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Time Series'Decomposition

® Interested in forecasting X,
® Helpful to think about a decomposition

Xe =T+ S +Ci + ¢

» T, is a deterministic time trend
» S; is a seasonal component

— May be deterministic
» C, is a cyclic component

— ARMA Component

— May have seasonal lags

® Assume observed data is {X1,..., X1}




® A basic trend model
X =po+ it +e

® This is a cross-sectional regression model
» Timeisjust1,2,...
— Makes no difference if you use a monotonic series with a constant difference

— The actual year, 1990, 1991, 1992, . ..
— Only affects the intercept

» Might consider higher order trends

Xy = 50+ﬁ1t+ﬁ2t2 + €

— Rarely need higher order > 2
— Higher order often indicates should use In X




Exponential Trends

® Models estimated in logs have exponential trends
In X; = By + pit + &

® 3, is the growth rate of X,

Xt = Boexp (1t) &
® Puyre trend models are simple to estimate using OLS




® Trend forecasting is simple
Xy =Po+Bit+e

The forecast is then

Er [Xr4n] = XT+h\T = o+ p1 (T +h)
We are often interested in prediction intervals
A 95% Prediction interval should contain the truth 95% of the time
® Common to assume residuals are normally distributed

PI = |Xpypr — 1960, Xpypr + 1.960

In pure time trend models the Pl does not depend on &




Forecasting ‘Exponential Trends

® Forecasts in exponential trend models is more involved

iid.

" i et ~ N (0,0?) so that the forecast variable is log-normal

Median X
Xrinr = exp (Bo + B1 (T + h))

Mean
In X7y ~ N (Bo + B1 (T + h),02) = Xpypr ~ LogNormal (8o + 581 (T + h) ,0?)
® Uses normality assumption of e;
Xrinr =exp (Bo+ B (T +h) +a2/2)
» exp (-) is a convex function so Jensen’s inequality applies

Er [exp (lnXTHL‘T)] > exp (ET [1HXT+h|T])



Prediction Intervals

® Prediction intervals are simple

PI =exp (fo+ 51 (T + h) —1.960) ,exp (Bo + 1 (T + h) + 1.960)]

® Symmetric in logs, asymmetric in levels

» Quantiles are preserved under transformation
» May not be possible to construct a symmetric Pl that has a positive lower bound




Conclusions

® Trends are common in many time series
® Modeling the trend is essential when producing multi-step forecasts
Trend estimation only requires OLS
In practice trends should usually be limited to linear
» Higher-order trends can produce large forecasting errors at longer horizons

® Key choice is whether to model the level of the log
® Forecasts of logged data can be produced using one of two methods
Prediction intervals is simple in either case
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Seasonality

® Pure seasonal model
Xi =85 +¢&

® Seasonal pattern repeats every m observations
» Traditionally defined on an annual basis
» Can be defined over other frequencies
— Day of Week (5 or 7)
— Hour of Day
— Week of Month

» Common feature is that their occurence is completely predictable
= May have multiple seasonalities
» Month, Day of Week, Hour of Day




Seasonal Dummies

® Basic deterministic seasonality uses dummy variables

m

Xy = Z Yills,, (t)=i] + €t

=1

» Spm(t) =t —m|(t —1)/m]| which returns valuesin1,...,m
= Alternative parameterization

= B0+ Z Yils,, (ty=i) + €t

i=1
= Multiple Seasonalities use additive decomposition
® Assume seasonal frequencies of miand mqy, ma > my, mo is not an integer multiple of m,

ma

Z% Sy (1)=i] +Z“ Lh=j] T €

» Must drop one dummy when using multiple seasons



® Estimation is just OLS
® Simple to combine with time trends

Xy = Bt + Bot® + Z Yills,, (ty=i) + €t
=1

® Common to use an ANOVA-like test for seasonalities

Restricted X, = 5y + €
m—1
Unrestricted X; = £y + Z Yills,, (t)y=i] T €t

i=1

® NullisHy:v=0i=1,....m—1
® Test using an F-test




Forecasting‘and Prediction Intervals

® Forecasts are equally simple
Xrinr = Bit + Bat® + VS (T+h)
® Predictions intervals are standard

PI = |Xp pp — 1.960, Xp o pp + 1.960

and do not depend on h
® |f modeling In X; can use the mean or median forecast




Fourier Series

® Fourier Series are an alternative to dummy variables
® Provide smooth seasonal effects unlike dummies
® Particularly useful when the season has many periods
» Weekly seasonality in a year
» Hourly seasonality in a week
Choose order of Fourier, K

K
X = Zyk cos <2k7rsm(t)> + 0 sin (2]{171'57;:7/@)) + €
k=1

m

» In practice, K is small

» Choose using information criterion

» Only fully general when K = m/2
Simple to combine more than one seasonality using m, mao, ...
Forecast replaces t with 7'+ h

K
o Sm (T + h . S (T + h
Xryne = ;vk cos <2l<:7r(m)) + J sin <2k7r(m))



Conclusions

® Seasonal dummies account for seasonal shifts in a time series
® Fagsy to build a model with seasonal dummies and time trends
Seasonal dummies do not affect prediction intervals

Fourier seasonal allow for parsimonious specification of seasonality
» Important when the period of a series is large

Multiple seasonalities can be captured using combinations of the two approaches
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The Lag Operator

® The Lag Operator, L, is essential to understanding Seasonal ARMAs
m Key properties

LXy =X
L*X; =L(LX;)=LX; 1=X, »
LPLIXy = LPYXy = Xi_(pio)
® Familiar models written with Lag Polynomials

» AR(1)
Xe=¢o+ g1 X1+ e
Xt — ¢1Xe—1=¢o + &
Xt — 91 LXt = o + €t
(1—¢L)X:=¢do+ e
» AR(P)

(L—1L—oL®— ... —¢pL”) X; = o+ &
Xi=¢po+ 01 Xe—1+ P2 Xe2+...+0pXs—p+ 6



Seasonal AR Models

® Pure Seasonal AR
(1= ¢mL™) X = ¢ + €
Xt =0+ dmXi—m + €&

» This model is not plausible
» Equivalent to m unrelated AR(1) models iterwoven

® Seasonal AR with short-run dynamics
(1—=¢1L) (1 — ¢ L™) Xt =00 + €
(1= 61L = 6mL™ + 616 L0V Xi =60 + 1

X =00+ 01 Xs—1 + 0 Xi—m — P10 Xp—m—1 + &

» Restricted AR(m + 1)
» Sometimes written as a SAR(1) x (1)
» Generally SAR(P) x (Ps)



Ilgnoring the'Restriction

® Can always estimate unrestricted model

Xi=¢o+ 01 Xe1 + o Xiem + Omt1 Xemm—1 + €&

» Could even test Hy : ¢pmt1 = —d10m
— Not important in forecasting

» An information criterion can be used to select between these two
» Forecasting is standard for AR models using standard representation

® Unrestricted model can be estimated using OLS
® Restricted model requires a constrained estimator, e.g., NLLS




Prediction Intervals

® Prediction intervals are constant
PI = [Xrpynr £ 1.9664]

» &1 is a function of horizon and model parameters
» Simple to compute using MA(oco) representation

® Recall companion form of AR(P)

X, —p ¢1 P2 P3 ... op Xi1—p

€t
Xy 1 0 0 ... 0 Xy 0
Xio—p | =] 0 1 0o . Xe—g—p | 4| 0
Xi—py1— () 0o 0 ... 1 Xi_p—p 0
> pu=¢o/(1—¢1—¢2—...— ¢p)



The MA(co)‘Representation

Z,=PZ;, 1+m,
® The MA(oc0) representation is then
Zo=my+ Py + 0y o+ By g+
=Zon; + B +Eomy_o +E3my_g + ...
> Define ¢; = /""" as the (1,1) element, then
Gr=0’ (I+&+&E+...+& )

® Easy to show in the AR(1)
Xi=¢d0+ 1 Xi—1+ €

52 = o (1+¢2+¢4+._.+¢2(h71>)

® General formula for impulses for AR(P) in VAR slides and notes



Random Walks with Seasonality

® A seasonal random walk has a unit root at the seasonal frequency
(1-L") X =¢
® Need short run-dynamics to make plausible
(1—¢L)(1-LM) Xy =€
® Seasonal Unit Roots need
An Xy =Xt — Xeem
» Note that A™ and A,,, are different

A"X, = A (AT X = A(A(A(...(AXY))))
Anzxt = Xt - thm

A°Xy=A(Xe — Xio1) = X — 2X—1 + X2
Ao Xy =Xt — Xi—2



Seasonal Differencing

m Seasonal difference removes seasonal unit roots
AXe =Xy —Xpemp =1 -LM) X,
® 5o that

(1 - ¢1L) ApXy = ¢
ApXe = 01An X1 + &
X; = ¢1Xt71 + €

" : When you use seasonal differences, you do not need seasonal dummies




Conclusions

® Seasonal Autoregressions (SAR) capture dynamics at the seasonal frequency
® Combined with short run dynamics to construct plausible models
® Unrestricted models which include the same terms are simple to estimate using OLS
Prediction intervals depend on the parameters of the MA(oo) representation
» These are the impulses
Seasonal random walks are removed using seasonal differencing

Seasonally differencing also removes level shifts series
» No need to use both seasonal dummies and differencing
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Seasonal MA

® Seasonality can be introduced into MA using the same structure
® Seasonal MA(1) x (1)

Xt = (1 + 91L) (1 + 97an) €t
= (1460 L+0, L™ +610,L™") e
=€+ elet—l + emet—m + alamet—rn—l

® Restricted MA(m + 1)
® [ ess common in forecasting since unrestricted SAR can be estimated using OLS




Prediction Intervals in MA Models

® Prediction intervals for MA processes are simple

Q
Xy =p+ Z&'Q—i + €

=1
® The h-step error is then

min(h—1,Q)

Xrin — Xrpnr = eran+ Y Oi€ryn—i
i=1

® The variance of the forecast error

min(h—1,Q)
or =0 |1+ Z 0?

i=1

® Prediction intervals are then R
| Xrsnr & 1,960



MA Invertibility and Prediction

® |nverting MAs help understand MA prediction
= We only observe {X;}

Xi=01ei-1 + €
Xic1=bheote1 =61 =Xi1—bheo
Xt =€ +01(Xi—1 —01642)
=6+ 01X 1 — 9%@572
€2 =X o — 0163
Xi=e+01Xi1 — 07 (X4—o — O1e4_3)
=6+ 01 X1 — Q%Xtﬁ + 0%61&73

® Continuing back to ¢t = 1,
t—1 ) ‘
Xi=e+Y (D)T0X i+ (1) b
=1

® Assuming ep = 0, this is an AR(¢)



Forecasts from MA models

® The optimal one-step forecast is then
Xpgar = 0Xr — ?Xr_1 + 3 Xr 3+ ...+ (1) 167X,

» Only depends on observed values
® | onger-horizon prediction recursively applies this AR(T")
® |f mean is not O:

» Subtract u from X,

» Produce optimal forecast ):(TJFMT for X, = Xy —

» Add mean back XT+h|T =pu+ X—T+h‘T




Conclusions

® Optimal forecasts in MA models only depend on observed data
® The Seasonal MA adds seasonal lags like a Seasonal Autoregression
® Prediction intervals in MA models are simple functions of the MA parameters
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Seasonal ARMA Models

® Can apply seasonalities to both components in an ARMA
® Seasonal ARMA(P, Q) x (Ps,Qs)
® Seasonal ARMA(1,1) x (1,1)

(1=1L) (1 — ¢ Ll™) Xy = (1 + 61 L) (L + 0 L™) €




Incorporating the differencing ‘parameter

Common to also incorporate differencing order D into specification
Seasonal Autoregression Integrated Moving Average ( )
Each order has three parameters

(P,D,Q) x (Ps, Ds, Q)

In practice one of D or D.is usually 0, other is either 1 or 0
» The D and D, parameters indicate how to difference
» D uses the standard difference operator
» D, applies the seasonal differecne operator

If X, is SARIMA(P, 1,Q) x (P;,0,Q,), then AX, is SARIMA(P, 0, Q) x (P,,0,Qs)
If X, is SARIMA(P,0,Q) x (Ps,1,Qs), then A, X; is SARIMA(P, 0, Q) x (Ps,0,Q,)




® QOrder of integration matters for forecasting and prediction intervals
® For non-seasonal differenced series
h

Xrinr =X+ Y _Br[AXr)

i=1

® Prediction Intervals have the form
PI = [XTM,T + 1.9664
2
h i—1
A=’y (1436
i=1 j=1
® |n a model with order (1, 1,0) x (0,0,0) this is
2
2= {1t e) 4 (Lot @+ o))

® Prediction intervals will continue to widen as the horizon increases
» Reflects the unit root (random walk) in the time series



Forecasting with Seasonal Differencing

® |n a Seasonally Differenced model we model A,, X; so that

Er [XT+1] = XT-H—m +Er [AmXT+1]
1-step from model

= Xr41-m + Er [ Xr11] = Er [X7401-0m]

=Er [Xriyr] + Xog1-m — Xrp1—mir

0

® |n general
h

XT+h|T =Xri1-m+ Z Er [AnXrinT)

i=1

® Note that A,, X; is the LHS in the seasonally differenced model




The Complete Model

® Start by transforming X,

» Log or level
» Level, Difference, or Seasonal Difference

Y; = Constant
+ Trend
+ Seasonal Dummies
+ AR + Seasonal AR
+ MA + Seasonal MA + ¢,

= Recommendations for forecasting

» Differencing, Trends, and Seasonal Dummies are essential for multi-step forecasting
» ARMA terms matter for shorter horizons
» Always difference if “close” to a unitroot



Conclusions

® SARIMA is a unified framework for modeling trends, seasonal and cyclical components
m Differencing, trend and seasonal specification are keys to good forecasting models
» Especially true over longer horizons

® Forecasts from models built using differenced data accumulate the forecast differences
® Prediction intervals also depend on sums of accumulated MA(co) parameters




