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Time Series Decomposition

� Interested in forecasting XT+h|T
� Helpful to think about a decomposition

Xt = Tt + St + Ct + εt

I Tt is a deterministic time trend
I St is a seasonal component

– May be deterministic
I Ct is a cyclic component

– ARMA Component
– May have seasonal lags

� Assume observed data is {X1, . . . , XT }
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Time Trends
� A basic trend model

Xt = β0 + β1t+ εt

� This is a cross-sectional regression model
I Time is just 1, 2, . . .

– Makes no difference if you use a monotonic series with a constant difference
– The actual year, 1990, 1991, 1992, . . .
– Only affects the intercept

I Might consider higher order trends

Xt = β0 + β1t+ β2t
2 + εt

– Rarely need higher order > 2
– Higher order often indicates should use lnXt
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Exponential Trends
� Models estimated in logs have exponential trends

lnXt = β0 + β1t+ εt

� β1 is the growth rate of Xt

Xt = β0 exp (β1t) εt

� Pure trend models are simple to estimate using OLS
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Forecasting
� Trend forecasting is simple

Xt = β0 + β1t+ εt

� The forecast is then
ET [XT+h] = X̂T+h|T = β0 + β1 (T + h)

� We are often interested in prediction intervals
� A 95% Prediction interval should contain the truth 95% of the time
� Common to assume residuals are normally distributed

PI =
[
X̂T+h|T − 1.96σ, X̂T+h|T + 1.96σ

]
� In pure time trend models the PI does not depend on h
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Forecasting Exponential Trends
� Forecasts in exponential trend models is more involved
� Assumption: εt

i.i.d.∼ N
(
0, σ2

)
so that the forecast variable is log-normal

Median
X̂T+h|T = exp (β0 + β1 (T + h))

Mean

ln X̂T+h|T ∼ N
(
β0 + β1 (T + h) , σ2

)
⇒ X̂T+h|T ∼ LogNormal

(
β0 + β1 (T + h) , σ2

)
� Uses normality assumption of εt

X̂T+h|T = exp
(
β0 + β1 (T + h) + σ2/2

)
I exp (·) is a convex function so Jensen’s inequality applies

ET

[
exp

(
ln X̂T+h|T

)]
> exp

(
ET

[
ln X̂T+h|T

])
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Prediction Intervals
� Prediction intervals are simple

PI = [exp (β0 + β1 (T + h)− 1.96σ) , exp (β0 + β1 (T + h) + 1.96σ)]

� Symmetric in logs, asymmetric in levels
I Quantiles are preserved under transformation
I May not be possible to construct a symmetric PI that has a positive lower bound
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Conclusions
� Trends are common in many time series
� Modeling the trend is essential when producing multi-step forecasts
� Trend estimation only requires OLS
� In practice trends should usually be limited to linear

I Higher-order trends can produce large forecasting errors at longer horizons
� Key choice is whether to model the level of the log
� Forecasts of logged data can be produced using one of two methods
� Prediction intervals is simple in either case
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Seasonality
� Pure seasonal model

Xt = St + εt

� Seasonal pattern repeats every m observations
I Traditionally defined on an annual basis
I Can be defined over other frequencies

– Day of Week (5 or 7)
– Hour of Day
– Week of Month

I Common feature is that their occurence is completely predictable
� May have multiple seasonalities

I Month, Day of Week, Hour of Day
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Seasonal Dummies
� Basic deterministic seasonality uses dummy variables

Xt =

m∑
i=1

γiI[Sm(t)=i] + εt

I Sm (t) = t−mb(t− 1) /mc which returns values in 1, . . . ,m

� Alternative parameterization

Xt = β0 +

m−1∑
i=1

γiI[Sm(t)=i] + εt

� Multiple Seasonalities use additive decomposition
� Assume seasonal frequencies of m1and m2, m2 > m1, m2 is not an integer multiple of m1

Xt =

m1∑
i=1

γiI[Sm1
(t)=i] +

m2∑
j=2

δjI[Sm2
(t)=j] + εt

I Must drop one dummy when using multiple seasons
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Estimation
� Estimation is just OLS
� Simple to combine with time trends

Xt = β1t+ β2t
2 +

m∑
i=1

γiI[Sm(t)=i] + εt

� Common to use an ANOVA-like test for seasonalities

Restricted Xt = β0 + εt

Unrestricted Xt = β0 +

m−1∑
i=1

γiI[Sm(t)=i] + εt

� Null is H0 : γi = 0 i = 1, . . . ,m− 1

� Test using an F -test
R2

U −R2
R

1−R2
U

× T −m
m− 1

∼ F[m−1,T−m]
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Forecasting and Prediction Intervals
� Forecasts are equally simple

X̂T+h|T = β1t+ β2t
2 + γSm(T+h)

� Predictions intervals are standard

PI =
[
X̂T+h|T − 1.96σ, X̂T+h|T + 1.96σ

]
and do not depend on h

� If modeling lnXt can use the mean or median forecast
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Fourier Series
� Fourier Series are an alternative to dummy variables
� Provide smooth seasonal effects unlike dummies
� Particularly useful when the season has many periods

I Weekly seasonality in a year
I Hourly seasonality in a week

� Choose order of Fourier, K

Xt =

K∑
k=1

γk cos

(
2kπ

Sm (t)

m

)
+ δk sin

(
2kπ

Sm (t)

m

)
+ εt

I In practice, K is small
I Choose using information criterion
I Only fully general when K = m/2

� Simple to combine more than one seasonality using m1, m2, . . .
� Forecast replaces t with T + h

X̂T+h|t =

K∑
k=1

γk cos

(
2kπ

Sm (T + h)

m

)
+ δk sin

(
2kπ

Sm (T + h)

m

)
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Conclusions
� Seasonal dummies account for seasonal shifts in a time series
� Easy to build a model with seasonal dummies and time trends
� Seasonal dummies do not affect prediction intervals
� Fourier seasonal allow for parsimonious specification of seasonality

I Important when the period of a series is large
� Multiple seasonalities can be captured using combinations of the two approaches
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The Lag Operator
� The Lag Operator, L, is essential to understanding Seasonal ARMAs
� Key properties

LXt = Xt−1

L2Xt = L (LXt) = LXt−1 = Xt−2

LpLqXt = Lp+qXt = Xt−(p+q)

� Familiar models written with Lag Polynomials
I AR(1)

Xt = φ0 + φ1Xt−1 + εt

Xt − φ1Xt−1 = φ0 + εt

Xt − φ1LXt = φ0 + εt

(1− φL)Xt = φ0 + εt

I AR(P) (
1− φ1L− φ2L

2 − . . .− φPL
p)Xt = φ0 + εt

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−P + εt
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Seasonal AR Models
� Pure Seasonal AR

(1− φmLm)Xt = φ0 + εt

Xt = φ0 + φmXt−m + εt

I This model is not plausible
I Equivalent to m unrelated AR(1) models iterwoven

� Seasonal AR with short-run dynamics

(1− φ1L) (1− φmLm)Xt =φ0 + εt(
1− φ1L− φmLm + φ1φmL

(m+1)
)
Xt =φ0 + εt

Xt = φ0 + φ1Xt−1 + φmXt−m − φ1φmXt−m−1 + εt

I Restricted AR(m+ 1)
I Sometimes written as a SAR(1)× (1)
I Generally SAR(P )× (PS)
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Ignoring the Restriction
� Can always estimate unrestricted model

Xt = φ0 + φ1Xt−1 + φmXt−m + φm+1Xt−m−1 + εt

I Could even test H0 : φm+1 = −φ1φm

– Not important in forecasting
I An information criterion can be used to select between these two
I Forecasting is standard for AR models using standard representation

� Unrestricted model can be estimated using OLS
� Restricted model requires a constrained estimator, e.g., NLLS
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Prediction Intervals
� Prediction intervals are not constant

PI =
[
XT+h|T ± 1.96σ̃h

]
I σ̃h is a function of horizon and model parameters
I Simple to compute using MA(∞) representation

� Recall companion form of AR(P )
Xt − µ
Xt−1 − µ
Xt−2 − µ

...
Xt−P+1 − µ

 =



φ1 φ2 φ3 . . . φP
1 0 0 . . . 0

0 1 0
. . .

...
...

. . . . . . . . .
...

0 0 0 . . . 1




Xt−1 − µ
Xt−2 − µ
Xt−3 − µ

...
Xt−P − µ

+


εt
0
0
...
0


I µ = φ0/ (1− φ1 − φ2 − . . .− φP )
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The MA(∞) Representation

Zt = ΦZt−1 + ηt

� The MA(∞) representation is then

Zt = ηt + Φηt−1 + Φ2ηt−2 + Φηt−3 + . . .

= Ξ0ηt + Ξ1ηt−1 + Ξ2ηt−2 + Ξ3ηt−3 + . . .

I Define ξj = Ξ
[1,1]
j as the (1, 1) element, then

σ̃2
h = σ2 (1 + ξ21 + ξ22 + . . .+ ξ2h−1

)
� Easy to show in the AR(1)

Xt = φ0 + φ1Xt−1 + εt

σ̃2
h = σ2

(
1 + φ2 + φ4 + . . .+ φ2(h−1)

)
� General formula for impulses for AR(P ) in VAR slides and notes

5



Random Walks with Seasonality
� A seasonal random walk has a unit root at the seasonal frequency

(1− Lm)Xt = εt

� Need short run-dynamics to make plausible

(1− φ1L)
(
1− LM

)
Xt = εt

� Seasonal Unit Roots need seasonal differencing

∆mXt = Xt −Xt−m

I Note that ∆m and ∆m are different

∆mXt = ∆
(
∆m−1)Xt = ∆ (∆ (∆ (. . . (∆Xt))))

∆mXt = Xt −Xt−m

∆2Xt = ∆ (Xt −Xt−1) = Xt − 2Xt−1 +Xt−2

∆2Xt = Xt −Xt−2
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Seasonal Differencing
� Seasonal difference removes seasonal unit roots

∆mXt = Xt −Xt−m = (1− Lm)Xt

� so that

(1− φ1L) ∆mXt = εt

∆mXt = φ1∆mXt−1 + εt

X̃t = φ1X̃t−1 + εt

� Note: When you use seasonal differences, you do not need seasonal dummies
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Conclusions
� Seasonal Autoregressions (SAR) capture dynamics at the seasonal frequency
� Combined with short run dynamics to construct plausible models
� Unrestricted models which include the same terms are simple to estimate using OLS
� Prediction intervals depend on the parameters of the MA(∞) representation

I These are the impulses
� Seasonal random walks are removed using seasonal differencing
� Seasonally differencing also removes level shifts series

I No need to use both seasonal dummies and differencing
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Seasonal MA
� Seasonality can be introduced into MA using the same structure
� Seasonal MA(1)× (1)

Xt = (1 + θ1L) (1 + θmL
m) εt

=
(
1 + θ1L+ θmL

m + θ1θmL
m+1

)
εt

= εt + θ1εt−1 + θmεt−m + θ1θmεt−m−1

� Restricted MA(m+ 1)

� Less common in forecasting since unrestricted SAR can be estimated using OLS
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Prediction Intervals in MA Models
� Prediction intervals for MA processes are simple

Xt = µ+

Q∑
i=1

θiεt−i + εt

� The h-step error is then

XT+h − X̂T+h|T = εT+h +

min(h−1,Q)∑
i=1

θiεT+h−i

� The variance of the forecast error

σ2
h = σ2

1 +

min(h−1,Q)∑
i=1

θ2i


� Prediction intervals are then [

X̂T+h|T ± 1.96σh

]
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MA Invertibility and Prediction
� Inverting MAs help understand MA prediction
� We only observe {Xt}

Xt = θ1εt−1 + εt

Xt−1 = θ1εt−2 + εt−1 ⇒ εt−1 = Xt−1 − θ1εt−2
Xt = εt + θ1 (Xt−1 − θ1εt−2)

= εt + θ1Xt−1 − θ21εt−2
εt−2 = Xt−2 − θ1εt−3
Xt = εt + θ1Xt−1 − θ21 (Xt−2 − θ1εt−3)

= εt + θ1Xt−1 − θ21Xt−2 + θ31εt−3

� Continuing back to t = 1,

Xt = εt +

t−1∑
i=1

(−1)
i+1

θiXt−i + (−1)
t+1

θtε0

� Assuming ε0 = 0, this is an AR(t)
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Forecasts from MA models
� The optimal one-step forecast is then

X̂T+1|T = θXT − θ2XT−1 + θ3XT−3 + . . .+ (−1)
T−1

θTX1

I Only depends on observed values
� Longer-horizon prediction recursively applies this AR(T )
� If mean is not 0:

I Subtract µ from Xt

I Produce optimal forecast ˆ̃XT+h|T for X̃t = Xt − µ
I Add mean back X̂T+h|T = µ+ ˆ̃XT+h|T
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Conclusions
� Optimal forecasts in MA models only depend on observed data
� The Seasonal MA adds seasonal lags like a Seasonal Autoregression
� Prediction intervals in MA models are simple functions of the MA parameters
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Seasonal ARMA Models
� Can apply seasonalities to both components in an ARMA
� Seasonal ARMA(P,Q)× (Ps, Qs)

� Seasonal ARMA(1, 1)× (1, 1)

(1− φ1L) (1− φmLm)Xt = (1 + θ1L) (1 + θmL
m) εt
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Incorporating the differencing parameter
� Common to also incorporate differencing order D into specification
� Seasonal Autoregression Integrated Moving Average (SARIMA)
� Each order has three parameters

(P,D,Q)× (Ps, Ds, Qs)

� In practice one of D or Dsis usually 0, other is either 1 or 0
I The D and Ds parameters indicate how to difference
I D uses the standard difference operator
I Ds applies the seasonal differecne operator

� If Xt is SARIMA(P, 1, Q)× (Ps, 0, Qs), then ∆Xt is SARIMA(P, 0, Q)× (Ps, 0, Qs)

� If Xt is SARIMA(P, 0, Q)× (Ps, 1, Qs), then ∆mXt is SARIMA(P, 0, Q)× (Ps, 0, Qs)
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Forecasting
� Order of integration matters for forecasting and prediction intervals
� For non-seasonal differenced series

X̂T+h|T = XT +

h∑
i=1

ET [∆XT+i]

� Prediction Intervals have the form

PI =
[
X̂T+h|T ± 1.96σ̆h

]

σ̆2
h = σ2

h∑
i=1

1 +

i−1∑
j=1

ξj

2

� In a model with order (1, 1, 0)× (0, 0, 0) this is

σ̆2
h = σ2

{
(1)

2
+ (1 + φ1)

2
+ . . .+

(
1 + φ1 + φ21 + . . .+ φh−11

)2}
� Prediction intervals will continue to widen as the horizon increases

I Reflects the unit root (random walk) in the time series
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Forecasting with Seasonal Differencing
� In a Seasonally Differenced model we model ∆mXt so that

ET [XT+1] = XT+1−m + ET [∆mXT+1]︸ ︷︷ ︸
1-step from model

= XT+1−m + ET [XT+1]− ET [XT+1−m]

= ET

[
XT+1|T

]
+XT+1−m −XT+1−m|T︸ ︷︷ ︸

0

� In general

X̂T+h|T = XT+1−m +

h∑
i=1

ET

[
∆mXT+h|T

]
� Note that ∆mXt is the LHS in the seasonally differenced model
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The Complete Model
� Start by transforming Xt

I Log or level
I Level, Difference, or Seasonal Difference

Yt = Constant
+ Trend
+ Seasonal Dummies
+ AR + Seasonal AR
+ MA + Seasonal MA + εt

� Recommendations for forecasting
I Differencing, Trends, and Seasonal Dummies are essential for multi-step forecasting
I ARMA terms matter for shorter horizons
I Always difference if “close” to a unitroot
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Conclusions
� SARIMA is a unified framework for modeling trends, seasonal and cyclical components
� Differencing, trend and seasonal specification are keys to good forecasting models

I Especially true over longer horizons
� Forecasts from models built using differenced data accumulate the forecast differences
� Prediction intervals also depend on sums of accumulated MA(∞) parameters
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