differencing cannot create a unit root, it does have negative consequences such as increas-
ing the variance of the residual and reducing the magnitude of possibly important dynamics.
Finally, unit root processes are often known as I(1) processes.

Definition 4.40 (Integrated Process of Order 1). A stochastic process {yt } is integrated of order
1, written I (1), if {yt } is non-covariance-stationary and if {∆yt } is covariance stationary. Note:
A process that is already covariance stationary is said to be I (0).

The expression integrated is derived from the presence of
∑t

i=1 εi in a unit root process where
the sum operator is the discrete version of an integrator.

4.10.4 Difference or Detrend?

Detrending removes nonstationarities from deterministically trending series while differencing
removes stochastic trends from unit roots. What happens if the wrong type of detrending is used?
The unit root case is simple, and since the trend is stochastic, no amount of detrending can elim-
inate the permanent component. Only knowledge of the stochastic trend at an earlier point in
time can transform the series to be stationary.

Differencing a stationary series produces another series which is stationary but with a larger
variance than a detrended series.

yt = δt + εt

∆yt = δ + εt − εt−1

while the properly detrended series would be

yt − δt = εt

If εt is a white noise process, the variance of the differenced series is twice that of the detrended
series with a large negative MA component. The parsimony principle dictates that the correctly
detrended series should be preferred even though differencing is a viable method of transforming
a nonstationary series to be stationary. Higher orders of time trends can be eliminated by re-
differencing at the cost of even higher variance.
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4.10.5 Testing for Unit Roots: The Dickey-Fuller Test and the Augmented DF
Test

Dickey-Fuller tests (DF), and their generalization to augmented Dickey-Fuller tests (ADF) are the
standard test for unit roots. Consider the case of a simple random walk,

yt = yt−1 + εt

so that

∆yt = εt .

Dickey and Fuller noted that if the null of a unit root were true, then

yt = φ1 yt−1 + εt

can be transformed into

∆yt = γyt−1 + εt

where γ = φ − 1 and a test could be conducted for the null H0 : γ = 0 against an alternative
H1 : γ < 0. This test is equivalent to testing whether φ = 1 in the original model. γ̂ can be
estimated using a simple regression of∆yt on yt−1, and the t -stat can be computed in the usual
way. If the distribution of γ̂ were standard normal (under the null), this would be a very simple
test. Unfortunately, it is non-standard since, under the null, yt−1 is a unit root and the variance is
growing rapidly as the number of observations increases. The solution to this problem is to use
the Dickey-Fuller distribution rather than the standard normal to make inference on the t -stat
of γ̂.

Dickey and Fuller considered three separate specifications for their test,

∆yt = γyt−1 + εt (4.91)

∆yt = φ0 + γyt−1 + εt

∆yt = φ0 + δ1t + γyt−1 + εt

which correspond to a unit root, a unit root with a linear time trend, and a unit root with a
quadratic time trend. The null and alternative hypotheses are the same: H0 : γ = 0, H1 : γ < 0
(one-sided alternative), and the null that yt contains a unit root will be rejected if γ̂ is sufficiently
negative, which is equivalent to φ̂ being significantly less than 1 in the original specification.

Unit root testing is further complicated since the inclusion of deterministic regressor(s) af-
fects the asymptotic distribution. For example, if T = 200, the critical values of a Dickey-Fuller
distribution are

No trend Linear Quadratic
10% -1.66 -2.56 -3.99

5% -1.99 -2.87 -3.42
1% -2.63 -3.49 -3.13
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The Augmented Dickey-Fuller (ADF) test generalized the DF to allow for short-run dynamics
in the differenced dependent variable. The ADF is a DF regression augmented with lags of the
differenced dependent variable to capture short-term fluctuations around the stochastic trend,

∆yt = γyt−1 +
P∑

p=1

φp∆yt−p + εt (4.92)

∆yt = φ0 + γyt−1 +
P∑

p=1

φp∆yt−p + εt

∆yt = φ0 + δ1t + γyt−1 +
P∑

p=1

φp∆yt−p + εt

Neither the null and alternative hypotheses nor the critical values are changed by the inclu-
sion of lagged dependent variables. The intuition behind this result stems from the observation
that the∆yt−p are “less integrated” than yt and so are asymptotically less informative.

4.10.6 Higher Orders of Integration

In some situations, integrated variables are not just I(1) but have a higher order or integration.
For example, the log consumer price index (ln C P I ) is often found to be I(2) (integrated of order
2) and so double differencing is required to transform the original data into a stationary series.
As a consequence, both the level of ln C P I and its difference (inflation) contain unit roots.

Definition 4.41 (Integrated Process of Order d ). A stochastic process {yt } is integrated of order
d , written I (d ), if {(1− L )d yt } is a covariance stationary ARMA process.

Testing for higher orders of integration is simple: repeat the DF or ADF test on the differenced
data. Suppose that it is not possible to reject the null that the level of a variable, yt , is integrated
and so the data should be differenced (∆yt ). If the differenced data rejects a unit root, the test-
ing procedure is complete and the series is consistent with an I(1) process. If the differenced
data contains evidence of a unit root, the data should be double differenced (∆2 yt ) and the test
repeated. The null of a unit root should be rejected on the double-differenced data since no eco-
nomic data are thought to be I(3), and so if the null cannot be rejected on double-differenced
data, careful checking for omitted deterministic trends or other serious problems in the data is
warranted.

4.10.6.1 Power of Unit Root tests

Recall that the power of a test is 1 minus the probability Type II error, or simply the probability
that the null is rejected when the null is false. In the case of a unit root, power is the ability of a
test to reject the null that the process contains a unit root when the largest characteristic root is
less than 1. Many economic time-series have roots close to 1 and so it is important to maximize
the power of a unit root test so that models have the correct order of integration.

DF and ADF tests are known to be very sensitive to misspecification and, in particular, have
very low power if the ADF specification is not flexible enough to account for factors other than
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the stochastic trend. Omitted deterministic time trends or insufficient lags of the differenced
dependent variable both lower the power by increasing the variance of the residual. This works
analogously to the classic regression testing problem of having a low power test when the residual
variance is too large due to omitted variables.

A few recommendations can be made regarding unit root tests:

• Use a loose model selection criteria to choose the lag length of the included differenced
dependent variables (e.g., AIC).

• Including extraneous deterministic regressors lowers power, but failing to include relevant
deterministic regressors produces a test with no power, even asymptotically, and so be con-
servative when excluding deterministic regressors.

• More powerful tests than the ADF are available. Specifically, DF-GLS of Elliott, Rothen-
berg, and Stock (1996) is increasingly available and it has maximum power against certain
alternatives.

• Trends tend to be obvious and so always plot both the data and the differenced data.

• Use a general-to-specific search to perform unit root testing. Start from a model which
should be too large. If the unit root is rejected, one can be confident that there is not a
unit root since this is a low power test. If a unit root cannot be rejected, reduce the model
by removing insignificant deterministic components first since these lower power without
affecting the t -stat. If all regressors are significant, and the null still cannot be rejected,
then conclude that the data contains a unit root.

4.10.7 Example: Unit root testing

Two series will be examined for unit roots: the default spread and the log U.S. consumer price
index. The ln C P I , which measure consumer prices index less energy and food costs (also known
as core inflation), has been taken from FRED, consists of quarterly data and covers the period
between August 1968 and August 2008. Figure 4.9 contains plots of both series as well as the first
and second differences of ln C P I .

ln C P I is trending and the spread does not have an obvious time trend. However, deter-
ministic trends should be over-specified and so the initial model for ln C P I will include both a
constant and a time-trend and the model for the spread will include a constant. The lag length
used in the model was automatically selected using the BIC.

Results of the unit root tests are presented in table 4.4. Based on this output, the spreads re-
ject a unit root at the 5% level but the ln C P I cannot. The next step is to difference the ln C P I to
produce∆ lnCPI. Rerunning the ADF test on the differenced CPI (inflation) and including either
a constant or no deterministic trend, the null of a unit root still cannot be rejected. Further differ-
encing the data,∆2 ln C P It = δ ln C P It − ln C P It−1, strongly rejects, and so ln C P I appears to
be I(2). The final row of the table indicates the number of lags used in the ADF and was selected
using the BIC with a maximum of 12 lags for ln C P I or 36 lags for the spread (3 years).
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Unit Root Analysis of ln C P I and the Default Spread
ln C P I ∆ ln C P I (Annualized Inflation)
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Figure 4.9: These four panels plot the log consumer price index (ln C P I ), ∆ ln C P I , ∆2 ln C P I
and the default spread. Both∆2 ln C P I and the default spread reject the null of a unit root.

ln C P I ln C P I ln C P I ∆ ln C P I ∆ ln C P I ∆2 ln C P I Default Sp. Default Sp.

t -stat -2.119 -1.541 1.491 -2.029 -0.977 -13.535 -3.130 -1.666
p-val 0.543 0.517 0.965 0.285 0.296 0.000 0.026 0.091

Deterministic Linear Const. None Const. None None Const. None
# lags 4 4 4 3 3 2 15 15

Table 4.4: ADF results for tests that ln C P I and the default spread have unit roots. The null of
an unit root cannot be rejected in ln C P I , nor can the null that∆ lnCPI contains a unit root and
so CPI appears to be an I(2) process. The default spread rejects the null of a unit root although
clearly highly persistent.
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4.11 Nonlinear Models for Time-Series Analysis

While this chapter has exclusively focused on linear time-series processes, many non-linear time-
series processes have been found to parsimoniously describe important dynamics in financial
data. Two which have proven particularly useful in the analysis of financial data are Markov
Switching Autoregressions (MSAR) and Threshold Autoregressions (TAR), especially the subclass
of Self-Exciting Threshold Autoregressions (SETAR).14

4.12 Filters

The ultimate goal of most time-series modeling is to forecast a time-series in its entirety, which
requires a model for both permanent and transitory components. In some situations, it may be
desirable to focus on either the short-run dynamics or the long-run dynamics exclusively, for
example in technical analysis where prices are believed to be long-run unpredictable but may
have some short- or medium-run predictability. Linear filters are a class of functions which can
be used to “extract” a stationary cyclic component from a time-series which contains both short-
run dynamics and a permanent component. Generically, a filter for a time series {yt } is defined
as

xt =
∞∑

i=−∞

wi yt−i (4.93)

where xt is the filtered time-series or filter output. In most applications, it is desirable to assign
a label to xt , either a trend, written τt , or a cyclic component, ct .

Filters are further categorized into causal and non-causal, where causal filters are restricted
to depend on only the past and present of yt , and so as a class are defined through

xt =
∞∑

i=0

wi yt−i . (4.94)

Causal filters are more useful in isolating trends from cyclical behavior for forecasting purposes
while non-causal filters are more useful for historical analysis of macroeconomic and financial
data.

4.12.1 Frequency, High- and Low-Pass Filters

This text has exclusively dealt with time series in the time domain – that is, understanding dy-
namics and building models based on the time distance between points. An alternative strategy
for describing a time series is in terms of frequencies and the magnitude of the cycle at a given
frequency. For example, suppose a time series has a cycle that repeats every 4 periods. This se-
ries could be equivalently described as having a cycle that occurs with a frequency of 1 in 4, or

14There are many nonlinear models frequently used in financial econometrics for modeling quantities other than
the conditional mean. For example, both the ARCH (conditional volatility) and CaViaR (conditional Value-at-Risk)
models are nonlinear in the original data.
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.25. A frequency description is relatively compact – it is only necessary to describe a process from
frequencies of 0 to 0.5, the latter of which would be a cycle with a period of 2.15

The idea behind filtering is to choose a set of frequencies and then to isolate the cycles which
occur within the selected frequency range. Filters that eliminate high-frequency cycles are known
as low-pass filters, while filters that eliminate low-frequency cycles are known as high-pass filters.
Moreover, high- and low-pass filters are related in such a way that if {wi} is a set of weights cor-
responding to a high-pass filter, v0 = 1 − w0, vi = −wi i 6= 0 is a set of weights corresponding
to a low-pass filter. This relationship forms an identity since {vi + wi} must correspond to an
all-pass filter since

∑∞
i=−∞(vi + wi )yt−1 = yt for any set of weights.

The goal of a filter is to select a particular frequency range and nothing else. The gain func-
tion describes the amount of attenuations which occurs at a given frequency.16 A gain of 1 at a
particular frequency means any signal at that frequency is passed through unmodified while a
gain of 0 means that the signal at that frequency is eliminated from the filtered data. Figure 4.10
contains a graphical representation of the gain function for a set of ideal filters. The four pan-
els show an all-pass (all frequencies unmodified), a low-pass filter with a cutoff frequency of 1

10 ,
a high-pass with a cutoff frequency of 1

6 , and a band-pass filter with cutoff frequencies of 1
6 and

1
32 .17 In practice, only the all-pass filter (which corresponds to a filter with weights w0 = 1, wi = 0
for i 6= 0) can be constructed using a finite sum, and so applied filtering must make trade-offs.

4.12.2 Moving Average and Exponentially Weighted Moving Average (EWMA)

Moving averages are the simplest filters and are often used in technical analysis. Moving averages
can be constructed as both causal and non-causal filters.

Definition 4.42 (Causal Moving Average). A causal moving average (MA) is a function which takes
the form

τt =
1

n

n∑
i=1

yt−i+1.

Definition 4.43 (Centered (Non-Causal) Moving Average). A centered moving average (MA) is a
function which takes the form

τt =
1

2n + 1

n∑
i=−n

yt−i+1.

Note that the centered MA is an average over 2n + 1 data points.

15The frequency 1
2 is known as the Nyquist frequency since it is not possible to measure any cyclic behavior at

frequencies above 1
2 since these would have a cycle of 1 period and so would appear constant.

16The gain function for any filter of the form xt =
∑∞

i=−∞ wi yt−i can be computed as

G ( f ) =

∣∣∣∣∣
∞∑

k=−∞

w j exp (−i k 2π f )

∣∣∣∣∣
where i =

√
−1.

17Band-pass filters are simply the combination of two low-pass filters. Specifically, if {wi} is set of weights from a
low-pass filter with a cutoff frequency of f1 and {vi} is a set of weights from a low-pass filter with a cutoff frequency
of f2, f2 > f1, then {vi − wi} is a set of weights which corresponds to a band-pass filter with cutoffs at f1 and f2.
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Ideal Filters
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Figure 4.10: These four panels depict the gain functions from a set of ideal filters. The all-pass
filter allows all frequencies through. The low-pass filter cuts off at 1

10 . The high-pass cuts off
below 1

6 and the band-pass filter cuts off below 1
32 and above 1

6 .

Moving averages are low-pass filters since their weights add up to 1. In other words, the mov-
ing average would contain the permanent component of {yt } and so would have the same order
of integration. The cyclic component, ct = yt − τt , would have a lower order of integration that
yt . Since moving averages are low-pass filters, the difference of two moving averages must be
a band-pass filter. Figure 4.11 contains the gain function from the difference between a 20-day
and 50-day moving average which is commonly used in technical analysis.

Exponentially Weighted Moving Averages (EWMA) are a close cousin of the MA which places
greater weight on recent data than on past data.

Definition 4.44 (Exponentially Weighted Moving Average). A exponentially weighed moving av-
erage (EWMA) is a function which takes the form

τt = (1− λ)
∞∑

i=0

λi yt−i
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for some λ ∈ (0, 1).

The name EWMA is derived from the exponential decay in the weights, and EWMAs can be equiv-
alently expressed (up to an initial condition) as

τt = (1− λ)λyt + λτt−1.

Like MAs, EWMAs are low-pass filters since the weights sum to 1.
EWMAs are commonly used in financial applications as volatility filters, where the dependent

variable is chosen to be the squared return. The difference between two EWMAs is often referred
to as a Moving Average Convergence Divergence (MACD) filter in technical analysis. MACDs
are indexed by two numbers, a fast period and a slow period, where the number of data in the
MACD can be converted to λ as λ = (n − 1)/(n + 1), and so an MACD(12,26) is the difference
between two EWMAs with parameters .842 and .926. 4.11 contains the gain function from an
MACD(12,26) (the difference between two EWMAs), which is similar to, albeit smoother than,
the gain function from the difference of a 20-day and a 50-day MAs.

4.12.3 Hodrick-Prescott Filter

The Hodrick and Prescott (1997) (HP) filter is constructed by balancing the fitting the trend to
the data and the smoothness of the trend. The HP filter is defined as the solution to

min
τt

T∑
t=1

(yt − τt )2 + λ
T−1∑
t=2

((τt−1 − τt )− (τt + τt−1))

where (τt−1 − τt ) − (τt + τt−1) can be equivalently expressed as the second-difference of τt ,
∆2τt . λ is a smoothness parameter: if λ = 0 then the solution to the problem is τt = yt ∀t , and
as λ → ∞, the “cost” of variation in {τt } becomes arbitrarily high and τt = β0 + β1t where β0

and β1 are the least squares fit of a linear trend model to the data.
It is simple to show that the solution to this problem must have

y = Γτ

where Γ is a band-diagonal matrix (all omitted elements are 0) of the form

Γ =



1 + λ −2λ λ
−2λ 1 + 5λ −4λ λ
λ −4λ 1 + 6λ −4λ λ

λ −4λ 1 + 6λ −4λ λ
. . . . . . . . . . . . . . .

λ −4λ 1 + 6λ −4λ λ
λ −4λ 1 + 6λ −4λ λ

λ −4λ 1 + 5λ −2λ
λ −2λ 1 + λ


and The solution to this set of T equations in T unknowns is
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τ = Γ−1y.

The cyclic component is defined as ct = yt − τt .

Hodrick and Prescott (1997) recommend values of 100 for annual data, 1600 for quarterly data
and 14400 for monthly data. The HP filter is non-causal and so is not appropriate for prediction.
The gain function of the cyclic component of the HP filter with λ = 1600 is illustrated in figure
4.11. While the filter attempts to eliminate components with a frequency below ten years of
quarterly data ( 1

40 ), there is some gain until about 1
50 and the gain is not unity until approximately

1
25 .

4.12.4 Baxter-King Filter

Baxter and King (1999) consider the problem of designing a filter to be close to the ideal filter
subject to using a finite number of points.18 They further argue that extracting the cyclic compo-
nent requires the use of both a high-pass and a low-pass filter – the high-pass filter is to cutoff the
most persistent components while the low-pass filter is used to eliminate high-frequency noise.
The BK filter is defined by a triple, two-period lengths (inverse frequencies) and the number of
points used to construct the filter (k ), and is written as B Kk (p , q ) where p < q are the cutoff
frequencies.

Baxter and King suggest using a band-pass filter with cutoffs at 1
32 and 1

6 for quarterly data.
The final choice for their approximate ideal filter is the number of nodes, for which they suggest
12. The number of points has two effects. First, the BK filter cannot be used in the first and last
k points. Second, a higher number of nodes will produce a more accurate approximation to the
ideal filter.

Implementing the BK filter is simple. Baxter and King show that the optimal weights for a
low-pass filter at particular frequency f , satisfy

w̃0 = 2 f (4.95)

w̃i =
sin(2iπ f )

iπ
, i = 1, 2, . . . , k (4.96)

θ = [2k + 1]−1

(
1−

k∑
i=−k

w̃i

)
(4.97)

wi = w̃i + θ , i = 0, 1, . . . , k (4.98)

wi = w−i . (4.99)

The BK filter is constructed as the difference between two low-pass filters, and so

18Ideal filters, except for the trivial all-pass, require an infinite number of points to implement, and so are infea-
sible in applications.
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Actual Filters
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Figure 4.11: These six panels contain the standard HP filter, the B K12(6, 32) filter, the first differ-
ence filter, an EWMA with λ = .94, a MACD(12,26) and the difference between a 20-day and a
50-day moving average. The gain functions in the right hand column have been normalized so
that the maximum weight is 1. The is equivalent to scaling all of the filter weights by a constant,
and so is simple a change in variance of the filter output.

τt =
k∑

i=−k

wi yt−i (4.100)

ct =
k∑

i=−k

(vi − wi ) yt−i (4.101)

where {wi} and {vi} are both weights from low-pass filters where the period used to construct
{wi} is longer than the period used to construct {vi}. The gain function of the B K12(6, 32) is
illustrated in the upper right panel of figure 4.11. The approximation is reasonable, with near
unit gain between 1

32 and 1
6 and little gain outside.

4.12.5 First Difference

Another very simple filter to separate a “trend” from a ”cyclic” component is the first difference.
Note that if yt is an I(1) series, then the first difference which contains the “cyclic” component,
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ct = 1
2∆yt , is an I(0) series and so the first difference is a causal filter. The “trend” is measured

using an MA(2), τt = 1
2 (yt + yt−1) so that yt = ct + τt . The FD filter is not sharp – it allows for

most frequencies to enter the cyclic component – and so is not recommended in practice.

4.12.6 Beveridge-Nelson Decomposition

The Beveridge and Nelson (1981) decomposition extends the first order difference decomposi-
tion to include any predictable component in the future trend as part of the current trend. The
idea behind the BN decomposition is simple: if the predictable part of the long-run component
places the long-run component above its current value, then the cyclic component should be
negative. Similarly, if the predictable part of the long-run component expects that the long run
component should trend lower then the cyclic component should be positive. Formally the BN
decomposition if defined as

τt = lim
h→∞

ŷt+h |t − hµ (4.102)

ct = yt − τt

where µ is the drift in the trend, if any. The trend can be equivalently expressed as the current
level of yt plus the expected increments minus the drift,

τt = yt + lim
h→∞

h∑
i=1

E
[
∆ ŷt+i |t − µ

]
(4.103)

where µ is the unconditional expectation of the increments to yt , E[∆ ŷt+ j |t ]. The trend compo-
nent contains the persistent component and so the filter applied must be a low-pass filter, while
the cyclic component is stationary and so must be the output of a high-pass filter. The gain of
the filter applied when using the BN decomposition depends crucially on the forecasting model
for the short-run component.

Suppose {yt } is an I(1) series which has both a permanent and transitive component. Since
{yt } is I(1), ∆yt must be I(0) and so can be described by a stationary ARMA(P,Q) process. For
simplicity, suppose that∆yt follows an MA(3) so that

∆yt = φ0 + θ1εt−1 + θ1εt−2 + θ3εt−3 + εt

In this model µ = φ0, and the h-step ahead forecast is given by

∆ ŷt+1|t = µ + θ1εt + θ2εt−1 + θ3εt−2

∆ ŷt+2|t = µ + θ2εt + θ3εt−1

∆ ŷt+3|t = µ + θ3εt

∆ ŷt+h |t = µ h ≥ 4,

and so
τt = yt + (θ1 + θ2 + θ3) εt + (θ2 + θ3) εt−1 + θ3εt−2
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and

ct = − (θ1 + θ2 + θ3) εt − (θ2 + θ3) εt−1 − θ3εt−2.

Alternatively, suppose that∆yt follows an AR(1) so that

∆yt = φ0 + φ1∆yt−1 + εt .

This model can be equivalently defined in terms of deviations around the long-run mean,∆ ỹt =
∆yt − φ0/(1− φ1), as

∆yt = φ0 + φ1∆yt−1 + εt

∆yt = φ0
1− φ1

1− φ1
+ φ1∆yt−1 + εt

∆yt =
φ0

1− φ1
− φ1

φ0

1− φ1
+ φ1∆yt−1 + εt

∆yt −
φ0

1− φ1
= φ1

(
∆yt−1 −

φ0

1− φ1

)
+ εt

∆ ỹt = φ1∆ ỹt−1 + εt .

In this transformed model, µ = 0 which simplifies finding the expression for the trend. The
h-step ahead forecast if∆ ỹt is given by

∆ ˆ̃yt+h |t = φh
1∆ ỹt

and so

τt = yt + lim
h→∞

h∑
i=1

∆ ˆ̃yt+i |t

= yt + lim
h→∞

h∑
i=1

φi
1∆ ỹt

= yt + lim
h→∞

∆ ỹt

h∑
i=1

φi
1

= yt + lim
h→∞

∆ ỹt
φ1

1− φ1

which follows since limh→∞
∑h

i=1φ
i
1 =−1+ limh→∞

∑h
i=0φ

i
1 = 1/(1−φ1)−1. The main criticism

of the Beveridge-Nelson decomposition is that the trend and the cyclic component are perfectly
(negatively) correlation.
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4.12.7 Extracting the cyclic components from Real US GDP

To illustrate the filters, the cyclic component was extracted from log real US GDP data taken from
the Federal Reserve Economics Database. Data was available from 1947 Q1 to Q2 2009. Figure
4.12 contains the cyclical component extracted using 4 methods. The top panel contains the
standard HP filter with λ = 1600. The middle panel contains B K12(6, 32) (solid) and B K12(1, 32)
(dashed) filters, the latter of which is a high pass-filter since the faster frequency is 1. Note that
the first and last 12 points of the cyclic component are set to 0. The bottom panel contains the
cyclic component extracted using a Beveridge-Nelson decomposition based on an AR(1) fit to
GDP growth. For the BN decomposition, the first 2 points are zero which reflects the loss of data
due to the first difference and the fitting of the AR(1) to the first difference.19

The HP filter and the B K12(1, 32) are remarkably similar with a correlation of over 99%. The
correlation between the B K12(6, 32) and the HP filter was 96%, the difference being in the lack
of a high-frequency component. The cyclic component from the BN decomposition has a small
negative correlation with the other three filters, although choosing a different model for GDP
growth would change the decomposition.

4.12.8 Markov Switching Autoregression

Markov switching autoregression, introduced into econometrics in Hamilton (1989), uses a com-
posite model which evolves according to both an autoregression and a latent state which deter-
mines the value of the autoregressive parameters. In financial applications using low-frequency
asset returns, an MSAR that allows the mean and the variance to be state-dependent has been
found to outperform linear models (Perez-Quiros and Timmermann, 2000).

Definition 4.45 (Markov Switching Autoregression). A k -state Markov switching autoregression
(MSAR) is a stochastic process which has dynamics that evolve through both a Markovian state
process and an autoregression where the autoregressive parameters are state dependent. The
states, labeled 1, 2, . . . , k , are denoted st and follow a k -state latent Markov Chain with transition
matrix P,

P =


p11 p12 . . . p1k

p21 p22 . . . p2k
...

...
...

...
pk 1 pk 2 . . . pk k

 (4.104)

where pi j = P r (st+1 = i |st = j ). Note that the columns must sum to 1 since
∑k

i=1 P r (st+1 =
i |st = j ) = 1. Data are generated according to a Pth order autoregression,

yt = φ
(st )
0 + φ(st )

1 yt−1 + . . . + φ(st )
P yt−p + σ(st )εt (4.105)

where φ(st ) = [φ(st )
0 φ(st )

1 . . . φ(st )
P ]
′ are state-dependent autoregressive parameters, σ(st ) is the

state-dependent standard deviation and εt
i.i.d.∼ N (0, 1).20 The unconditional state probabilities

(Pr (st = i )), known as the ergodic probabilities, are denotedπ = [π1 π2 . . . πk ]′ and are the solu-
tion to

π = Pπ. (4.106)
19The AR(1) was chosen from a model selection search of AR models with an order up to 8 using the SBIC.
20The assumption that εt

i.i.d.∼ N (0, 1) can be easily relaxed to include other i.i.d. processes for the innovations.



4.12 Filters 277

Cyclical Component of U.S. Real GDP
Hodrick-Prescott (λ = 1600)
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Figure 4.12: The top panel contains the filtered cyclic component from a HP filter with λ =
1600. The middle panel contains the cyclic component from B K12(6, 32) (solid) and B K12(1, 32)
(dashed) filters. The bottom panel contains the cyclic component from a Beveridge-Nelson de-
composition based on an AR(1) model for GDP growth rates.

The ergodic probabilities can also be computed as the normalized eigenvector of P correspond-
ing to the only unit eigenvalue.

Rather than attempting to derive properties of an MSAR, consider a simple specification with
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two states, no autoregressive terms, and where only the mean of the process varies21

yt =
{
φH + εt

φL + εt
(4.107)

where the two states are indexed by H (high) and L (low). The transition matrix is

P =
[

pH H pH L

pLH pL L

]
=
[

pH H 1− pL L

1− pH H pL L

]
(4.108)

and the unconditional probabilities of being in the high and low state, πH and πL , respectively,
are

πH =
1− pL L

2− pH H − pL L
(4.109)

πL =
1− pH H

2− pH H − pL L
. (4.110)

This simple model is useful for understanding the data generation in a Markov Switching
process:

1. At t = 0 an initial state, s0, is chosen according to the ergodic (unconditional) probabilities.
With probability πH , s0 = H and with probability πL = 1− πH , s0 = L .

2. The state probabilities evolve independently from the observed data according to a Markov
Chain. If s0 = H , s1 = H with probability pH H , the probability st+1 = H given st = H and
s1 = L with probability pLH = 1 − pH H . If s0 = L , s1 = H with probability pH L = 1 − pL L

and s1 = L with probability pL L .

3. Once the state at t = 1 is known, the value of y1 is chosen according to

y1 =
{
φH + ε1 if s1 = H
φL + εt if s1 = L

.

4. Steps 2 and 3 are repeated for t = 2, 3, . . . , T , to produce a time series of Markov Switching
data.

4.12.8.1 Markov Switching Examples

Using the 2-state Markov Switching Autoregression described above, 4 systems were simulated
for 100 observations.

• Pure mixture

– µH = 4, µL = −2, V[εt ] = 1 in both states

– pH H = .5 = pL L

21See Hamilton (1994, chapter 22) or Krolzig (1997) for further information on implementing MSAR models.
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– πH = πL = .5

– Remark: This is a “pure” mixture model where the probability of each state does not
depend on the past. This occurs because the probability of going from high to high is
the same as the probability of going from low to high, 0.5.

• Two persistent States

– µH = 4, µL = −2, V[εt ] = 1 in both states

– pH H = .9 = pL L so the average duration of each state is 10 periods.

– πH = πL = .5

– Remark: Unlike the first parameterization this is not a simple mixture. Conditional
on the current state being H , there is a 90% chance that the next state will remain H .

• One persistent state, on transitory state

– µH = 4, µL = −2, V[εt ] = 1 if st = H and V[εt ] = 2 if st = L

– pH H = .9, pL L = .5

– πH = .83, πL = .16

– Remark: This type of model is consistent with quarterly data on U.S. GDP where booms
(H ) typically last 10 quarters while recessions die quickly, typically in 2 quarters.

• Mixture with different variances

– µH = 4, µL = −2, V[εt ] = 1 if st = H and V[εt ] = 16 if st = L

– pH H = .5 = pL L

– πH = πL = .5

– Remark: This is another “pure” mixture model but the variances differ between the
states. One nice feature of mixture models (MSAR is a member of the family of mixture
models) is that the unconditional distribution of the data may be non-normal even
though the shocks are conditionally normally distributed.22

Figure 4.13 contains plots of 100 data points generated from each of these processes. The first
(MSAR(1)) produces a mixture with modes at -2 and 4 each with equal probability and the states
(top panel, bottom right) are i.i.d. . The second process produced a similar unconditional dis-
tribution but the state evolution is very different. Each state is very persistent and, conditional
on the state being high or low, it was likely to remain the same. The third process had one very
persistent state and one with much less persistence. This produced a large skew in the uncon-
ditional distribution since the state where µ = −2 was visited less frequently than the state with
µ = 4. The final process (MSAR(4)) has state dynamics similar to the first but produces a very
different unconditional distribution. The difference occurs since the variance depends on the
state of the Markov process.

22Mixtures of finitely many normals, each with different means and variances, can be used approximate many
non-normal distributions.
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Markov Switching Processes
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Figure 4.13: The four panels of this figure contain simulated data generated by the 4 Markov
switching processes described in the text. In each panel, the large subpanel contains the gener-
ated data, the top right subpanel contains a kernel density estimate of the unconditional density
and the bottom right subpanel contains the time series of the state values (high points corre-
spond to the high state).

4.12.9 Threshold Autoregression and Self-Exciting Threshold Autoregression

A second class of nonlinear models that have gained considerable traction in financial appli-
cations are Threshold Autoregressions (TAR), and in particular, the subfamily of Self-Exciting
Threshold Autoregressions (SETAR).23

Definition 4.46 (Threshold Autoregression). A threshold autoregression is a Pth Order autore-

23See Fan and Yao (2005) for a comprehensive treatment of non-linear time-series models.
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gressive process with state-dependent parameters where the state is determined by the lagged
level of an exogenous variable xt−k for some k ≥ 1.

yt = φ
(st )
0 + φ(st )

1 yt−1 + . . . + φ(st )
P yt−p + σ(st )εt (4.111)

Let −∞ = x0 < x1 < x2 < . . . < xN < xN+1 = ∞ be a partition of x in to N + 1 distinct bins.
st = j if xt−k ∈ (x j , x j+1).

Self-exciting threshold autoregressions, introduced in Tong (1978), are similarly defined. The
only change is in the definition of the threshold variable; rather than relying on an exogenous
variable to determine the state, the state in SETARs is determined by lagged values of the depen-
dent variable.

Definition 4.47 (Self Exciting Threshold Autoregression). A self exciting threshold autoregres-
sion is a Pth Order autoregressive process with state-dependent parameters where the state is
determined by the lagged level of the dependent variable, yt−k for some k ≥ 1.

yt = φ
(st )
0 + φ(st )

1 yt−1 + . . . + φ(st )
P yt−p + σ(st )εt (4.112)

Let−∞ = y0 < y1 < y2 < . . . < yN < yN+1 =∞ be a partition of y in to N +1 distinct bins. st = j
is yt−k ∈ (yj , yj+1).

The primary application of SETAR models in finance has been to exchange rates which often
exhibit a behavior that is difficult to model with standard ARMA models: many FX rates exhibit
random-walk-like behavior in a range yet remain within the band longer than would be consis-
tent with a simple random walk. A symmetric SETAR is a parsimonious model that can describe
this behavior and is parameterized

yt = yt−1 + εt if C − δ < yt < C + δ (4.113)

yt = C (1− φ) + φyt−1 + εt if yt < C − δ or yt > C + δ

where C is the “target” exchange rate. The first equation is a standard random walk, and when
yt is within the target band it behaves like a random walk. The second equation is only relevant
when yt is outside of its target band and ensures that yt is mean reverting towards C as long as
|φ| < 1.24 φ is usually assumed to lie between 0 and 1 which produces a smooth mean reversion
back towards the band.

To illustrate the behavior of this process and the highlight the differences between it and a
random walk, 200 data points were generated with different values of φ using standard normal
innovations. The mean was set to 100 and the used δ = 5, and so yt follows a random walk when
between 95 and 105. The lag value of the threshold variable (k ) was set to one. Four values forφ
were used: 0, 0.5, 0.9 and 1. The extreme cases represent a process which is immediately mean
reverting (φ = 0), in which case as soon as yt leaves the target band it is immediately returned
to C , and a process that is a pure random walk (φ = 1) since yt = yt−1 + εt for any value of
yt−1. The two interior cases represent smooth reversion back to the band; when φ = .5 the
reversion is quick and when φ = .9 the reversion is slow. When φ is close to 1 it is very difficult
to differentiate a band SETAR from a pure random walk, which is one of the explanations for
the poor performance of unit root tests where tests often fail to reject a unit root despite clear
economic theory predicting that a time series should be mean reverting.

24Recall the mean of an AR(1) yt = φ0+φ1 yt−1+εt isφ0/(1−φ1)whereφ0 = C (1−φ) andφ1 = φ in this SETAR.
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Self Exciting Threshold Autoregression Processes
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Figure 4.14: The four panels of this figure contain simulated data generated by a SETAR with
different values of φ. When φ = 0 the process is immediately returned to its unconditional
mean C = 100. Larger values of φ increase the amount of time spent outside of the “target
band” (95–105) and whenφ = 1, the process is a pure random walk.

4.A Computing Autocovariance and Autocorrelations

This appendix covers the derivation of the ACF for the MA(1), MA(Q), AR(1), AR(2), AR(3) and
ARMA(1,1). Throughout this appendix, {εt } is assumed to be a white noise process and the pro-
cesses parameters are always assumed to be consistent with covariance stationarity. All models
are assumed to be mean 0, an assumption made without loss of generality since autocovariances
are defined using demeaned time series,

γs = E[(yt − µ)(yt−s − µ)]

where µ = E[yt ]. Recall that the autocorrelation is simply the of the sth autocovariance to the
variance,
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ρs =
γs

γ0
.

This appendix presents two methods for deriving the autocorrelations of ARMA processes:
backward substitution and the Yule-Walker equations, a set of k equations with k unknowns
where γ0, γ1, . . . , γk−1 are the solution.

4.A.1 Yule-Walker

The Yule-Walker equations are a linear system of max(P, Q ) + 1 equations (in an ARMA(P,Q))
where the solution to the system are the long-run variance and the first k − 1 autocovariances.
The Yule-Walker equations are formed by equating the definition of an autocovariance with an
expansion produced by substituting for the contemporaneous value of yt . For example, suppose
yt follows an AR(2) process,

yt = φ1 yt−1 + φ2 yt−2 + εt

The variance must satisfy

E[yt yt ] = E[yt (φ1 yt−1 + φ2 yt−2 + εt )] (4.114)

E[y 2
t ] = E[φ1 yt yt−1 + φ2 yt yt−2 + yt εt ]

V[yt ] = φ1E[yt yt−1] + φ2E[yt yt−2] + E[yt εt ].

In the final equation above, terms of the form E[yt yt−s ] are replaced by their population val-
ues, γs and E[yt εt ] is replaced with its population value,σ2.

V[yt yt ] = φ1E[yt yt−1] + φ2E[yt yt−2] + E[yt εt ] (4.115)

becomes

γ0 = φ1γ1 + φ2γ2 + σ2 (4.116)

and so the long run variance is a function of the first two autocovariances, the model parameters,
and the innovation variance. This can be repeated for the first autocovariance,

E[yt yt−1] = φ1E[yt−1 yt−1] + φ2E[yt−1 yt−2] + E[yt−1εt ]

becomes

γ1 = φ1γ0 + φ2γ1, (4.117)

and for the second autocovariance,
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E[yt yt−2] = φ1E[yt−2 yt−1] + φ2E[yt−2 yt−2] + E[yt−2εt ] becomes

becomes

γ2 = φ1γ1 + φ2γ0. (4.118)

Together eqs. (4.116), (4.117) and (4.118) form a system of three equations with three unknowns.
The Yule-Walker method relies heavily on the covariance stationarity and so E[yt yt− j ] = E [yt−h yt−h− j ]
for any h . This property of covariance stationary processes was repeatedly used in forming
the producing the Yule-Walker equations since E[yt yt ] = E[yt−1 yt−1] = E[yt−2 yt−2] = γ0 and
E[yt yt−1] = E[yt−1 yt−2] = γ1.

The Yule-Walker method will be demonstrated for a number of models, starting from a simple
MA(1) and working up to an ARMA(1,1).

4.A.2 MA(1)

The MA(1) is the simplest model to work with.

yt = θ1εt−1 + εt

The Yule-Walker equation are

E[yt yt ] = E[θ1εt−1 yt ] + E[εt yt ] (4.119)

E[yt yt−1] = E[θ1εt−1 yt−1] + E[εt yt−1]
E[yt yt−2] = E[θ1εt−1 yt−2] + E[εt yt−2]

γ0 = θ 2
1σ

2 + σ2 (4.120)

γ1 = θ1σ
2

γ2 = 0

Additionally, both γs and ρs , s ≥ 2 are 0 by the white noise property of the residuals, and so
the autocorrelations are

ρ1 =
θ1σ

2

θ 2
1σ

2 + σ2

=
θ1

1 + θ 2
1

,

ρ2 = 0.
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4.A.2.1 MA(Q)

The Yule-Walker equations can be constructed and solved for any MA(Q ), and the structure of
the autocovariance is simple to detect by constructing a subset of the full system.

E[yt yt ] = E[θ1εt−1 yt ] + E[θ2εt−2 yt ] + E[θ3εt−3 yt ] + . . . + E[θQεt−Q yt ] (4.121)

γ0 = θ 2
1σ

2 + θ 2
2σ

2 + θ 2
3σ

2 + . . . + θ 2
Qσ

2 + σ2

= σ2(1 + θ 2
1 + θ

2
2 + θ

2
3 + . . . + θ 2

Q )

E[yt yt−1] = E[θ1εt−1 yt−1] + E[θ2εt−2 yt−1] + E[θ3εt−3 yt−1] + . . . + E[θQεt−Q yt−1] (4.122)

γ1 = θ1σ
2 + θ1θ2σ

2 + θ2θ3σ
2 + . . . + θQ−1θQσ

2

= σ2(θ1 + θ1θ2 + θ2θ3 + . . . + θQ−1θQ )
E[yt yt−2] = E[θ1εt−1 yt−2] + E[θ2εt−2 yt−2] + E[θ3εt−3 yt−2] + . . . + E[θQεt−Q yt−2] (4.123)

γ2 = θ2σ
2 + θ1θ3σ

2 + θ2θ4σ
2 + . . . + θQ−2θQσ

2

= σ2(θ2 + θ1θ3 + θ2θ4 + . . . + θQ−2θQ )

The pattern that emerges shows,

γs = θsσ
2 +

Q−s∑
i=1

σ2θiθi+s = σ2(θs +
Q−s∑
i=1

θiθi+s ).

and so , γs is a sum of Q − s + 1 terms. The autocorrelations are

ρ1 =
θ1 +

∑Q−1
i=1 θiθi+1

1 + θs +
∑Q

i=1 θ
2
i

(4.124)

ρ2 =
θ2 +

∑Q−2
i=1 θiθi+2

1 + θs +
∑Q

i=1 θ
2
i

... =
...

ρQ =
θQ

1 + θs +
∑Q

i=1 θ
2
i

ρQ+s = 0, s ≥ 0

4.A.2.2 AR(1)

The Yule-Walker method requires be max(P, Q ) + 1 equations to compute the autocovariance for
an ARMA(P ,Q ) process and in an AR(1), two are required (the third is included to establish this
point).

yt = φ1 yt−1 + εt

E[yt yt ] = E[φ1 yt−1 yt ] + E[εt yt ] (4.125)

E[yt yt−1] = E[φ1 yt−1 yt−1] + E[εt yt−1]
E[yt yt−2] = E[φ1 yt−1 yt−2] + E[εt yt−2]
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These equations can be rewritten in terms of the autocovariances, model parameters and σ2

by taking expectation and noting that E[εt yt ] = σ2 since yt = εt + φ1εt−1 + φ2
1εt−2 + . . . and

E[εt yt− j ] = 0, j > 0 since {εt } is a white noise process.

γ0 = φ1γ1 + σ2 (4.126)

γ1 = φ1γ0

γ2 = φ1γ1

The third is redundant since γ2 is fully determined by γ1 andφ1, and higher autocovariances are
similarly redundant since γs = φ1γs−1 for any s . The first two equations can be solved for γ0 and
γ1,

γ0 = φ1γ1 + σ2

γ1 = φ1γ0

⇒ γ0 = φ2
1γ0 + σ2

⇒ γ0 − φ2
1γ0 = σ2

⇒ γ0(1− φ2
1 ) = σ2

⇒ γ0 =
σ2

1− φ2
1

and

γ1 = φ1γ0

γ0 =
σ2

1− φ2
1

⇒ γ1 = φ1
σ2

1− φ2
1

.

The remaining autocovariances can be computed using the recursion γs = φ1γs−1, and so

γs = φ2
1

σ2

1− φ2
1

.

Finally, the autocorrelations can be computed as ratios of autocovariances,

ρ1 =
γ1

γ0
= φ1

σs

1− φ2
1

/ σ2

1− φ2
1

ρ1 = φ1

ρs =
γs

γ0
= φs

1

σ2

1− φ2
1

/ σ2

1− φ2
1

ρs = φs
1 .
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4.A.2.3 AR(2)

The autocorrelations in an AR(2)

yt = φ1 yt−1 + φ2 yt−2 + εt

can be similarly computed using the max(P, Q ) + 1 equation Yule-Walker system,

E[yt yt ] = φ1E[yt−1 yt ] + φ2E[yt−2 yt ] + Eεt yt ] (4.127)

E[yt yt−1] = φ1E[yt−1 yt−1] + φ2E[yt−2 yt−1] + E[εt yt−1]
E[yt yt−2] = φ1E[yt−1 yt−2] + φ2E[yt−2 yt−2] + E[εt yt−2]

and then replacing expectations with their population counterparts, γ0,γ1, γ2 andσ2.

γ0 = φ1γ1 + φ2γ2 + σ2 (4.128)

γ1 = φ1γ0 + φ2γ1

γ2 = φ1γ1 + φ2γ0

Further, it must be the case that γs = φ1γs−1+φ2γs−2 for s ≥ 2. To solve this system of equations,
divide the autocovariance equations by γ0, the long run variance. Omitting the first equation, the
system reduces to two equations in two unknowns,

ρ1 = φ1ρ0 + φ2ρ1

ρ2 = φ1ρ1 + φ2ρ0

since ρ0 = γ0/γ0 = 1.

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2

Solving this system,

ρ1 = φ1 + φ2ρ1

ρ1 − φ2ρ1 = φ1

ρ1(1− φ2) = φ1

ρ1 =
φ1

1− φ2

and



288 Analysis of a Single Time Series

ρ2 = φ1ρ1 + φ2

= φ1
φ1

1− φ2
+ φ2

=
φ1φ1 + (1− φ2)φ2

1− φ2

=
φ2

1 + φ2 − φ2
2

1− φ2

Since ρs = φ1ρs−1 + φ2ρs−2, these first two autocorrelations are sufficient to compute the
other autocorrelations,

ρ3 = φ1ρ2 + φ2ρ1

= φ1
φ2

1 + φ2 − φ2
2

1− φ2
+ φ2

φ1

1− φ2

and the long run variance of yt ,

γ0 = φ1γ1 + φ2γ2 + σ2

γ0 − φ1γ1 − φ2γ2 = σ2

γ0(1− φ1ρ1 − φ2ρ2) = σ2

γ0 =
σ2

1− φ1ρ1 − φ2ρ2

The final solution is computed by substituting for ρ1 and ρ2,

γ0 =
σ2

1− φ1
φ1

1−φ2
− φ2

φ2
1+φ2−φ2

2
1−φ2

=
1− φ2

1 + φ2

(
σ2

(φ1 + φ2 − 1)(φ2 − φ1 − 1)

)
4.A.2.4 AR(3)

Begin by constructing the Yule-Walker equations,

E[yt yt ] = φ1E[yt−1 yt ] + φ2E[yt−2 yt ] + φ3E[yt−3 yt ] + E[εt yt ]
E[yt yt−1] = φ1E[yt−1 yt−1] + φ2E[yt−2 yt−1] + φ3E[yt−3 yt−1] + E[εt yt−1]
E[yt yt−2] = φ1E[yt−1 yt−2] + φ2E[yt−2 yt−2] + φ3E[yt−3 yt−2] + E[εt yt−2]
E[yt yt−3] = φ1E[yt−1 yt−3] + φ2E[yt−2 yt−3] + φ3E[yt−3 yt−3] + E[εt yt−4].

Replacing the expectations with their population values, γ0, γ1, . . . andσ2, the Yule-Walker equa-
tions can be rewritten
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γ0 = φ1γ1 + φ2γ2 + φ3γ3 + σ2 (4.129)

γ1 = φ1γ0 + φ2γ1 + φ3γ2

γ2 = φ1γ1 + φ2γ0 + φ3γ1

γ3 = φ1γ2 + φ2γ1 + φ3γ0

and the recursive relationship γs = φ1γs−1 + φ2γs−2 + φ3γs−3 can be observed for s ≥ 3.
Omitting the first condition and dividing by γ0,

ρ1 = φ1ρ0 + φ2ρ1 + φ3ρ2

ρ2 = φ1ρ1 + φ2ρ0 + φ3ρ1

ρ3 = φ1ρ2 + φ2ρ1 + φ3ρ0.

leaving three equations in three unknowns since ρ0 = γ0/γ0 = 1.

ρ1 = φ1 + φ2ρ1 + φ3ρ2

ρ2 = φ1ρ1 + φ2 + φ3ρ1

ρ3 = φ1ρ2 + φ2ρ1 + φ3

Following some tedious algebra, the solution to this system is

ρ1 =
φ1 + φ2φ3

1− φ2 − φ1φ3 − φ2
3

ρ2 =
φ2 + φ2

1 + φ3φ1 − φ2
2

1− φ2 − φ1φ3 − φ2
3

ρ3 =
φ3 + φ3

1 + φ
2
1φ3 + φ1φ

2
2 + 2φ1φ2 + φ2

2φ3 − φ2φ3 − φ1φ
2
3 − φ3

3

1− φ2 − φ1φ3 − φ2
3

.

Finally, the unconditional variance can be computed using the first three autocorrelations,

γ0 = φ1γ1 + φ2γ2 + φ3γ3σ
2

γ0 − φ1γ1 − φ2γ2 − φ3γ3 = σ2

γ0(1− φ1ρ1 + φ2ρ2 + φ3ρ3) = σ2

γ0 =
σ2

1− φ1ρ1 − φ2ρ2 − φ3ρ3

γ0 =
σ2
(

1− φ2 − φ1φ3 − φ2
3

)
(1− φ2 − φ3 − φ1)

(
1 + φ2 + φ3φ1 − φ2

3

)
(1 + φ3 + φ1 − φ2)
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4.A.2.5 ARMA(1,1)

Deriving the autocovariances and autocorrelations of an ARMA process is slightly more difficult
than for a pure AR or MA process. An ARMA(1,1) is specified as

yt = φ1 yt−1 + θ1εt−1 + εt

and since P = Q = 1, the Yule-Walker system requires two equations, noting that the third or
higher autocovariance is a trivial function of the first two autocovariances.

E[yt yt ] = E[φ1 yt−1 yt ] + E[θ1εt−1 yt ] + E[εt yt ] (4.130)

E[yt yt−1] = E[φ1 yt−1 yt−1] + E[θ1εt−1 yt−1] + E[εt yt−1]

The presence of the E[θ1εt−1 yt ] term in the first equation complicates solving this system
since εt−1 appears in yt directly though θ1εt−1 and indirectly through φ1 yt−1. The non-zero re-
lationships can be determined by recursively substituting yt until it consists of only εt , εt−1 and
yt−2 (since yt−2 is uncorrelated with εt−1 by the WN assumption).

yt = φ1 yt−1 + θ1εt−1 + εt (4.131)

= φ1(φ1 yt−2 + θ1εt−2 + εt−1) + θ1εt−1 + εt

= φ2
1 yt−2 + φ1θ1εt−2 + φ1εt−1 + θ1εt−1 + εt

= φ2
1 yt−2 + φ1θ1εt−2 + (φ1 + θ1)εt−1 + εt

and so E[θ1εt−1 yt ] = θ1(φ1 + θ1)σ2 and the Yule-Walker equations can be expressed using the
population moments and model parameters.

γ0 = φ1γ1 + θ1(φ1 + θ1)σ2 + σ2

γ1 = φ1γ0 + θ1σ
2

These two equations in two unknowns which can be solved,

γ0 = φ1γ1 + θ1(φ1 + θ1)σ2 + σ2

= φ1(φ1γ0 + θ1σ
2) + θ1(φ1 + θ1)σ2 + σ2

= φ2
1γ0 + φ1θ1σ

2 + θ1(φ1 + θ1)σ2 + σ2

γ0 − φ2
1γ0 = σ2(φ1θ1 + φ1θ1 + θ 2

1 + 1)

γ0 =
σ2(1 + θ 2

1 + 2φ1θ1)
1− φ2

1
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γ1 = φ1γ0 + θ1σ
2

= φ1

(
σ2(1 + θ 2

1 + 2φ1θ1)
1− φ2

1

)
+ θ1σ

2

= φ1

(
σ2(1 + θ 2

1 + 2φ1θ1)
1− φ2

1

)
+
(1− φ2

1 )θ1σ
2

1− φ2
1

=
σ2(φ1 + φ1θ

2
1 + 2φ2

1θ1)
1− φ2

1

+
(θ1 − θ1φ

2
1 )σ

2

1− φ2
1

=
σ2(φ1 + φ1θ

2
1 + 2φ2

1θ1 + θ1 − φ2
1θ1)

1− φ2
1

=
σ2(φ2

1θ1 + φ1θ
2
1 + φ1 + θ1)

1− φ2
1

=
σ2(φ1 + θ1)(φ1θ1 + 1)

1− φ2
1

and so the 1stautocorrelation is

ρ1 =
σ2(φ1+θ1)(φ1θ1+1)

1−φ2
1

σ2(1+θ 2
1 +2φ1θ1)

1−φ2
1

=
(φ1 + θ1)(φ1θ1 + 1)
(1 + θ 2

1 + 2φ1θ1)
.

Returning to the next Yule-Walker equation,

E[yt yt−2] = E[φ1 yt−1 yt−2] + E[θ1εt−1 yt−2] + E[εt yt−2]

and so γ2 = φ1γ1, and, dividing both sized by γ0, ρ2 = φ1ρ1. Higher order autocovariances and
autocorrelation follow γs = φ1γs−1 and ρs = φ1ρs−1 respectively, and so ρs = φs−1

1 ρ1, s ≥ 2.

4.A.3 Backward Substitution

Backward substitution is a direct but tedious method to derive the ACF and long run variance.

4.A.3.1 AR(1)

The AR(1) process,

yt = φ1 yt−1 + εt

is stationary if |φ1| < 1 and {εt } is white noise. To compute the autocovariances and autocor-
relations using backward substitution, yt = φ1 yt−1 + εt must be transformed into a pure MA
process by recursive substitution,
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yt = φ1 yt−1 + εt (4.132)

= φ1(φ1 yt−2 + εt−1) + εt

= φ2
1 yt−2 + φ1εt−1 + εt

= φ2
1 (φ1 yt−3 + εt−2) + φ1εt−1 + εt

= φ3
1 yt−3 + φ2

1εt−2 + φ1εt−1 + εt

= εt + φ1εt−1 + φ2
1εt−2 + φ3

1εt−3 + . . .

yt =
∞∑

i=0

φi
1εt−i .

The variance is the expectation of the square,

γ0 = V[yt ] = E[y 2
t ] (4.133)

= E[(
∞∑

i=0

φi
1εt−i )2]

= E[(εt + φ1εt−1 + φ2
1εt−2 + φ3

1εt−3 + . . .)2]

= E[
∞∑

i=0

φ2i
1 ε

2
t−i +

∞∑
i=0

∞∑
j=0,i 6= j

φi
1φ

j
1εt−iεt− j ]

= E[
∞∑

i=0

φ2i
1 ε

2
t−i ] + E[

∞∑
i=0

∞∑
j=0,i 6= j

φi
1φ

j
1εt−iεt− j ]

=
∞∑

i=0

φ2i
1 E[ε2

t−i ] +
∞∑

i=0

∞∑
j=0,i 6= j

φi
1φ

j
1 E[εt−iεt− j ]

=
∞∑

i=0

φ2i
1 σ

2 +
∞∑

i=0

∞∑
j=0,i 6= j

φi
1φ

j
1 0

=
∞∑

i=0

φ2i
1 σ

2

=
σ2

1− φ2i
1

The difficult step in the derivation is splitting up the εt−i into those that are matched to their
own lag (ε2

t−i ) to those which are not (εt−iεt− j , i 6= j ). The remainder of the derivation follows
from the assumption that {εt } is a white noise process, and so E[ε2

t−i ] = σ
2 and E[εt−iεt− j ]=0,

i 6= j . Finally, the identity that limn→∞
∑n

i=0φ
2i
1 = limn→∞

∑n
i=0

(
φ2

1

)i = 1
1−φ2

1
for |φ1| < 1 was

used to simplify the expression.

The 1st autocovariance can be computed using the same steps on the MA(∞) representation,
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γ1 = E[yt yt−1] (4.134)

= E[
∞∑

i=0

φi
1εt−i

∞∑
i=1

φi−1
1 εt−i ]

= E[(εt + φ1εt−1 + φ2
1εt−2 + φ3

1εt−3 + . . .)(εt−1 + φ1εt−2 + φ2
1εt−3 + φ3

1εt−4 + . . .)]

= E[
∞∑

i=0

φ2i+1
1 ε2

t−1−i +
∞∑

i=0

∞∑
j=1,i 6= j

φi
1φ

j−1
1 εt−iεt− j ]

= E[φ1

∞∑
i=0

φ2i
1 ε

2
t−1−i ] + E[

∞∑
i=0

∞∑
j=1,i 6= j

φi
1φ

j−1
1 εt−iεt− j ]

= φ1

∞∑
i=0

φ2i
1 E[ε2

t−1−i ] +
∞∑

i=0

∞∑
j=1,i 6= j

φi
1φ

j−1
1 E[εt−iεt− j ]

= φ1

∞∑
i=0

φ2i
1 σ

2 +
∞∑

i=0

∞∑
j=1,i 6= j

φi
1φ

j−1
1 0

= φ1

(
∞∑

i=0

φ2i
1 σ

2

)

= φ1
σ2

1− φ2
1

= φ1γ0

and the sth autocovariance can be similarly determined.

γs = E[yt yt−s ] (4.135)

= E[
∞∑

i=0

φi
1εt−i

∞∑
i=s

φi−s
1 εt−i ]

= E[
∞∑

i=0

φ2i+s
1 ε2

t−s−i +
∞∑

i=0

∞∑
j=s ,i 6= j

φi
1φ

j−s
1 εt−iεt− j ]

= E[φs
1

∞∑
i=0

φ2i
1 ε

2
t−s−i ] + E[

∞∑
i=0

∞∑
j=s ,i 6= j

φi
1φ

j−s
1 εt−iεt− j ]

= φs
1

∞∑
i=0

φ2i
1 σ

2 +
∞∑

i=0

∞∑
j=s ,i 6= j

φi
1φ

j−s
1 0

= φs
1

(
∞∑

i=0

φ2i
1 σ

2

)
= φs

1γ0

Finally, the autocorrelations can be computed from rations of autocovariances, ρ1 = γ1/γ0 = φ1

and ρs = γs/γ0 = φs
1 .
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4.A.3.2 MA(1)

The MA(1) model is the simplest non-degenerate time-series model considered in this course,

yt = θ1εt−1 + εt

and the derivation of its autocorrelation function is trivial since there no backward substitution
is required. The variance is

γ0 = V[yt ] = E[y 2
t ] (4.136)

= E[(θ1εt−1 + εt )2]
= E[θ 2

1 ε
2
t−1 + 2θ1εt εt−1 + ε2

t ]
= E[θ 2

1 ε
2
t−1] + E[2θ1εt εt−1] + E[ε2

t ]
= θ 2

1σ
2 + 0 + σ2

= σ2(1 + θ 2
1 )

and the 1st autocovariance is

γ1 = E[yt yt−1] (4.137)

= E[(θ1εt−1 + εt )(θ1εt−2 + εt−1)]
= E[θ 2

1 εt−1εt−2 + θ1ε
2
t−1 + θ1εt εt−2 + εt εt−1]

= E[θ 2
1 εt−1εt−2] + E[θ1ε

2
t−1] + E[θ1εt εt−2] + E[εt εt−1]

= 0 + θ1σ
2 + 0 + 0

= θ1σ
2

The 2nd(and higher) autocovariance is

γ2 = E[yt yt−2] (4.138)

= E[(θ1εt−1 + εt )(θ1εt−3 + εt−2)]
= E[θ 2

1 εt−1εt−3 + θ1εt−1εt−2 + θ1εt εt−3 + εt εt−2]
= E[θ 2

1 εt−1εt−3] + E[θ1εt−1εt−2] + E[θ1εt εt−3] + E[εt εt−2]
= 0 + 0 + 0 + 0

= 0

and the autocorrelations are ρ1 = θ1/(1 + θ 2
1 ), ρs = 0, s ≥ 2.

4.A.3.3 ARMA(1,1)

An ARMA(1,1) process,

yt = φ1 yt−1 + θ1εt−1 + εt
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is stationary if |φ1| < 1 and {εt } is white noise. The derivation of the variance and autocovari-
ances is more tedious than for the AR(1) process.It should be noted that derivation is longer and
more complex than solving the Yule-Walker equations.

Begin by computing the MA(∞) representation,

yt = φ1 yt−1 + θ1εt−1 + εt (4.139)

yt = φ1(φ1 yt−2 + θ1εt−2 + εt−1) + θ1εt−1 + εt

yt = φ2
1 yt−2 + φ1θ1εt−2 + φ1εt−1 + θ1εt−1 + εt

yt = φ2
1 (φ1 yt−3 + θ1εt−3 + εt−2) + φ1θ1εt−2 + (φ1 + θ1)εt−1 + εt

yt = φ3
1 yt−3 + φ2

1θ1εt−3 + φ2
1εt−2 + φ1θ1εt−2 + (φ1 + θ1)εt−1 + εt

yt = φ3
1 (φ1 yt−4 + θ1εt−4 + εt−3) + φ2

1θ1εt−3 + φ1(φ1 + θ1)εt−2 + (φ1 + θ1)εt−1 + εt

yt = φ4
1 yt−4 + φ3

1θ1εt−4 + φ3
1εt−3 + φ2

1θ1εt−3 + φ1(φ1 + θ1)εt−2 + (φ1 + θ1)εt−1 + εt

yt = φ4
1 yt−4 + φ3

1θ1εt−4 + φ2
1 (φ1 + θ1)εt−3 + φ1(φ1 + θ1)εt−2 + (φ1 + θ1)εt−1 + εt

yt = εt + (φ1 + θ1)εt−1 + φ1(φ1 + θ1)εt−2 + φ2
1 (φ1 + θ1)εt−3 + . . .

yt = εt +
∞∑

i=0

φi
1(φ1 + θ1)εt−1−i

The primary issue is that the backward substitution form, unlike in the AR(1) case, is not com-
pletely symmetric. Specifically, εt has a different weight than the other shocks and does not
follow the same pattern.

γ0 = V [yt ] = E
[

y 2
t

]
(4.140)

= E

(εt +
∞∑

i=0

φi
1 (φ1 + θ1) εt−1−i

)2


= E
[(
εt + (φ1 + θ1) εt−1 + φ1 (φ1 + θ1) εt−2 + φ2

1 (φ1 + θ1) εt−3 + . . .
)2
]

= E

ε2
t + 2εt

∞∑
i=0

φi
1 (φ1 + θ1) εt−1−i +

(
∞∑

i=0

φi
1 (φ1 + θ1) εt−1−i

)2


= E
[
ε2

t

]
+ E

[
2εt

∞∑
i=0

φi
1 (φ1 + θ1) εt−1−i

]
+ E

( ∞∑
i=0

φi
1 (φ1 + θ1) εt−1−i

)2


= σ2 + 0 + E

( ∞∑
i=0

φi
1 (φ1 + θ1) εt−1−i

)2


= σ2 + E

 ∞∑
i=0

φ2i
1 (φ1 + θ1)2 ε2

t−1−i +
∞∑

i=0

∞∑
j=0, j 6=i

φi
1φ

j
1 (φ1 + θ1)2 εt−1−iεt−1− j


= σ2 +

∞∑
i=0

φ2i
1 (φ1 + θ1)2 E

[
ε2

t−1−i

]
+
∞∑

i=0

∞∑
j=0, j 6=i

φi
1φ

j
1 (φ1 + θ1)2 E

[
εt−1−iεt−1− j

]
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= σ2 +
∞∑

i=0

φ2i
1 (φ1 + θ1)2σ2 +

∞∑
i=0

∞∑
j=0, j 6=i

φi
1φ

j
1 (φ1 + θ1)2 0

= σ2 +
∞∑

i=0

φ2i
1 (φ1 + θ1)2σ2

= σ2 +
(φ1 + θ1)2σ2

1− φ2
1

= σ2 1− φ2
1 + (φ1 + θ1)2

1− φ2
1

= σ2 1 + θ 2
1 + 2φ1θ1

1− φ2
1

The difficult step in this derivations is in aligning the εt−i since {εt } is a white noise process.
The autocovariance derivation is fairly involved (and presented in full detail).

γ1 = E [yt yt−1] (4.141)

= E

[(
εt +

∞∑
i=0

φi
1 (φ1 + θ1) εt−1−i

)(
εt−1 +

∞∑
i=0

φi
1 (φ1 + θ1) εt−2−i

)]
= E

[(
εt + (φ1 + θ1) εt−1 + φ1 (φ1 + θ1) εt−2 + φ2

1 (φ1 + θ1) εt−3 + . . .
)
×(

εt−1 + (φ1 + θ1) εt−2 + φ1 (φ1 + θ1) εt−3 + φ2
1 (φ1 + θ1) εt−4 + . . .

)]
= E

[
εt εt−1 +

∞∑
i=0

φi
1 (φ1 + θ1) εt εt−2−i +

∞∑
i=0

φi
1 (φ1 + θ1) εt−1εt−1−i

+

(
∞∑

i=0

φi
1 (φ1 + θ1) εt−1−i

)(
∞∑

i=0

φi
1 (φ1 + θ1) εt−2−i

)]

= E [εt εt−1] + E

[
∞∑

i=0

φi
1 (φ1 + θ1) εt εt−2−i

]
+ E

[
∞∑

i=0

φi
1 (φ1 + θ1) εt−1εt−1−i

]

+ E

[(
∞∑

i=0

φi
1 (φ1 + θ1) εt−1−i

)(
∞∑

i=0

φi
1 (φ1 + θ1) εt−2−i

)]

= 0 + 0 + (φ1 + θ1)σ2 + E

[(
∞∑

i=0

φi
1 (φ1 + θ1) εt−1−i

)(
∞∑

i=0

φi
1 (φ1 + θ1) εt−2−i

)]

= (φ1 + θ1)σ2 + E

 ∞∑
i=0

φ2i+1
1 (φ1 + θ1)2 ε2

t−2−i +
∞∑

i=0

∞∑
j=0,i 6= j+1

φi
1φ

j
1 (φ1 + θ1)2 εt−1−iεt−2−i


= (φ1 + θ1)σ2 + E

[
∞∑

i=0

φ2i+1
1 (φ1 + θ1)2 ε2

t−2−i

]
+ E

 ∞∑
i=0

∞∑
j=0,i 6= j+1

φi
1φ

j
1 (φ1 + θ1)2 εt−1−iεt−2−i


= (φ1 + θ1)σ2 + E

[
φ1

∞∑
i=0

φ2i
1 (φ1 + θ1)2 ε2

t−2−i

]
+ 0
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= (φ1 + θ1)σ2 + φ1

∞∑
i=0

φ2i
1 (φ1 + θ1)2 E

[
ε2

t−2−i

]
= (φ1 + θ1)σ2 + φ1

∞∑
i=0

φ2i
1 (φ1 + θ1)2σ2

= (φ1 + θ1)σ2 + φ1
(φ1 + θ1)2σ2

1− φ2
1

=
σ2
[(

1− φ2
1

)
(φ1 + θ1) + φ1 (φ1 + θ1)2

]
1− φ2

1

=
σ2
(
φ1 + θ1 − φ3

1 − φ2
1θ1 + φ3

1 + 2φ2
1θ1 − φ1θ

2
1

)
1− φ2

1

=
σ2
[
φ1 + θ1 + φ2

1θ1 − φ1θ
2
1

]
1− φ2

1

=
σ2 (φ1 + θ1) (φ1θ1 + 1)

1− φ2
1

The most difficult step in this derivation is in showing that E[
∑∞

i=0φ
i
1(φ1 + θ1)εt−1εt−1−i ] =

σ2(φ1 + θ1) since there is one εt−1−i which is aligned to εt−1 (i.e. when i = 0), and so the auto-
correlations may be derived,

ρ1 =
σ2(φ1+θ1)(φ1θ1+1)

1−φ2
1

σ2(1+θ 2
1 +2φ1θ1)

1−φ2
1

(4.142)

=
(φ1 + θ1)(φ1θ1 + 1)
(1 + θ 2

1 + 2φ1θ1)

and the remaining autocorrelations can be computed using the recursion, ρs = φ1ρs−1, s ≥ 2.

Shorter Problems

Problem 4.1. What is the optimal 3-step forecast from the ARMA(1,2), yt = φ0+φ1 yt−1+θ1εt−1+
θ2εt−2 + εt , where εt is a mean 0 white noise process?

Problem 4.2. What are the expected values forα, β and γwhen a forecasting model is well spec-
ified in the Mincer-Zarnowitz regression,

yt+h = α + β ŷt+h |t + γxt + ηt+h .

Provide an explanation for why these values should be expected.

Problem 4.3. What are the consequences of using White or Newey-West to estimate the covari-
ance in a linear regression when the errors are serially uncorrelated and homoskedastic?

Problem 4.4. What are the 1-step and 2-step optimal forecasts for the conditional mean when
yt = φ0 + φ1 yt−1 + εt where εt

i.i.d.∼ N (0, 1)?
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Figure 4.15: Plots for question 2(b).

Problem 4.5. Is the sum of two white noise processes, εt = ηt + νt necessarily a white noise
process?

Problem 4.6. What are the 1-step and 2-step optimal mean square forecast errors when yt =
φ0 + θ1εt−1 + θ2εt−2 + εt where εt

i.i.d.∼ N (0, 1)?

Problem 4.7. Outline the steps needed to perform a Diebold-Mariano test that two models for
the conditional mean are equivalent (in the MSE sense).

Problem 4.8. Justify a reasonable model for each of these time series in Figure 4.15 using infor-
mation in the autocorrelation and partial autocorrelation plots. In each set of plots, the left most
panel shows that data (T = 100). The middle panel shows the sample autocorrelation with 95%
confidence bands. The right panel shows the sample partial autocorrelation for the data with
95% confidence bands.

Longer Exercises

Exercise 4.1. Answer the following questions:
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1. Under what conditions on the parameters and errors are the following processes covari-
ance stationary?

(a) yt = φ0 + εt

(b) yt = φ0 + φ1 yt−1 + εt

(c) yt = φ0 + θ1εt−1 + εt

(d) yt = φ0 + φ1 yt−1 + φ2 yt−2 + εt

(e) yt = φ0 + φ2 yt−2 + εt

(f) yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

2. Is the sum of two white noise processes, νt = εt + ηt , necessarily a white noise process?
If so, verify that the properties of a white noise are satisfied. If not, show why and describe
any further assumptions required for the sum to be a white noise process.

Exercise 4.2. Consider an AR(1)
yt = φ0 + φ1 yt−1 + εt

1. What is a minimal set of assumptions sufficient to ensure {yt } is covariance stationary if
{εt } is an i.i.d. sequence?

2. What are the values of the following quantities?

(a) E[yt+1]

(b) Et [yt+1]

(c) V[yt+1]

(d) Vt [yt+1]

(e) ρ−1

(f) ρ2

Exercise 4.3. Consider an MA(1)

yt = φ0 + θ1εt−1 + εt

1. What is a minimal set of assumptions sufficient to ensure {yt } is covariance stationary if
{εt } is an i.i.d. sequence?

2. What are the values of the following quantities?

(a) E[yt+1]

(b) Et [yt+1]

(c) V[yt+1]

(d) Vt [yt+1]

(e) ρ−1
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(f) ρ2

3. Suppose you were trying to differentiate between an AR(1) and an MA(1) but could not
estimate any regressions. What would you do?

Exercise 4.4. Consider an MA(2)

yt = µ + θ1εt−1 + θ2εt−2 + εt

1. What is a minimal set of assumptions sufficient to ensure {yt } is covariance stationary if
{εt } is an i.i.d. sequence?

2. What are the values of the following quantities?

(a) E[yt+1]

(b) Et [yt+1]

(c) V[yt+1]

(d) Vt [yt+1]

(e) ρ−1

(f) ρ2

(g) ρ3

Exercise 4.5. Answer the following questions:

1. For each of the following processes, find Et [yt+1]. You can assume {εt } is a mean zero
i.i.d. sequence.

(a) yt = φ0 + φ1 yt−1 + εt

(b) yt = φ0 + θ1εt−1 + εt

(c) yt = φ0 + φ1 yt−1 + φ2 yt−2 + εt

(d) yt = φ0 + φ2 yt−2 + εt

(e) yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

2. For (a), (c) and (e), derive the h-step ahead forecast, Et [yt+h ]. What is the long run behavior
of the forecast in each case?

3. The forecast error variance is defined as E[(yt+h − Et [yt+h ])2]. Find an explicit expression
for the forecast error variance for (a) and (c).

Exercise 4.6. Answer the following questions:

1. What are the characteristic equations for the above systems?

(a) yt = 1 + .6yt−1 + xt
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(b) yt = 1 + .8yt−2 + xt

(c) yt = 1 + .6yt−1 + .3yt−2 + xt

(d) yt = 1 + 1.2yt−1 + .2yt−2 + xt

(e) yt = 1 + 1.4yt−1 + .24yt−2 + xt

(f) yt = 1− .8yt−1 + .2yt−2 + xt

2. Compute the roots for the characteristic equation? Which are convergent? Which are ex-
plosive? Are any stable or metastable?

Exercise 4.7. Suppose that yt follows a random walk then∆yt = yt − yt−1 is stationary.

1. Is yt − yt− j for and j ≥ 2 stationary?

2. If it is and{εt } is an i.i.d. sequence of standard normals, what is the distribution of yt−yt− j ?

3. What is the joint distribution of yt − yt− j and yt−h − yt− j−h (Note: The derivation for an
arbitrary h is challenging)?
Note: If it helps in this problem, consider the case where j = 2 and h = 1.

Exercise 4.8. Outline the steps needed to perform a unit root test on as time-series of FX rates.
Be sure to detail the any important considerations that may affect the test.

Exercise 4.9. Answer the following questions:

1. How are the autocorrelations and partial autocorrelations useful in building a model?

2. Suppose you observe the three sets of ACF/PACF in figure 4.16. What ARMA specification
would you expect in each case. Note: Dashed line indicates the 95% confidence interval
for a test that the autocorrelation or partial autocorrelation is 0.

3. Describe the three methods of model selection discussed in class: general-to-specific, specific-
to-general and the use of information criteria (Schwarz/Bayesian Information Criteria and/or
Akaike Information Criteria). When might each be preferred to the others?

4. Describe the Wald, Lagrange Multiplier (Score) and Likelihood ratio tests. What aspect of
a model does each test? What are the strengths and weaknesses of each?

Exercise 4.10. Answer the following questions about forecast errors.

1. Let yt = φ0+φ1 yt−1+εt with the usual assumptions on {εt }. Derive an explicit expression
for the 1-step and 2-step ahead forecast errors, et+h |t = yt+h− ŷt+h |t where ŷt+h |t is the MSE
optimal forecast where h = 1 or h = 2 (what is the MSE optimal forecast?).

2. What is the autocorrelation function of a time-series of forecast errors {et+h |t }, h = 1 or
h = 2. (Hint: Use the formula you derived above)

3. Can you generalize the above to a generic h? (In other words, leave the solution as a func-
tion of h).
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Figure 4.16: The ACF and PACF of three stochastic processes. Use these to answer question 4.9.
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4. How could you test whether the forecast has excess dependence using an ARMA model?

Exercise 4.11. Answer the following questions.

1. Outline the steps needed to determine whether a time series {yt } contains a unit root. Be
certain to discuss the important considerations at each step, if any.

2. If yt follows a pure random walk driven by whit noise innovations then∆yt = yt − yt−1 is
stationary.

(a) Is yt − yt− j for and j ≥ 2 stationary?

(b) If it is and {εt } is an i.i.d. sequence of standard normals, what is the distribution of
yt − yt− j ?

(c) What is the joint distribution of yt − yt− j and yt−h − yt− j−h ?

3. Let yt = φ0 + φ1 yt−1 + εt where {εt } is a WN process.

(a) Derive an explicit expression for the 1-step and 2-step ahead forecast errors, et+h |t =
yt+h − ŷt+h |t where ŷt+h |t is the MSE optimal forecast where h = 1 or h = 2.

(b) What is the autocorrelation function of a time-series of forecast errors {et+h |t } for h =
1 and h = 2?

(c) Generalize the above to a generic h? (In other words, leave the solution as a function
of h).

(d) How could you test whether the forecast has excess dependence using an ARMA model?

Exercise 4.12. Suppose
yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

where {εt } is a white noise process.

1. Precisely describe the two types of stationarity.

2. Why is stationarity a useful property?

3. What conditions on the model parameters are needed for {yt } to be covariance stationary?

4. Describe the Box-Jenkins methodology for model selection.
Now suppose thatφ1 = 1 and that εt is homoskedastic.

5. What is Et [yt+1]?

6. What is Et [yt+2]?

7. What can you say about Et [yt+h ] for h > 2?

8. What is Vt [yt+1]?

9. What is Vt [yt+2]?
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10. What is the first autocorrelation, ρ1?

Exercise 4.13. Which of the following models are covariance stationary, assuming{εt } is a mean-
zero white noise process. If the answer is conditional, explain the conditions required. In any
case, explain your answer:

1. yt = φ0 + 0.8yt−1 + 0.2yt−2 + εt

2. yt = φ0 + φ1I[t>200] + εt

3. yt = αt + 0.8εt−1 + εt

4. yt = 4εt−1 + 9εt−2 + εt

5. yt = εt +
∑∞

j=1 γ jεt− j

Exercise 4.14. Answer the following questions:

1. Consider the AR(2)
yt = φ1 yt−1 + φ2 yt−2 + εt

(a) Rewrite the model with ∆yt on the left-hand side and yt−1 and ∆yt−1 on the right-
hand side.

(b) What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in
the first differences?

(c) When the model collapses, what does this tell you about yt ?

2. Discuss the important issues when testing for unit roots in economic time-series.

Exercise 4.15. In which of the following models are the{yt }covariance stationary, assuming {εt }
is a mean-zero white noise process. If the answer is conditional, explain the conditions required.
In any case, explain your answer:

1. ∆yt = −0.2yt−1 + εt

2. yt = φ0 + φ1 yt−1 + φ2 yt−2 + εt

3. yt = φ0 + 0.1xt−1 + εt , xt = xt−1 + εt

4. yt = 0.8yt−1 + εt

Exercise 4.16. Suppose
yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

where {εt } is a white noise process.

1. Precisely describe the two types of stationarity.

2. Why is stationarity a useful property?
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3. What conditions on the model parameters are needed for {yt } to be covariance stationary?

4. Describe the Box-Jenkins methodology for model selection.

5. Now suppose thatφ1 = 1 and that εt is homoskedastic.

6. What is Et [yt+1]?

7. What is Et [yt+2]?

8. What can you say about Et [yt+h ] for h > 2?

9. What is Vt [yt+1]?

10. What is Vt [yt+2]?

11. What is the first autocorrelation, ρ1?

Exercise 4.17. Answer the following questions.

1. Suppose yt = φ0 + φ1 y + φ2 yt−2 + εt where {εt } is a white noise process.

2. Write this model in companion form.

(a) Using the companion form, derive expressions for the first two autocovariances of yt .
(It is not necessary to explicitly solve them in scalar form)

(b) Using the companion form, determine the formal conditions forφ1 andφ2 to for {yt }
to be covariance stationary. You can use the result that when A is a 2 by 2 matrix, its
eigenvalues solve the two equations

λ1λ2 = a11a22 − a12a21

λ1 + λ2 = a11 + a22

Exercise 4.18. Justify a reasonable model for each of these time series in Figure 4.17 using infor-
mation in the autocorrelation and partial autocorrelation plots. In each set of plots, the left most
panel shows that data (T = 100). The middle panel shows the sample autocorrelation with 95%
confidence bands. The right panel shows the sample partial autocorrelation for the data with
95% confidence bands.

1. Panel (a)

2. Panel (b)

3. Panel (c)
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Figure 4.17: Plots for question 2(b).


