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As a convention, notation for random and nonrandom entities are "local" 
to a section where they appear, i.e., the same symbol may have different 
meanings in two different sections. Similarly, the numbering of conditions 
are "local" to a chapter. Unless otherwise mentioned, the symbols for ran­
dom and nonrandom entities and the condition labels refer to their local 
definitions. For referring to a condition introduced in another chapter, we 
add the chapter number as a prefix. For example, an occurrence of Condi­
tion 5.Dr in Chapter 6 refers to Condition Dr of Chapter 5, etc. We use the 
abbreviations cdf (cumulative distribution function), CI (confidence inter­
val), iid (independent and identically distributed), and MSE (mean squared 
error), as convenient. We also use a box D to denote the end of a proof or 
of an example. 

2 
Bootstrap Methods 

2.1 Introduction 

In this chapter, we describe various commonly used bootstrap methods 
that have been proposed in the literature. Section 2.2 begins with a brief 
description of Efron's (1979) bootstrap method based on simple random 
sampling of the data, which forms the basis for almost all other bootstrap 
methods. In Section 2.3, we describe the famous example of Singh (1981), 
which points out the limitation of this resampling scheme for dependent 
variables. In Section 2.4, we present bootstrap methods for time-series mod­
els driven by iid variables, such as the autoregression model. In Sections 2.5, 
2.6, and 2.7, we describe various block bootstrap methods. A description of 
the subsampling method is given in Section 2.8. Bootstrap methods based 
on the discrete Fourier transform of the data are described in Section 2.9, 
while those based on the method of sieves are presented in Section 2.10. 

2.2 liD Bootstrap 

In this book, we refer to the nonparametric resampling scheme of Efron 
(1979) , introduced in the context of "iid data," as the liD bootstrap. 
There are a few alternative terms used in the literature for Efron's (1979) 
bootstrap, such as "naive" bootstrap, "ordinary" bootstrap, etc. These 
terms may have a different meaning in this book, since (for example) using 
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the liD bootstrap may not be the "naive" thing to do for data with a 
dependence structure. 

We begin with the formulation of the liD bootstrap method of Efron 
(1979). For the discussion in this section, assume that X 1, X 2 , ... is a 
sequence of iid random variables with common distribution F. Suppose, 
Xn = {X1, ... , Xn} generate the data at hand and let Tn = tn(Xn; F), 
n :::0: 1 be a random variable of interest. Note that Tn depends on the data 
as well as on the underlying unknown distribution F. Typical examples 
of Tn include the normalized sample mean Tn = n 112 (Xn- J.L)/0' and the 
studentized sample mean Tn = n 112 (Xn- J.L)/sn where Xn = n-12::7=1 xi, 
s; = n-12::7=1 (Xi- Xn) 2

, J.1 = E(X1), and 0'2 = Var(X1). Let Gn denote 
the sampling distribution of Tn. The goal is to find an accurate approxima­
tion to the unknown distribution of Tn or to some population characteris­
tics, e.g., the standard error, of Tn. The bootstrap method of Efron (1979) 
provides an effective way of addressing these problems without any model 
assumptions on F. 

Given Xn, we draw a simple random sample x;;, = {Xi, ... , X:'n} of size 
m with replacement from Xn. Thus, conditional on Xn, {Xi, ... , X:'n} are 
iid random variables with 

P*(Xi =Xi)=.!, 1 :5: i :5: n, 
n 

where P* denotes the conditional probability given Xn. Hence, the common 
distribution of Xts is given by the empirical distribution 

n 

Fn = n-1 :L:oxi, 
i=1 

where Oy denotes the probability measure putting unit mass at y. Usually, 
one chooses the resample size m = n. However, there are several known ex­
amples where a different choice of m is desirable. See, for example, Athreya 
(1987), Arcones and Gine (1989, 1991), Bickel, Gotze and van Zwet (1997), 
Fukuchi (1994), and the references therein. 

Next define the bootstrap version T:'n,n of Tn by replacing Xn with x;;, 
and F with Fn as 

r;,_,n = tm(X~; Fn) . 

Also, let Gm,n denote the conditional distribution of T:'n,n, given Xn. Then 

the bootstrap principle advocates Gm,n as an estimator of the unknown 
sampling distribution Gn of Tn. If, instead of Gn, one is interested in esti­
mating only a certain functional ({!(Gn) of the sampling distribution of Tn, 
then the corresponding bootstrap estimator is given by plugging-in Gm,n 
for Gn, i.e., the bootstrap estimator of ({!(Gn) is given by ({!(Gm,n)· For 
example, if ({J(Gn) = Var(Tn) = J x 2dGn(x)- (J xdGn(x)) 2 , the boot­

strap estimator of Var(Tn) is given by ({!(Gm,n) = Var(T:'n,n I Xn) = 
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J x2 dGm,n(x)-(J xdGm,n(x)) 2
. Once the variables Xn have been observed, 

the common distribution Fn of X;'s becomes known, and, hence, it is possi­
ble (at least theoretically) to find the conditional distribution Gm,n and the 
bootstrap estimator ({J(Gm,n) from the knowledge of the data. In practice, 
however, finding Gm,n exactly may be a daunting task, even in moder­
ate samples. This is because the number of possible distinct values of x;,_ 
grows very rapidly, at the rate 0( n m) as n --+ oo, m --+ oo under the liD 
bootstrap. Consequently, the conditional distribution of r;,_ n is further 
approximated by Monte-Carlo simulations as described in Ch~pter 1. 

To illustrate the main ideas, again consider the simplest example where 
Tn = ..jn(Xn- J.L)/0', the centered and scaled sample mean. Here J.1 = EX1 
is the level-1 parameter we want to infer about. Following the description 
given above, the bootstrap version T:'n,n of Tn based on a bootstrap sample 
of size m is given by 

T:'n,n = vm(.X:r,- E*Xn/(Var*(X;))112 

where X:'n = m-1 2::::1 Xt denotes the bootstrap sample mean based on 
Xi, ... , x;;,, and E* and Var * respectively denote the conditional expec­
tation and conditional variance, given Xn. It is clear that for any k :::0: 1, 

E*(xnk = J xkdFn(x) = n-1 txt. 
i=1 

(2.1) 

In particular, this implies E*(Xi) = Xn, and Var*(Xi) s; = 

n-1 2::7=1 (Xi - Xn?. Hence, we define T:'n,n by replacing Xn with X~ 
and f1 and 0'2 by E*(Xi) and Var*(Xi), respectively. Thus, the bootstrap 
version of Tn is given by 

(2.2) 

If, for example, we are interested in estimating ({!a(Gn) = the ath quan­
tile of Tn for some a E (0, 1), then the bootstrap estimator of ({!a(Gn) is 
({!a(Gm,n), the ath quantile of the conditional distribution of T:'n,n· 

As mentioned above, determining Gm,n exactly is not very easy even 
in this simple case. However, when EX[ < oo, and m = n, we have the 
following result. Recall that we use the abbreviation a.s. for almost sure or 
almost surely, as appropriate, and we write <I>(·) to denote the distribution 
function of the standard normal distribution on JR. 

Theorem 2.1 If X1,X2, ... are iid with 0'2 = Var(X1) E (O,oo), then 

sup IP*(T~,n :5: x)- <I>(x/0')1 = o(1) as n--+ oo, a.s. (2.3) 
X 

Proof: Since Xi, ... , X~ are iid, by the Berry-Esseen Theorem (see The­
orem A.6, Appendix A) 

sup IP*(T~,n :5: x)- <I>(x)l :5: (2.75)An , (2.4) 
X 
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2_ * -2 A * -3 3 where sn - E*(X1 - Xn) and b..n = E*IX1 - Xnl /(snfo). Clearly, by 
the Strong Law of Large Numbers (SLLN) (see Theorem A.3, Appendix 
A), 

n 

s; = n- 1 L:xl- (Xn? ~ 172 a.s. 
i=1 

and by the Marcinkiewicz-Zygmund SLLN (see Theorem A.4, Appendix 
A), 

n 

n -3/2 L I Xi 13 ~ 0 a.s. 
i=1 

Hence, Lin~ 0 a.s. as n ~ oo, and Theorem 2.1 follows. D 

Actually Theorem 2.1 holds for any resample size mn that goes to infinity 
at a rate faster than loglog n, but the proof requires a different argument. 
See Arcones and Gine (1989, 1991) for details. 

Note that by the Central Limit Theorem (CLT), Tn also converges in 
distribution to the N(O, 1) distribution. Hence, it follows that 

Lin sup IGn,n(x)- Gn(x)l 
X 

sup IP*(T~,n::::; x)- P(Tn ::::; x)l = o(1) as n ~ oo, a.s. , 
X 

(2.5) 

i.e., the conditional distribution Gn,n of T~,n generated by the IID boot­
strap method provides a valid approximation for the sampling distribution 
Gn of Tn. Under some additional conditions, Singh (1981) showed that 

Lin= O(n-1(1oglogn) 112
) as n ~ oo, a.s. 

Therefore, the bootstrap approximation for P(Tn ::::; ·) is far more accu­
rate than the classical normal approximation, which has an error of or­
der O(n-112 ). Similar optimality properties of the bootstrap approxima­
tion have been established in many important problems. The literature on 
bootstrap methods for independent data is quite extensive. By now, there 
exist some excellent sources that give comprehensive accounts of the the­
ory and applications of the bootstrap methods for independent data. We 
refer the reader to the monographs by Efron (1982), Hall (1992), Mammen 
(1992), Efron and Tibshirani (1993), Barbe and Bertail (1995), Shao and 
Tu (1995), Davison and Hinkley (1997), and Chernick (1999) for the boot­
strap methodology for independent data. Here, we have described Efron's 
(1979) bootstrap for iid data mainly as a prelude to the bootstrap methods 
for dependent data considered in later sections, as the basic principles in 
both cases are the same. Furthermore, it provides a historical account of 
the developments that culminated in formulation of the bootstrap methods 
for dependent data. 

2.3 Inadequacy of liD Bootstrap for Dependent Data 

2.3 Inadequacy of liD Bootstrap for Dependent 
Data 
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The liD bootstrap method of Efron (1979), being very simple and gen­
eral, has found application to a hoard of statistical problems. However, 
the general perception that the bootstrap is an "omnibus" method, giv­
ing accurate results in all problems automatically, is misleading. A prime 
example of this appears in the seminal paper by Singh (1981), which in 
addition to providing the first theoretical confirmation of the superiority of 
the liD bootstrap, also pointed out its inadequacy for dependent data. 

In this section we consider the aforementioned example of Singh (1981). 
Suppose X1,X2, ... is a sequence of m-dependent random variables with 
EX1 = p., and EX[ < oo. Recall that {Xn}n;:::1 is called m-dependent for 
some integer m ;::: 0 if {X 1, ... X k} and {X k+m+l, ... } are independent for 
all k ;=:: 1. Thus, an iid sequence of random variables { En}n;:::1 is 0-dependent 
and if we define Xn =En+ 0.5En+l, n;::: 1, with this iid sequence { En}n;:::1, 
then {Xn}n;:::1 is 1-dependent. 

Next, let 17;_, Var(X1) + 2 2:::.:::~ 1 Cov(X1, X Hi) and Xn 
n-1 2:::.:~= 1 Xi. If 17;, E (0, oo ), then by the CLT for m-dependent variables 
(cf. Theorem A.7, Appendix A), 

(2.6) 

where ---+d denotes convergence in distribution. Now, suppose that we want 
to estimate the sampling distribution of the random variable Tn = fo( Xn­
p.,) using the liD bootstrap. For simplicity, assume that the resample size 
equals the sample size, i.e., from Xn = (X1, ... , Xn), an equal number of 
bootstrap variables Xi, ... , X~ are generated. Then, the bootstrap version 
T~,n of Tn is given by 

where X~ = n-1 2:::.:~= 1 Xt. The conditional distribution of T~,n under the 
liD bootstrap method still converges to a normal distribution, but with a 
"wrong" variance, as shown below. 

Theorem 2.2 Suppose {Xn}n>1 is a sequence of stationary m-dependent 
random variables with EX 1 = ;;, and 172 = Var( X 1) E ( 0, oo). Then 

sup IP*(T~ n::::; x)- <.P(x/17)1 = o(1) as n ~ oo, a.s. (2.7) 
X • ' 

Proof: Note that conditional on Xn, Xi, ... , X~ are iid random variables. 
As in the proof of Theorem 2.1, by the Berry-Esseen Theorem, it is enough 
to show that 
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n 

n-312 L IX;I 3
--. 0 as n--. oo, a.s. 

i=1 

These follow easily from the following lemma. Hence Theorem 2.2 is proved. 
D 

Lemma 2.1 Let {Xn}n>1 be a sequence of stationary m-dependent ran­
dom variables. Suppose that f : lR --. lR is a Borel measurable function with 
Elf(X1)1P < oo for some p E (0, oo), and that Ef(X1) = 0 if p::::: 1. Then, 

n 

n-1/P L f(Xi)--. 0 as n--. oo, a.s. 
i=1 

Proof: This is most easily proved by splitting the given m-dependent 
sequence { Xn}n?:1 into m + 1 iid subsequences {1ji}i?:1, j = 1, ... , m + 1, 
defined by 1ji = XH(i-1)(m+l), and then applying the standard results for 
iid random variables to {1Jih?:1's (cf. Liu and Singh (1992)). For 1::; j::; 
m + 1, let Ij = Ijn = { 1 S i S n : j + ( i - 1) ( m + 1) S n} and let Nj := Njn 
denote the size of the set Ij. Note that Nj j n --. ( m + 1) - 1 as n --. oo for all 
1 S j S rn + 1. Then, by the Marcinkiewicz-Zygmund SLLN ( cf. Theorem 
A.4, Appendix A) applied to each of the sequence of iid random variables 
{1ji}i?:1, j = 1, ... , m + 1, we get 

n m+1 
n-1

/P L f(Xi) = L [ Nj-
1

/P L f(Yji)] · (Nj/n) 11
P --. 0 as n--. oo, a.s. 

i=l j=l iElj 

This completes the proof of Lemma 2.1. D. 

Corollary 2.1 Under the conditions of Theorem 
I::1 Cov(X1, xl+i) =1- 0 and 0'~ =1- 0, then for any X =1- 0, 

2.2, if 

lim [P*(T~ n S x)- P(Tn S x)] = [<I>(x/0')- <I>(x/0"00 )] =f. 0 a.s. 
n-+oo ' 

Proof: Follows from Theorem 2.2 and (2.6). D 

Thus, for all x =f. 0, the liD bootstrap estimator P* (T:; n ::; x) of the level-
2 parameter P(Tn S x) has a mean squared error that 'tends to a nonzero 
number in the limit and the bootstrap estimator of P(Tn ::; x) is not con­
sistent. Therefore, the liD bootstrap method fails drastically for dependent 
data. It follows from the proof of Theorem 2.2 that resampling individual 
Xi's from the data Xn ignores the dependence structure of the sequence 
{Xn}n?:l completely, and thus, fails to account for the lag-covariance terms 
(viz., Cov(X1, Xl+;), 1 S i ::; m) in the asymptotic variance. 

Following this result, there have been several attempts in the literature to 
extend the liD bootstrap method to the dependent case. In the next section, 
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we first look at extensions of this method to certain dependent models gen­
erated by iid random variables. More general resampling schemes (such as 
the block bootstrap and the frequency domain bootstrap methods), which 
are applicable without any parametric model assumptions, have been put 
forward in the literature much later. These are presented in Sections 2.5-
2.10. 

2.4 Bootstrap Based on liD Innovations 

Suppose { Xn}n>1 is a sequence of random variables satisfying the equation 

Xn = h(Xn-1 1 ••• , Xn-p; /3) +En , (2.8) 

n > p, where j3 is a q x 1 vector of parameters, h : JRP+q --. lR is a known 
Borel measurable function, and { t:n}n>p is a sequence of iid random vari­
ables with common distribution F that are independent of the random 
variables X 1, ... ,Xp. For identifiability of the model (2.8), assume that 
EE1 = 0. A commonly used example of model (2.8) is the autoregressive 
process of order p (cf. (2.9) below). Noting that the process {Xn}n?:1 is 
driven by the innovations t:/s that are iid, the liD bootstrap method can 
be easily extended to the dependent model (2.8). 

As before, suppose that Xn = {X 1, ... , Xn} denotes the sample and that 
we want to approximate the sampling distribution of a random variable 
Tn = tn(Xn; F, j3). Let ~n be an estimator, e.g., the least squares estimator, 
of j3 based on Xn. Define the residuals 

f.i =Xi- h(Xi-1, ... , Xi-p; ~n), p <iS n. 

Note that, in general, 

n-p 
En := ( n - p) - 1 L Ei+p =f. 0 . 

i=l 

Hence, we center the "raw" residuals E; 'sand define the "centered" residuals 

Without such a centering, the resulting bootstrap approximation often has 
a random bias that does not vanish in the limit and renders the approx­
imation useless. (See, for example, Freedman (1981), Shorack (1982), and 
Lahiri (1992b) that treat a similar bias phenomenon in regression prob­
lems.) 

Next draw a simple random sample E;+l, ... , E:;., of size ( m- p) from {f; : 
p < i ::; n} with replacement and define the bootstrap pseudo-observations, 
using the model structure (2.8), as: 

X!=X; for i=1, ... ,p, and 
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Note that by construction ti, p < i -::; m are iid and E*t:i = 0. The 
bootstrap version of the random variable Tn = tn(Xn; F, (3) is defined as 

where X~ = {Xi, ... , X~} and Fn denotes the empirical distribution of 
the centered residuals E;, p < i -::; n. The sampling distribution of Tn 
is approximated by the conditional distribution ofT~ n given Xn. Forcer­
tain time-series models satisfying (2.8), different versio'ns of this resampling 
scheme have been proposed by Freedman (1984), Efron and Tibshirani 
(1986), Swanepoel and van Wyk (1986), and Kreiss and Franke (1992). 
The liD-innovation-bootstrap method can be applied with some simple 
modifications to popular parametric models for spatial data as well (e.g., 
the spatial autoregression model); see Chapter 7, Cressie (1993). 

A special case of model (2.8) is the autoregression model of order p 
(AR(p)), given by 

Xn = thXn-l + ... + (JpXn-p +En, n > p , (2.9) 

where (3 = ((31, ... , (Jp) is the vector of autoregressive parameters, and 
{ En}n>p is an iid sequence satisfying the requirements of model (2.8). For 
AR(p )-models, validity and the rate of approximation of the liD-Innovation 
bootstrap have been well-studied in the literature. When the sequence 
{ Xn}n;:o:l is stationary, Bose (1988) shows that under suitable regularity 
conditions, a version of the liD-innovation bootstrap approximation to the 
sampling distribution of the standardized least square estimator is more 
accurate than the normal approximation. For nonstationary cases, perfor­
mance of this method has been studied by Basawa, Mallik, McCormick 
and Taylor (1989), Basawa, Mallik, McCormick, Reeves and Taylor (1991), 
Datta (1995, 1996), Datta and Sriram (1997), and Heimann and Kreiss 
(1996), among others. It follows from their work that the liD-innovation 
bootstrap method is very sensitive to the values of the autoregression pa­
rameter vector (3. Indeed, if the value of (3 is such that the roots of the 
characteristic equation zP + (31zP-l + ... + (Jp = 0 lie on the unit circle, 
then the liD-innovation bootstrap fails. Because of its dependence on the 
validity of the model (2.9), and drastic change in the performance with 
a small change in the parameter value, one needs to be particularly care­
ful when applying the liD-innovation bootstrap method. Properties of the 
liD-innovation bootstrap and related model based bootstrap methods are 
described in Chapter 8. 
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2.5 Moving Block Bootstrap 

Bootstrap methods described in the previous sections are applicable either 
under the hypothesis of independence or under specific model assumptions 
for dependent data. The main idea in the latter case is to use the ap­
proximate independence of the residuals, and then apply the resampling 
scheme of the liD-bootstrap method to get the right approximation. In a 
problem where the statistician does not have enough prior knowledge to 
specify such models, these methods are not very useful. In a significant 
breakthrough, Kiinsch (1989) and Liu and Singh (1992) independently for­
mulated a substantially new resampling scheme, called the moving block 
bootstrap (MBB), that is applicable to dependent data without any para­
metric model assumptions. In contrast to resampling a single observation 
at a time, as has been commonly done under the earlier formulations of 
the bootstrap, the MBB resamples blocks of (consecutive) observations at 
a time. As a result, the dependence structure of the original observations 
is preserved within each block. Furthermore, the common length of the 
blocks increases with the sample size. As a result, when the data are gen­
erated by a weakly dependent process, the MBB reproduces the underlying 
dependence structure of the process asymptotically. Essentially the same 
principle was put forward by Hall (1985) in the context of bootstrapping 
spatial data and by Carlstein (1986) for estimating the variance of a statis­
tic based on time series data. A description of Carlstein's method will be 
given in the next section. We now turn to a description of the MBB. 

Let X 1, X 2, . . . be a sequence of stationary random variables, and let 
Xn = {X1, ... , Xn} denote the observations. We shall define the MBB ver­
sion of estimators of the form en = T(Fn), where Fn denotes the empirical 
distribution function of X 1 , ... , Xn, and where T(·) is a (real-valued) func­
tional of Fn. Suppose£.= Cn E [1, n] is an integer. For dependent data, we 
typically require that 

£.---+ oo and n -l £.---+ 0 as n ---+ oo . 

However, a description of the MBB can be given without this restriction. 
Let Bi =(X;, ... ,Xi+C-l) denote the block of length£. starting with Xi, 
1 -::; i :S: N where N = n- £. + 1. (See Figure 2.1 below.) To obtain 
the MBB samples, we randomly select a suitable number of blocks from 
the collection { !31, ... , l3 N}. Accordingly, let Bi, ... , B}; denote a simple 
random sample drawn with replacement from {!31 , ... , BN }. Note that each 
of the selected blocks contains £. elements. Denote the elements in Bi by 
(X(i-l)Hl, ... , X;[), i = 1, ... , k. Then, Xi, ... , X;';, constitute the MBB 

sample of size m = k£.. The MBB version e;,,n of en is defined as 

e;,,n = T(F~,n) , 

where F~,n denotes the empirical distribution of (Xi, ... , X;+;,). 
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FIGURE 2.1. The collection {B1 , ... , BN} of overlapping blocks under the MBB. 

An alternative formulation of the MBB can be given as follows. Note 
that selecting the blocks B;'s randomly from {B1, ... , BN} is equiv­
alent to selecting k indices at random from the set {1, ... , N}. Ac­
cordingly, let h, ... , h be iid random variables with the discrete uni­
form distribution on {1, ... , N}. If we set Bi = B1, for i = 1, ... , k, 
then Bi, ... , Bk, represent a simple random sample drawn with re­
placement from {Bl> ... 'BN }. The bootstrap sample x;' ... 'x;, can 
be defined using the resampled blocks Bi, ... , Bk, as before. Note 
that conditional on the data Xn, the resampled blocks of observa­
tions (Xi, ... ,X£)', (X£+1)' ... ,X~g)', ... , (X(k-1)£+1, ... ,X'ke)' are iid £­
dimensional random vectors with 

P*((X;, ... , X£)'= (X1, ... , XjH-d) 

= P*(h = j) 
= N-1, for 1::; j :S: N, (2.10) 

where P* denotes the conditional probability given Xn. In the special case, 
when each block consists of a single element (i.e., £ = 1), then by (2.10), 
Xi, ... , x;,_ are iid with the common distribution Fn, and hence, the MBB 
reduces to the liD bootstrap method of Efron (1979) described in Section 
2.2. For£> 1, the £-dimensional joint distribution of the underlying process 
{ Xn}n;::: 1 is preserved within the resampled blocks. Since£ tends to infinity 
with n, any finite-dimensional joint distribution of { Xn}n>I-process at a 
given number of finite lag distances can be eventually recovered from the 
resampled values. As a result, the MBB can effectively capture those char­
acteristics of the underlying process {Xn}n>1 that are determined by the 
dependence structure of the observations at short lags. 

As in the case of the liD bootstrap, the MBB sample size is typically 
chosen to be of the same order as the original sample size. If b1 denotes 
the smallest integer such that b1 £ ;::: n, then one may select k = h blocks 
to generate the MBB samples, and use only the first n values to define the 
bootstrap version of Tn. However, there are some inference problems where 
a smaller sample size works better (cf. Chapter 11). 
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Though estimators of the form On T(Fn) considered above include 
many commonly used estimators, e.g., the sample mean, M-estimators of 
location and scale, von Mises functionals, etc., they are not sufficiently ri~h 
for applications in the time series context. This is primarily because Bn 
above depends only on the one-dimensional marginal empirical distribu­
tion Fn, and hence does not cover standard statistics like the sample lag 
correlations, or the spectral density estimators. We shall now consider a 
more general version of the MBB that covers such statistics. 

Given the observations Xn, let Fp,n denote the p-dimensional empirical 
measure 

n-p+1 
Fp,n=(n-p+1)- 1 L 8yJ' 

j=1 

where Yj = (X1, ... , Xi+p- 1) and where for any y E lRl, 8y denotes the 
probability measure on ~P putting unit mass on y. The general version of 
the MBB concerns estimators of the form 

(2.11) 

where T(-) is now a functional defined on a (rich) subset of the set of all 
probability measures on ~P. Here, p :2: 1 may be a fixed integer, or it may 
tend to infinity with n suitably. Some important examples of (2.11) are 
given below. 

Example 2.1: A version of the sample lag covariance of order k :2: 0 is 
given by 

n-k 
;yn(k) = (n- k)- 1 L(XHk- Xn,k)(XJ- Xn,k) , 

j=1 

where Xn,k = (n- k)-1 ~;:;:; X1. Then, ;yn(k) is of the form (2.11) with 
p=k+l. D 

Example 2.2: Let 1/J be a function from ~P x ~k into ~k such that 

Here, () is a functional of the p-dimensional joint distribution of 
(X1, ... ,Xp), implicitly defined by the equation above. A generalized M­
estimator of the parameter () E ~k is defined (cf. Bustos (1982)) as a 
solution of the equation 

n-p+1 
L 1/J(Xj,···,Xj+p-l;Tn)=O. 
j=l 
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The generalized M-estimators can also be expressed in the form (2.11). o 

Example 2.3: Let!(·) denote the spectral density of the process {Xn}n>1. 
Then, a lag-window estimator of the spectral density ( cf., Chapter 6, Prie~t­
ley (1981)) is given by 

(n-1) 

fnC>..) = L w(kjp)'Yn(k) cos(k-\), ,\ E [0, 1r], 
k=-(n-1) 

where p = Pn tends to infinity at a rate slower than n and where w 
is a weight function such that w(O) = (27r)-1 and w vanishes outside 
the interval ( -1, 1). For different choices of w, one gets various com­
monly used estimators of the spectral density, such as the truncated 
periodogram estimator, the Bartlett estimator, etc. Since Jn is a func­
tion of 'Yn(O), ... , 'Yn(P), from Example 2.1, it follows that we can express 
it in the form (2.11). Note that in this example, p tends to infinity with n. 0 

To define the MBB version of Bn in (2.11), fix a block size£, 1 < £ < 
n- p + 1, and define the blocks in terms of Y;'s as 

Bj=(lj, ... ,lJH-1), 15.j"5.n-p-£+2. 

Fork 2: 1, select k blocks randomly from the collection {Bi : 1 5:. i 5:. n-p­
£ + 2} to generate the MBB observations Yt, ... , Y£*; Y£~ 1, ... , 12£; · · . , Y;,, 
where m = k£. The MBB version of (2.11) is now defined as 

(2.12) 

where ft;;.,,n m-1 ~j=1 5~· denotes the empirical distribution of 
Yt, ... , Y;,. Thus, for estimators of the form (2.11), the MBB version is de­
fined by resampling from blocks of Y-values instead of blocks of X-values 
themselves. This formulation of the MBB was initially given by Kiinsch 
(1989) and was further explored by Politis and Romano (1992a). Clearly, 
the definition (2.12) applies to both the cases where p is fixed and where 
p tends to infinity with n. In the latter case, Politis and Romano (1992a) 
called the modified blocking mechanism as the "blocks of blocks" boot­
strap, and gave a more general formulation that allows one to control the 
amount of overlap between the successive blocks of Y-values. We refer the 
reader to Politis and Romano (1992a) for the other versions of the "blocks 
of blocks" bootstrap method. 

Note that for the more general class of statistics Bn given by (2.11) for 
sorr:e p 2: 2, there is an al~ernative way of defining the bootstrap version 
of &n. Since the estimator &n can always be expressed as a function of the 
~iven observations X 1, ... , Xn, one may define the bootstrap version of 
Bn by resampling from X1, ... , Xn directly. Specifically, suppose that the 
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block bootstrap observations Xi, ... , x;,_ are generated by resampling from 
the blocks Bi = {Xi, ... , XiH-1}, i = 1, ... , N of X-values. Then, define 
bootstrap "analogs" of the p-dimensional variable Yi = (Xi, ... , Xi+p- 1 )' 

in terms of Xi, ... ,x;,_ as Yi** = (x;, ... ,x;+p-1)', i = 1, ... ,m- p+ 1. 

Then, the bootstrap version of Bn under this alternative approach is defined 
as 

where ft;;.,~n = ~:~P+l 5¥;**. We call this approach of defining the moving 

block bootstrap version of Bn as the "naive" approach, and the other ap­
proach leading to e;,,n in (2.12) as the "ordinary" approach of the MBB. 
We shall also use the terms "naive" and "ordinary" in the context of boot­
strapping estimators of the form (2.11) using other block bootstrap methods 
described later in this chapter. 

For a comparison of the two approaches, suppose that {Xn}n:?:1 is a 
sequence of stationary random variables. Then, for each i, the random 
vector Yi = (Xi, ... ,Xi+p-1 )' has the same distribution as (X1 , ... ,Xp)', 
and hence, the resampled vectors Yi* under the "ordinary" approach al­
ways retains the dependence structure of (X1, ... , Xp)'. However, when the 
bootstrap blocks are selected by the "naive" approach, the bootstrap ob­
servations Xts, that are at lags less than p and that lie near the boundary 
of two adjacent resampled blocks Bj and Bj+l, are independent. Thus the 
components of Yi** under the "naive" approach do not retain the depen­
dence structure of (X1, ... , Xp)'. As a result, the naive approach introduces 

additional bias in the bootstrap version e;:: n of On. We shall, therefore, al­
ways use the "ordinary" form of a block b~otstrap method while defining 
the bootstrap version of estimators Bn given by (2.11). For a numerical 
example comparing the naive and the ordinary versions of the MBB and 
certain other block bootstrap methods, see Section 4.5. 

We conclude this section with two remarks. First, it is easy to see that the 
above description of the MBB and the "blocks of blocks" bootstrap applies 
almost verbatim if, to begin with, the observations X 1, ... , Xn were ran­
dom vectors instead of random variables. Second, performance of a MBB 
estimator critically depends on the block size £. Since the sampling dis­
tribution of a given estimator typically depends on the joint distribution 
of X 1, ... , Xn, the block size £ must grow to infinity with the sample size 
n to capture the dependence structure of the series {Xn}n;?; 1 , eventually. 
Typical choices of£ are of the form£= Cn6 for some constants C > 0, 
5 E (0, 1/2). For more on properties of MBB estimators and effects of block 
lengths on their performance, see Chapters 3-7. 
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2.6 Nonoverlapping Block Bootstrap 

In this section, we consider the blocking rule due to Carlstein (1986). For 
simplicity, here we shall consider estimators given by (2.11) withp = 1 only. 
Extension to the case of a general p ?: 1 is straightforward. The key feature 
of Carlstein's blocking rule is to use nonoverlapping segments of the data to 
define the blocks. The corresponding block bootstrap method will be called 
the nonoverlapping block bootstrap (NBB). Suppose that£= £n E [1, n] is 
an integer and b ?: 1 is the largest integer satisfying £b ~ n. Then, define 
the blocks 

B?) = (X(i-1)£+1, ... , Xu)', i = 1, ... , b . 

(Here we use the index "2" in the superscipt to denote the blocks for the 
NBB resampling scheme. We reserve the index 1 for the MBB and we shall 
use the indices 3, 4, etc. for the other block bootstrap methods described 
later.) Note that while the blocks in the MBB overlap, the blocks Bi2)'s 
under the NBB do not. See Figure 2.2. As a result, the collection of blocks 
from which the bootstrap blocks are selected is smaller than the collection 
for the MBB. 

FIGURE 2.2. The collection { Bi2
), •.• , B~2)} of nonoverlap ping blocks under Carl­

stein's (1986) rule. 

The next step in implementing the NBB is exactly the same as that for 
the MBB. We select a simple random sample of blocks s;<2

), .•. , B~(2) with 

replacement from { Bi2
), ... , B~2)} for some suitable integer k ?: 1. With 

m = k£, let F:;g; denote the empirical distribution of the bootstrap sam-
ple (X2,1, ... , X~,e; ... ; x;,{(b-1)£+1}, ... , X~,m), obtained by writing the 

elements of s;<2l, ... , B~(2) in a sequence. Then, the bootstrap version of 

an estimator Bn = T(Fn) is given by 

8*(2) = T(F*(2 )) . 
m,n m,n (2.13) 

Even though the definition of the bootstrapped estimators are very sim­
ilar for the MBB and for the NEB, the resulting bootstrap versions 8:r,,n 

and 8~~J have different distributional properties. We illustrate the point 
with the simplest case, where Bn = n- 1 2:::7=1 Xj is the sample mean. The 
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bootstrap version of {jn under the two methods are respectively given by 

m m 

8* -1 '""""'X* m,n=m ~ i' and 8*(2) = m-1 '""""'X* . 
m,n L...J 2,J · 

j=1 j=1 

From (2.10), we get 

i=1 
N f 

N-1 L ( £-1 L Xj+i-1) 
j=1 i=1 

To obtain a similar expression for E*(8~~J), note that under the NBB, 
the bootstrap variables (X{!, ... , X~.e), ... , (x;,(m-£+1)' ... , X~,m) are iid, 
with common distribution 

(2.15) 

for j = 1, ... , b. Hence, 

R 

E (8*<2l) * m,n E (r 1 '""""'X* ·) * ~ 2,t 
i=1 

b R 

b-
1 z= ( r 1 L x(j-1)£+i) 

j=1 i=1 

(2.16) 

which equals Xn if n is a multiple of£. Thus, the bootstrapped estimators 
have different (conditional) means under the two methods. However, note 
that if the process { Xn}n>1 satisfies some standard moment and mixing 

conditions, then E{E*(8;,.:)- E*8~~J}2 = O(£jn2
). Hence the difference 

between the two is negligible for large sample sizes. 

2.7 Generalized Block Bootstrap 

As follows from its description (cf. Section 2.5), the MBB resampling 
scheme suffers from an undesirable boundary effect as it assigns lesser 
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weights to the observations toward the beginning and the end of the data 
set than to the middle part. Indeed, for 1'. ::; j ::; n - 1'., the jth obser­
vation Xj appears in exactly 1'. of the blocks {B1, ... , BN }, whereas for 
1 ::; j ::; 1'.- 1, Xj and Xn-H1 appear only in j blocks. Since there is no 
observation beyond Xn (or prior to X 1), we cannot define new blocks to get 
rid of this boundary effect. A similar problem also exists under the NBB 
with the observations near the end of the data sequence when n is not a 
multiple of 1'.. Politis and Romano (1992b) suggested a simple way out of 
this boundary problem. Their idea is to wrap the data around a circle and 
form additional blocks using the "circularly defined" observations. Politis 
and Romano (1992b, 1994b) put forward two resampling schemes based on 
circular blocks, called the "circular block bootstrap" (CBB) and the "sta­
tionary bootstrap" (SB). Here we describe a generalization of their idea and 
formulate the generalized block bootstrap method, which provides a unified 
framework for describing different block bootstrap methods, including the 
CBB and the SB. 

Given the variables Xn = {X1, ... , Xn}, first we define a new time series 
Yn,i, i 2': 1 by periodic extension. Note that for any i 2': 1, there are integers 
ki 2': 0 and ji E [1, n] such that i =kin+ ji. Then, i = ji (modulo n). We 
define the variables Yn,i, i 2': 1 by the relation Yn,i = Xj,. Note that this 
is equivalent to writing the variables X 1, ... , Xn repeatedly on a line and 
labeling them serially as Yn,i, i 2': 1. See Figure 2.3. 

Xn X1 

Yn,n Yn,(n+1) 

FIGURE 2.3. The periodically extended time series Yn,i, i 2: 1. 

Next define the blocks 

B(i,j) = (Yn,i, ... , Yn,(i+j-1)) 

for i 2': 1, j 2': 1. Let r n be a transition probability function on the set 
JRn X Q9:1({1, ... ,n} X N), i.e., for each x E JRn, rn(x;·) is a probability 

measure on ®:1 ( {1, ... , n} x N) = { {it, 1'.t}~ 1 : 1 ::; it ::; n, 1 ::; i'.t < 

oo for all t 2': 1} and for any set A c ®:1 ( { 1, ... , n} x N), r n ( ·; A) 
is a Borel measurable function from JRn into [0,1]. Then, the generalized 
block bootstrap (GBB) resamples blocks from the collection {B(i,j) : i 2': 
1, j 2': 1} according to the transition probability function r n as follows. Let 
(h, J1), (h, Jz), ... be a sequence of random vectors with conditional joint 
distribution r n(Xn; ·), given Xn. Then, the blocks selected by the GBB 
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are given by B(h, J 1), B([z, h),... (which may not be independent). Let 
Xa,l> xG,2> ... denote the elements of these resampled blocks. Then, the 

bootstrap version of an estimator Bn = T(Fn) under the GBB is defined as 

e;./;:;2 = T(F;;,C,~l) for a suitable choice of m ;:::: 1, where F;;..~~) denotes the 
empirical distribution of X 0 1, ... , X 0 m. 

Almost all block bootstrap method~ proposed in the literature can be 
shown to be special cases of the GBB. For example, for the MBB based on 
a block length 1'., 1 ::; 1'. ::; n, the transition probability function r n is given 
by 

oo N 

rn(x;·) = Q9 ((N-1 2:Dj) X 8e), x E JRn 
i=l j=l 

where N = n -1'. + 1 and Dy is the probability measure putting mass one at 
y. In this case, r n ( x; ·) does not depend on x E JRn, and the random indices 
(h, J1), (12, h), ... are conditionally iid random vectors with conditional 
distribution 

if 1 ::; j ::; N and k = 1'. 
otherwise. 

As a consequence, the resampled blocks B(h, J 1), B(Iz, h), ... , come from 
the subcollection { B( i, j) : 1 ::; i ::; N, j = 1'.}, which is the same as the 
collection of overlapping blocks {B1, ... , B N} defined in Section 2.5. Simi­
larly, the NBB method can also be shown to be a special case of the GBB. 
Here, we consider a few other examples. 

2. 7.1 Circular Block Bootstrap 

The Circular Block Bootstrap (CBB) method, proposed by Politis and 
Romano ( 1992b) resamples overlapping and periodically extended blocks 
of a given length 1'. (say) satisfying 1 « 1'. « n from the subcollection 
{B(i, 1'.), ... , B(n, 1'.)}. The transition function r n for the CBB is given by 

oo n 

rn(x; ·) = ® ((n-1 L8j) X 8e), X E JRn. (2.17) 
i=l j=l 

Denote the resampling block indices for the CBB (i.e., the variables Ii's 
in the collection (h, J 1), (!2 , J 2 ), ... whose joint distribution is specified 
by the rn(-,·) of (2.17)) by h,1,h,2 , .... Then, (2.17) implies that the 
variables !3,1, h,2, ... are conditionally iid with P*(h,1 = i) = n-1 and 
P* ( Ji = 1'.) = 1 for all i = 1, ... , n. Since each Xi appears exactly 1'. times in 
the collection of blocks {B(i, 1'.), ... , B(n, 1'.)}, and since the CBB resamples 
the blocks from this collection with equal probability, each of the original 
observations X 1 , ... , Xn receives equal weight under the CBB. This prop­
erty distinguishes the CBB from its predecessors, viz., the MBB and the 
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NEB, which suffer from edge effects. This is also evident from the following 
observation. Let X3' 1 , X3' 2 , ... denote the CBB observations obtained by 
arranging the eleme~ts of the resampled blocks {B(h,i, £) : i ~ 1} and let 

.X;;pl denote the CBB sample mean based on m bootstrap observations, 
where m = k£ for some integer k ~ 1. Then, by (2.17), 

E x-·<3l * m E. [m-1 fx;,i] 
t=l 

c- 1
E. [tx;,i] 

c-1 
[n-

1 t { tYn,(j+i-l)}] 
J=l t=l 

c-1 [cxn J 
Xn. (2.18) 

Thus, the conditional expectation of the bootstrap sample mean under the 
CBB equals the sample mean of the data Xn, a property not shared by the 
MBB or the NEB. As noted by Politis and Romano (1992b), this makes it 
easier to define the bootstrap version of a pivotal quantity of the form Tn = 

- * - •(3) - . 
tn(Xn; p,), where p, = EX1. Under the CBB, Tm,n = tm(Xm ; Xn) giVes 
the appropriate bootstrap version ofTn· However, replacing the population 
parameter p, simply by Xn to define the bootstrap version of Tn under the 
MBB or the NBB introduces some extra bias and hence, it is no longer the 
right thing to do (cf. Lahiri (1992a)). We shall look at properties of the 
CBB method in Chapters 3, 4, and 5. 

2. 7.2 Stationary Block Bootstrap 

The stationary bootstrap (SB) of Politis and Romano (1994b) differ from 
the earlier block bootstrap methods (i.e., from MBB, NEB, and CBB) in 
that it uses blocks of random lengths rather than blocks of a fixed length 
£. Let p =::: Pn E (0, 1) be such that p-+ 0 and np-+ oo as n-+ oo. Then 
the SB resamples the blocks B(I4,1, J 4,1), 8(14,2, J4,2), ... where the index 
vectors (I4,1, J 4,1), (J4,2, J4,2), ... are conditionally iid with h1 having the 
discrete uniform distribution on {1, ... , n }, and J4,1 having the geometric 
distribution Vn with parameter p, i.e., 

(2.19) 
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Furthermore, J4,1 and J 4,1 are independent. Thus, the SB corresponds to 
the GBB method with the transition function f n(·; ·) given by 

oo n 

fn(x;·)=Q9((n- 1 LOj)xvn), xElRn . 
i=l j=l 

Note that here also, r n(x; ·)does not depend on X E JRn. 
The SB method can be described through an alternative formulation, 

also given by Politis and Romano (1994b). Suppose, XJ, 1 , XJ,2 , ... denote 
the SB observations, obtained by arranging the elements of the resampled 
blocks B(I4,1, J4,1), B(I4,2, J4,2), ... in a sequence. The sequence {X4,JiEN 
may also be generated by the following resampling mechanism. Let XJ,1 
be picked at random from {X1, ... ,Xn}, i.e., let X4,1 = Yn,I4 ,1 where h,1 
is as above. To select the next observation XJ 2 , we further randomize 
and perform a binary experiment with probability of "Success" equal to 
p. If the binary experiment results in a "Success," then we select XJ,2 

again at random from {X1, ... ,Xn}· Otherwise, we set X4,2 = Yn,(I4 , 1 +1), 
the observation next to X4,1 = Yn,I4 , 1 in the periodically extended series 
{Yn,ih~l· In general, given that XJ,i has been chosen and is given by Yn,io 

for some i 0 ~ 1, the next SB observation x:,(i+l) is chosen as Yn,(io+1) 
with probability (1- p) and is drawn at random from the original data set 
Xn with probability p. 

To see that these two formulations are equivalent, let Wi denote the 
variable associated with the binary experiment for selecting XJ i' i ~ 2. 
Then, conditional on Xn, Wi,i ~ 2 are iid random variables with'P.(Wi = 
1) = p = 1- P.(Wi = 0), and {W;: i ~ 2} is independent of {h,i: i ~ 1}. 
Next define the variables Mj,j ~ 0, by 

Mo 1, 

Mj inf{i ~ Mj-1 + 1: Wi = 1}, j ~ 1. 

Thus, Mj, j E N denotes the trial number in the sequence of trials 
{W; : i ~ 2} at which the binary experiment resulted in the jth "Suc­
cess" and has a negative binomial distribution with parameters j and p 
(up to a translation). Note that the corresponding SB observation, viz., 
X 4* M·, is then selected at random from {X 1, ... , Xn} as X4 M. = Yn,I4 CHI), 

' J l J , 

j ~ 1. On the other end, for any i between Mj-1 + 1 and Mj - 1, 
the binary experiment resulted in a block of "Failures," and the corre­
sponding SB observations are selected by picking (Mj - Mj-1 - 1) vari­
ables following Yn,I4,J in the sequence {Yn,ihEN· Thus, the binary tri­
als {Wi : i = Mj_1, ... , Mj - 1} lead to the "SB block" of observa­
tions { X4,Mj-l' ... 'x:,(Mrl)} = {Yn,I4,j' ... 'Yn,(I4,j+Mj-Mj-l-1)}, j ~ 1. 
Now, defining J4 ,j = Mj - Mj-l, j ~ 1 and using the properties of the 
negative binomial distribution (cf. Section Xl.2, Feller (1971a)), we may 
conclude that h,1 , J 4 ,2 , ... are (conditionally) iid and follow the geometric 
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distribution with parameter p. Hence, the two formulations of the SB are 
equivalent. 

An important property of the SB method is that conditional on Xn, the 
bootstrap observations {X4,ihEN are stationary (which is why it is called 
the "stationary" bootstrap). A simple proof of this fact can be derived 
using the second formulation of the SB as follows. Let { Zi}iEN be a Markov 
chain on {1, ... , n} such that conditional on Xn, the initial distribution of 
the chain is 1r = (n-I, ... , n-I )' and the stationary transition probability 
matrix of { Zi hEN is Q = ( ( Qij)), where 

1 ~ i < n, j = i + 1 
1 ~ i < n, j =/= i + 1 
i = n,2 ~ j ~ n 
i = n,j = 1. 

(2.20) 

Thus, ZI takes the values 1, ... , n with probability n-I each. Also, for 
any k ;:::: 1, given that zk = i, 1 ~ i ~ n, the next index zk+I takes 
the value i + 1 (modulo n) with probability p + n-I(1- p) and it takes 
each of the remaining (n- 1) values with probability n-I(1- p). Thus, 
from the second formulation of the SB described earlier, it follows that the 
SB observations {XthEN may also be generated by the index variables 
{Zi}iEN as 

X4,i = Xzi, i ;:::: 1 . (2.21) 

To see that { X4,JiEN is stationary, note that by definition, the transition 
matrix Q is doubly stochastic and that it satisfies the relation 1r' Q = 1r1• 

Therefore, 1r is the stationary distribution of { Zi}iEN and { Zi}iEN is a 
stationary Markov chain. Thus, we have proved the following Theorem. 

Theorem 2.3 Let :Fin denote the O"-jield generated by Zi and Xn, i ;:::: 1. 
Then, conditional on Xn, {X4,i,:FinhEN is a stationary Markov chain for 
each n;:::: 1, i.e., 

and 

I~ particular, Theorem 2.3 implies that conditional on Xn, {X4,ih2:I is 
statiOnary. Furthermore, by (2.20) and (2.21), for a given resample size m, 

~he .conditional expectation of the SB sample mean g;:_.C4
) = m-I L:::I X4,i 

IS given by 

E*(X;;[4l) = E*X4' I = Xn . (2.22) 

We shall consider other properties of the SB method in Chapters 3-5. 

2.8 Subsampling 37 

2.8 Subsampling 

Use of different subsets of the data to approximate the bias and variance 
of an estimator is a common practice, particularly in the context of iid 
observations. For example, the Jackknife bias and variance estimators are 
computed using subsets of size n-1 from the full sample Xn = (XI, ... , Xn) 
(cf. Efron (1982)). However, as noted recently (see Carlstein (1986), Politis 
and Romano (1994a), Hall and Jing (1996), Bickel et al. (1997), and the 
references therein), subseries of dependent observations can also be used to 
produce valid estimators of the bias, the variances, and more generally, of 
the sampling distribution of a statistic under very weak assumptions. 

To describe the subsampling method, suppose that Bn = tn(Xn) is an 
estimator of a parameter(}, such that for some normalizing constant an > 0, 
the probability distribution Qn(x) = P(an(Bn -0) ~ x) of the centered and 
scaled estimator Bn converges weakly to a limit distribution Q(x), i.e., 

Qn(x) --+ Q(x) as n--+ oo (2.23) 

for all continuity points x of Q. Furthermore, assume that an --+ oo as 
n--+ oo and that Q is not degenerate at zero, i.e., Q( {0}) < 1. Let 1 ~ £ ~ n 
be a given integer and let 

1 ~ i ~ N, denote the overlapping blocks of length£ where N = n- £ + 1. 
Note that the blocks Ei's are the same as those defined in Section 2.4 for the 
MBB. Then, the subsampling estimator of Qn, based on the overlapping 
version of the subsampling method, is given by 

N 

Qn(x) =N-IL TI.(ac(Bi,c- Bn) ~ x), x E ~, (2.24) 
i=I 

where Bi,£ is a "copy" of the estimator Bn on the block Bi, defined by 

Bi,£ = tc(Bi), i = 1, ... ,N. Note that we used tc(-) (in place of tn(·)) 
to define the subsample copy "Bi,c," as the ith block Bi contains only £ 
observations. That is also the reason behind using the scaling constant ac 
instead of an. From the above description, it follows that the overlapping 
version of the subsampling method is a special case of the MBB where a 
single block is resampled. 

The estimator Qn of the distribution function Qn(x) can be used to 
obtain subsampling estimators of the bias and the variance of Bn. Note 
that the bias of Bn is given by 

' A I J Bias(On) =EOn-(}= a;; xdQn(x) . 
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The,subsampling estimator of Bias( en) is then obtained by replacing Qn(·) 
by Qn(·), viz., 

(2.25) 

Similarly, the subsampling estimator of the variance of en is given by 

(2.26) 

which is the sample variance of ei,£ 1
S multiplied by the scaling factor a~a:;;2. 

In (2.25) and (2.26), we need to use the correction factors (ae/an) and 
(ae/an) 2 to scale up from the level of ei,£ 1

S, which are defined using £­
observations, to the level of en, which is defined using n-observations. In 
applying a bootstrap method, one typically uses a resample size that is com­
parable to the original sample size, and therefore, such explicit corrections 
of the bootstrap bias and variance estimators are usually unnecessary. 

In analogy to the bootstrap methods, one may attempt to apply the 
subsampling method to a centered variable of the forrri T1n = (en - B). 
However, this may not be the right thing to do. Indeed, if instead of using 
the subsampling method for the scaled random variable an (en - B), we 
consider only the centered variable T1n = (en- B), then the subsampling 
estimator of the distribution Q1n, say, of T1n would be given by 

N 

Qln(x) = N-1 L n.((ei,£- en)~ x), X E lR. 
i=l 

Since Bias( en)= ET1n = J xdQln(x), using Qln(x), we would get 

as an estimator of Bias( en), and similarly, we would get 

as an estimator of Var(On)· However, these subsampling estimators of the 
bias and the variance of On, defined using Q1n(x), are very "poor" esti­
mat~rs of the correspond}ng population parameters. To ap~reciate why, 
constder the case where On = Xn and 0 = EX1 and n112 (0n- O) ---+d 

N(O, O"~) as n --+ oo with 0'~ = 2:::~-oo Cov (X1 , Xi+ I) =J 0. Write 
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Xi,£ for the average of the R. observations in Bi, i = 1, ... , N. Then, 
iT (e ) _ N-1 "'N X-2 '2 h , N-1 "'N X- . var1n n - L._..i=l i,£ - f1n, w ere f1n = L._..i=l i,£ lS the av-
erage of the N block averages. Then, it is not difficult to show that under 
some standard moment and weak dependence conditions on the process 
{Xi}iEZ and under the assumption that g-I + n-1£ = o(l) as n--+ oo, 

Va;In(en) 
N 

Var(Xt) + N-1 L {[Xi,£ - B] 2 
- Var(X£)} - [Mn - B] 2 

i=l 

(2.27) 

whereas Var(Xn) = n-10'~ + O(n-2 ) as n --+ oo. Thus, Va;1n(en) indeed 
overestimates the variance of en by a scaling factor of n/R., which blows up 
to infinity with n. It is easy to see that the other estimator, viz., Va;(en) 
is equal to R./n times Va;ln(en) in this case and thus, provides a sensible 
estimator of Var(Xn). The reason that the subsampling estimator based 
on T1n does not work in this case is that the limit distribution of T1n is 
degenerate at zem, and does not satisfy the nondegeneracy requirement 
stated above. 

Formulas (2.24), (2.25), and (2.26) illustrate a very desirable property of 
the subsampling method that holds true generally. Computations of Qn(·) 
and of estimates of other population quantities based on Qn do not involve 
any resampling and hence, are less demanding. Typically, a simple, closed­
form expression can be written down for a subsampling estimator of a level-
2 parameter, and it needs computation of the subsampling version e · £ of the 

h ~ 

estimator Bn only N times, as compared to a much larger number of times 
for the resampling methods like the MBB. However, the price paid is the 
lack of "automatic" second-order correctness of the subsampling method 
compared to the MBB and other block bootstrap methods. 

We conclude this section with an observation. As noted previously, the 
subsampling method is a special case of the MBB where the number of 
resampled blocks is identically equal to 1. Exploiting this fact, we may sim­
ilarly define other versions of the subsampling method based on nonover­
lapping blocks or circular blocks. More generally, it is possible to extend 
the subsampling method in the spirit of the GBB method. We define the 
"generalized subsampling" method as the GBB method with a single sam­
ple (h, J1) of the indices. Thus, the generalized subsampling estimator of 
Qn(x) (cf. (2.23)) is given by 

where Oj,,n = tJ, (B(/1, J1)) is a copy of On based on the GBB samples 
from a single block B(h, h) of length h. 
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2.9 Transformation-Based Bootstrap 

As described in Chapter 1, the basic idea behind the bootstrap method is 
to recreate the relation between the population and the sample using the 
sample itself. For dependent data, the most common approach to this prob­
lem is to resample "blocks" of observations instead of single observations, 
which preserves the dependence structure of the underlying process within 
the resampled blocks and is able to reproduce the effect of dependence 
at short lags. A quite different approach to the problem was suggested 
by Hurvich and Zeger (1987). In their seminal work, Hurvich and Zeger 
(1987) considered the discrete Fourier transform (DFT) of the data and 
rather than resampling the data values directly, they applied the liD boot­
strap method of Efron (1979) to the DFT values. The transformation based 
bootstrap (TBB) described here is a generalization of Hurvich and Zeger's 
(1987) idea. 

To describe it, let(}= O(P) be a parameter of interest, which depends on 
the underlying probability measure P generating the sequence {Xi};Ez, 
and let Tn = tn(Xn) be an estimator of (} based on the observations 
Xn = (X1, ... , Xn)· Our goal is to approximate the sampling distribution 
of a normalized or studentized statistic Rn = rn(Xn; 0). Let Yn = hn(Xn) 
be a (one-to one) transformation of Xn such that the components of Yn, 
say, {Y; : i E In}, are "approximately independent". Also suppose that 
the variable Rn can be expressed (at least to a close approximation) in 
terms of Yn as Rn = r1n(Yn; 0) for some reasonable function r1n. Then, 
to approximate the distribution of Rn by the TBB, we resample from a 
suitable subcollection {Y; : i E .:ln} of {Y; : i E In} to get the bootstrap 
observations Y~ = {Y;* : i E In} either by selecting a single Y-value at 
a time as in the liD-bootstrap method of Efron (1979) or by selecting a 
block of Y-values from {Y; : i E .:ln} as in the MBB, depending on the 
dependence structure of {Y; : i E .:ln}· The TBB estimator of the distribu­
tion of Rn is then given by ~he conditional distribution of R~ = r1n(Y~; On) 
given the data Xn, where On is an estimator of(} based on Xn. Thus, as a 
principle, the TBB method suggests an additional transformation step to 
reduce the dependence in the data to an iid structure or to a weaker form 
of dependence. 

An important example of the TBB method is the Frequency Domain 
Bootstrap (FDB), which uses the Fourier transform of the data to generate 
the ¥-variables of the TBB. Suppose that {Xi};Ez is a sequence of sta­
tionary, weakly dependent random variables. The Fourier transform of the 
observations Xn is defined as 

n 

Yn(w) = n-1/ 2 L Xj exp( -~wj), wE ( -1r, 1r] , 

j=1 
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where recall that~= y'=I. Though the Xi's are dependent, a well known 
result in time-series states ( cf. Brockwell and Davis (1991, Chapter 10); 
Lahiri (2003a)) that for any set of distinct ordinates -1r < .\1, ... , Ak :S: 1r, 

the Fourier transforms Yn(.\1), ... , Yn(Ak) are asymptotically independent. 
Furthermore, the original observations Xn admit a representation in terms 
of the transformed values Yn = {Yn ( Wj) : j E In} as ( cf. Brockwell and 
Davis (1991, Chapter 10)), 

Xt=n- 112 LYn(wj)exp(dwj), t=1, ... ,n 
jEin 

(2.28) 

where Wj = 21rjjn and In = { -L(n- 1)/2J, ... , Ln/2j}. Thus, using the 
inversion formula (2.28), we can express a given variable Rn = rn(Xn; 0) 
also in terms of the transformed values Yn· Since the variables in Yn are 
approximately independent, we may (suitably) resample these Y-values to 
define the FDB version of Rn. Here, however, some care must be taken since 
the (asymptotic) variance of the ¥-variables are not necessarily identical. 
A more complete description of the FDB method and its properties are 
given in Chapter 9. 

2.10 Sieve Bootstrap 

Let {Xi};Ez be a stationary time series and let Tn = tn(Xl, ... , Xn) be an 
estimator of a level-1 parameter of interest(}= O(P), where P denotes the 
(unknown) joint distribution of {Xi};EZ· Then, the sampling distribution 
of T n is given by 

(2.29) 

for Borel sets Bin R, where Pot;;; 1 denotes the probability distribution on 
R induced by the transformation tn(·) under P. As described in Chapter 1, 
the bootstrap and other resampling methods are general estimation meth­
ods for estimating the level-2 parameters like Gn(B), Var(Tn), etc. When 
the Xi's are iid with a common distribution F, we may write P = p= 
and an estimator of Gn(B) in (2.29) may be generated by replacing P with 
Pn = F;:" in (2.28), where Fn is an estimator of F. However, when the 
Xi's are dependent, such a factorization of P does not hold. In this case, 
estimation of the level-2 parameter Gn(B) can be thought of as a two-step 
procedure where, in the first step, P is approximated by a "simpler" prob­
ability distribution Pn and in the next step, Pn is estimated using the data 
{X1, ... , Xn}· The idea of the sieve bootstrap is to choose { Fn}n>1 to be 
a sieve approximation toP, i.e., {Pn}n>l is a sequence of probability mea­
sures on (JR'Xl, B(R00)) such that for ea~h n, Pn+l is a finer approximation 
to P than Pn and Pn converges to P (in some suitable sense) as n -+ oo. 
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For the block bootstrap methods like the NBB or the MBB, the first step 
approximation Pn is taken to be Pe@ Pe@ .. . , where Pe denotes the joint 
distribution of the block {X 1, ... , Xe} of length £. In the second step, Pe 
is estimated by the empirical distribution of all overlapping (under MBB) 
or nonoverlapping (under NBB) blocks of length £ contained in the data. 
For a large class of stationary processes, Biihlmann (1997) presents a sieve 
bootstrap method based on a sieve of autoregressive processes of increas­
ing order, which we shall briefly describe here. However, other choices of 
{ Fn}n?:1 is possible. See Biihlmann (2002) for another interesting proposal 
based on variable length Markov chains for finite state space categorical 
time series. In general, there is a trade-off between the accuracy and the 
range of validity of a given sieve bootstrap method. Typically, one may 
choose a sieve to obtain a more accurate bootstrap estimator, but only at 
the expense of restricting the applicability to a smaller class of processes 
( cf. Lahiri ( 2002b)). 

Let {Xi}iEz be a stationary process with EX1 = p, such that it admits 
the one-sided moving average representation 

00 

xi- p, = L ajEi-j , i E z 
j=O 

(2.30) 

where { Ei}iEZ is a sequence of zero mean uncorrelated random variables and 
where ao = 1, 2:::1 a; < oo. Suppose that {Xi}iEZ satisfies the standard 
invertibility conditions for a linear process (cf. Theorem 7.6.9, Anderson 
(1971)). Then, we can represent {Xi- p,}iEz as a one-sided infinite order 
autoregressive process 

00 

(Xi- p,) = L (3j(Xi-j - p,) + Ei ' i E z 
j=1 

(2.31) 

with I:~o1 f3J < oo. The representation (2.31) suggests that autoregressive 
processes of finite orders Pn, n 2': 1, may be used to define a sieve ap­
proximation for the joint distribution P of {Xi}iEZ· To describe the sieve 
bootstrap based on autoregression, let Xn = {X1, ... , Xn} denote the ob­
servations from the process {Xi}iEZ· Let {Pn}n>1 be a sequence of positive 
integers such that Pn I oo as n--+ oo, but n- 1p~--+ 0 as n--+ oo. The sieve 
approximation Pn to P is determined by the autoregressive process 

Pn 

Xi-tJ=Lf3J(Xi-J-tJ)+Ei, iEZ. 
j=1 

(2.32) 

Next, we fit the AR(Pn) model (2.32) to the data Xn to obtain estimators 
of the autoregression parameters b1n, ... , bPnn (for example, by the least 
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squares method). This yields the residuals 

Pn 

Ein =(Xi -X)- LbJn(Xi-J -Xn), Pn +1 :S i :S n 
j=1 
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where Xn = n-1 2::~= 1 Xi. As in Section 2.4, we center the residuals at 
En = (n - Pn)- 1 l:~=Pn+l Ein and resample from the centered residuals 
{ Ein - En : Pn + 1 ::;: i ::;: n} to generate the sieve bootstrap error variables 
t7, i 2': Pn + 1. Then, the sieve bootstrap observations are generated by the 
recursion relation 

Pn 

(X;- Xn) = l:bjn(X;_j- Xn) + < , i 2': Pn + 1 
j=1 

by setting the initial Pn-variables Xi' ... l x;n equal to Xn. The autore­
gressive sieve bootstrap version of the estimator Tn = tn(X1,· .. ,Xn) is 
now given by 

T;;,,n = tm(X{, ... , X;;,) , m > Pn · 

Under some regularity conditions on the variables { Ei}iEz of (2.30) and 
the sieve parameter Pn, Biihlmann (1997) establishes consistency of the 
autoregressive sieve bootstrap. It follows from his results that the autore­
gressive sieve bootstrap provides a more accurate variance estimator for the 
class of estimators given by (2.11) than the MBB and the NBB. However, 
consistency of the autoregressive sieve bootstrap variance estimators holds 
for a more restricted class of processes than the block bootstrap methods. 
See Biihlmann (1997), Choi and Hall (2000), and the references therein for 
more about the properties of the autoregressive sieve bootstrap. 



7 
Empirical Choice of the Block Size 

7.1 Introduction 

As we have seen in the earlier chapters, performance of block bootstrap 
methods critically depends on the block size. In this chapter, we describe 
the theoretical optimal block lengths for the estimation of various level-2 
parameters and discuss the problem of choosing the optimal block sizes 
empirically. For definiteness, we restrict attention to the MBB method. 
Analogs of the block size estimation methods presented here can be de­
fined for other block bootstrap methods. In Section 7.2, we describe the 
forms of the MSE-optimal block lengths for estimating the variance and the 
distribution function. In Section 7.3, we present a data-based method for 
choosing the optimal block length based on the subsampling method. This 
is based on the work of Hall, Horowitz and Jing (1995). A second method 
based on the Jackknife-After-Bootstrap (JAB) method is presented in Sec­
tion 7.4. Numerical results on finite sample performa;nce of these optimal 
block length selection rules are also given in the respective sections. 

7. 2 Theoretical Optimal Block Lengths 

Let (X1, ... , Xn) = Xn denote a finite stretch of random variables, observed 
from a stationary weakly dependent process {Xi}iEZ in JRd. Let Bn be an 
estimator of a level-1 parameter of interest B E JR, based on Xn. In this 
section, we obtain expansions for the MSEs of block bootstrap estimators 
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for various characteristics of the distribution of On. Let Gn denote the 
distribution of the centered estimator (On - ()), i.e., 

(7.1) 

The level-2 parameters of interest here are given by 

ipln = Bias(On) = J xdGn(x) (7.2) 

'P2n = Var(On) = J x2dGn(x)- (j xdGn(x)f (7.3) 

(7.4) 

_ (lfo(On-())1 ) (YoTn) (-YoTn) 'P4n = 'P4n(Yo) = P Tn ~Yo = Gn Vn - Gn Vn ' 
(7.5) 

where xo E lR and Yo E (0, oo) are given real numbers and where r; is the 
asymptotic variance of fo( On - ()). Here, 'Pln and 'P2n are, respectively, 
the bias and the variance of the estimator On, 'P3n denotes the (one-sided) 
distribution function of fo(On -())at a given point xo E JR, and 'P4n denotes 
the two-sided distribution function of fo(On- ()) at y0 E (0, oo ). The latter 
is useful for constructing symmetric confidence intervals for () ( cf. Hall 
(1992)). Next, fork= 1, 2, 3, 4, let cpkn(£) denote the MBB estimators of the 
level-2 parameter 'Pkn based on blocks of length£. We define the theoretical 
optimal block length £Zn as the minimizer of the MSE of cpkn ( £) over a set 
of values of the block size £, depending on k = 1, 2, 3, 4. Specifically, we 
define 

£Zn = argmin{ MSE(cpkn(£)) : m• < £ < E-1n 112
-• }, k = 1, 2 (7.6) 

£Zn=argmin{MSE(cpkn(£)) :m•~£~E- 1n113-•}, k=3,4 (7.7) 

for some small E > 0. It will follow from the arguments and results below 
that the theoretical optimal block length £Zn is of the order n113 for the 
bias and the variance functionals (with k = 1, 2), while the order of £2n 
for the one- and the two-sided distribution functions, with k = 3 and 
k = 4, are of the orders n 114 and n 115 , respectively. Thus, the ranges 
[m•, c--1n112-•] and [m•, c--1n 113-•] of block lengths£ in (7.6) and (7.7), 
respectively, contain the optimal block lengths £2n for all k = 1, 2, 3, 4. 
Indeed, it can be shown that under some additional regularity conditions, 
the theoretical optimal block lengths £Zn have the same order even when 
the ranges of£ values in (7.6) and (7.7) are replaced by the larger interval 
[m•, c 1n1-•] for an arbitrarily small E E (0, 1). However, we will restrict 
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attention to the range of£ values specified by (7.6) and (7.7) and will not 
pursue such generalizations here. 

For deriving expansions for the MSEs of the block bootstrap estimators 
cpkn(C)'s, k = 1,2,3,4, we shall suppose that the level-1 parameter() and 
its estimator On satisfy the requirements of the Smooth Function Model 
(cf. Section 4.2). Thus, there exists a function H: JRd-+ lR such that 

(7.8) 

and the function His "smooth" in a neighborhood of Jl, where J1 = EX1 
and Xn = n-l 2::::~=1 xi. Recall that we write Ca = D 0 H(Jl)/a!, na for the 

. • 8"'1 + .. ·+ad d 1 _ )' d1fferentml operator ax"'1 ... 8 xcrd and a! = I1i=l ai. for a - ( a1, ... , ad E 
1 d 

Zi. 

7.2.1 Optimal Block Lengths for Bias and Variance 
Estimation 

Expansions of the MSEs of the MBB estimators of the bias and the variance 
of the estimator On under the Smooth Function Model (7.8) was given in 
Chapter 5. Here, we recast the relevant results in a slightly different form 
by expressing relevant population quantities in the time domain. Let Zoo 
be a d-dimensional Gaussian random vector with mean zero and covariance 
matrix I::oo = 2::::~-oo E{(X1- Jl)(Xl+j- 11)'}. 

Theorem 7.1 Suppose that .e-1 + n-112£ = o(1) as n-+ oo. 

(a) Suppose that Conditions (5.Dr) and (5.Mr) of Section 5.4 hold with 
r = 3 and r = 3 + ao, respectively, where ao is as specified by (5.Dr)· 
Then 

MSE( n · cpln(C)) [(n- 1£)~Var( L caZ~) +£-
2
Ai] 

lal=2 

+ o(n -I.e+ .e-2) , (7.9) 

where 

A1 = - L L Ca+f3 [ f JjiE(Xl - J1) 0
(XI+j - Jl)/3] . 

lnl=ll/31=1 j=-oo 

(b) Suppose that Conditions (5.Dr) and (5.Mr) of Section 5.4 hold with 
r = 2 and r = 4 + 2a0 , respectively, where a0 is as specified by Con­
dition (5.Dr ). Then, 

[(n- 1£)~Var( ( L CaZ~ r) +r2A~J 
lnl=l 

+o(n-1£+r2
), (7.10) 
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where 

Az = - L L cO'c(3 [ f IJIE(XI - JL)O'(Xl+J - JL) 13 ] . 
10'1=11!31=1 j=-oo 

Proof: Follows from the proofs of Theorems 5.1 and 5.2 for the case 
'j = 1' (corresponding to the MBB estimators). D 

Note that under the regularity conditions of Theorem 7.1, both the bias 
and the variance of the estimator Bn are of the order O(n- 1 

). Hence, we 
state the MSEs of the scaled bootstrap bias estimator n · rj;1n(fl) and of 
the scaled bootstrap variance estimator n · rpzn(fl), in Theorem 7.1. Al­
ternatively, we may think of the scaled bootstrap estimators n · <Pkn(fl) 
as estimators of the limiting level-2 parameters 'Pk,oo = limn-->oo n · <pkn, 

k = 1, 2, given by 

'Pl,oo L L Ca+(3 [ f E(X1- JL)O'(Xl+j- JL)(3] 
10'1=1 1!31=1 j=-oo 

and 

L L CO'C(3[ f E(X!-JL)O'(Xl+j-JL)(3]. 
10'1=11!31=1 j=-oo 

Theorem 7.1 immediately yields expressions for the leading terms of the 
theoretical optimal block lengths for bias and variance estimation. We note 
these down in the following corollary. 

Corollary 7.1 Suppose that the respective set of conditions of Theorem 7.1 
hold for the bias functional (k = 1) and the variance functional (k = 2), 
and that the constants A1 and A2 are nonzero. Then, fork= 1, 2, 

£2n = nlf3(2AVv~)1/3 + o(nl/3) ' (7.11) 

where vi= ~Var(2: 1 0'f=Z cO'Z~) and v~ = ~Var([2: 1 0'f=l cO'Z~]
2 ). 

Kiinsch (1989) derived the leading term of the theoretical optional block 
length for the variance functional while Hall, Horowitz and Jing (1995) 
derived the leading terms for both the bias and the variance functionals 
<p1n and <pzn· The conclusions of Corollary 7.1 can be strengthened to 
some extent. A more detailed analysis of the remainder term in the proof 
of Theorem 7.1 can be used to show that under some additional smoothness 
and moment conditions, the o(n113 ) term on the right side (7.11) is indeed 
0(1) as n -+ oo, for both k = 1 and k = 2. Thus, the fluctuations of 
the true optimal block length from its leading term is bounded for both 
bias and variance functionals. In the next section, we consider theoretical 
optimal block lengths for the estimation of distribution functions. 

7.2 Theoretical Optimal Block Lengths 

7.2.2 Optimal Block Lengths for Distribution Function 
Estimation 
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First we consider the one-sided distribution function 'P3n of (7.4), given by 

for a given value x 0 E JR. Hall, Horowitz and Jing (1995) consider both 
the NBB and the MBB estimators of <p3n and derive expansions for the 
MSEs in the case of the sample mean, i.e., in the case where Bn = Xn 
and e = EX1 . An expansion for the MSE of the MBB estimator <hn(fl) 
(say) of <p3n is obtained by Lahiri (1996d) under the Smooth Function 
Model (7.8). Here we follow the exposition of Lahiri (1996d) and describe 
an expansion for MSE ( rj;3n ( £)) under the framework of Gotze and Hipp 
(1983), introduced in Chapter 6. Suppose that {Xi}iEZ is defined on a 
probability space (D, :F, P), { Xi}iEZ is stationary, and that {'Di}iEZ is a 
given sequence of sub-u-fields of :F. For -oo ~ a ~ b ~ oo, let 'D~ denote 
the smallest u-field containing {Vi : i E [a, b] n Z}. For easy reference, we 
now restate some of the conditions from Section 6.3, under the stationarity 
assumption on the process {Xi}iEZ· 

(C.1) There exists 5 E (0, 1) such that for all n, m = 1, 2, ... with m > J-1, 
there exists a v~:::;;::-measurable random vector x~,m satisfying 

(C.2) There exists 5 E (0, 1) such that for all i E Z, mEN, A E 'D~ 00 , and 
BE 'Df'+m, 

iP(A n B)- P(A)P(B)i ~ 5_1 exp( -6m) . 

(C.3) There exists 5 E (0, 1) such that for all m, n, k = 1, 2, ... , and A E 
vn+k 

n-k 

EiP(A I 'Dj: j i= n)- P(A I 'Dj: 0 < IJ- nl 
~ m+k)i ~ 5-1exp(-5m). 

(C.4) There exists 5 E (0,1) such that for all m,n = 1,2, ... with J-1 < 
m < n, and for all t E lRd with lltll ;::: 5, 

EIE{ exp(d'[Xn-m + .. · + Xn+m]) I 'Dj : j i= n} I ~ 5-l exp( -5m) . 

(C.5) EIIXtii 35H < oo for some 5 E (0, 1). 
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Conditions (C.1)~(C.4) are restatements of Conditions (6.C.3)~(6.C.6) from 
Chapter 6, respectively. For a discussion of these conditions, see Chapter 
6. We do not state Condition (6.C.2) separately here, as it follows from the 
conditional Cramer Condition (C.4) and the stationarity of { X;}iEZ· The 
moment Condition (C.5) is rather stringent. Lahiri (1996b) used this condi­
tion to prove negligibility of the remainder terms in the second-order Edge­
worth expansion of the bootstrap distribution function estimator <f>3n(£) in 
the L2-norm. 

The following result gives an expansion for the MSE of <f>3n ( £) = 
<P3n(xo; £) for a given xo E R 

Theorem 7.2 Assume that Conditions (C.1)-(C.5) hold and that the 
smoothness Condition (5.Dr) of Section 5.4 on the function H holds with 
r = 4. Also, suppose that for some E E (0, 3), 

(7.12) 

Then, there exist constants v31,v32 E (O,oo) and B31 ,B32 E IR such that 
for /xo/ =/= 1, 

MSE(<P3n(xo; £)) [Cx6 -1)¢(xo)]\~1 · n-2£2 

+ [<P(xo){Ba1 +Ba2(x6 -1)}rn~1r2 

+a( n-2£2 + n-1r 2) , (7.13) 

and for /xo/ = 1, 

MSE(<P3n(xo; £)) 

(7.14) 

Proof: See Lahiri (1996d). D 

From the Edgeworth expansion results of Chapter 6 (cf. Theorem 6.7), 
it follows that 

<P3n(xo; £) = if>(xo)- n-1/2{ JC3I(£) + (x6- 1)JC32(£) }¢(xo) 

+ Op(n- 1
) , 

where JC3;(£) = K:3in(£), i = 1, 2 are smooth functions of certain bootstrap 
moments. For /xo/ =/= 1, the leading term of the variance of <f>3n(x0 ; £)comes 
from the variance of the dominant term n-112(x6 -1)K32 (£), which is of the 
order (n-112)2·n- 1£2. In contrast, for /x0 I = 1, the term n~1/2 (x6-1 )JC31 (£) 
is zero and in this case, the le,ading term in the variance of <f>3n ( x0 ; £) is 
given by the variance of n-112K31 (£),which is of the order (n-112)2 . n-1 .e. 
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On the other hand, the contribution to the bias of <P3n(xo; £) comes from 
both JC31 ( £) and JC32 ( £), each having a bias of the order .e~ 1. This explains 
the sources of the various terms in the expansions for MSE(<P3n(xo; £)) 
in (7.13) and (7.14). The exact forms of the population quantities v31 , 
v32 , B31 , and B32 are very complicated, and hence are not presented here. 
Interested readers are referred to Lahiri (1996d) for explicit expressions for 
these parameters. Interestingly, neither of the two empirical methods, that 
we describe in Sections 7.3 and 7.4 below for data-based selection of the 
optimal block sizes, requires explicit definitions of these parameters. 

Theorem 7.2 readily yields the following asymptotic expressions for the 
optimal block lengths for estimating 'P3n(xo). 

Corollary 7.2 Assume that the conditions of Theorem 7.2 hold. Then, for 
/xo/ =/= 1, 

1/4 [{ 2 }
2
/{ 2 }2] 1/4 n B31 + (x0 - 1)B32 (x0 - 1)v31 

+ o(n114
) (7.15) 

and for /xo/ = 1, 

[ ] 
1/3 .eo =.eo (x ) = n1/3 2B2 /v2 + o(n1/3) 3n - 3n 0 31 32 · (7.16) 

Thus, the optimal block length for estimating the distribution function 
of the normalized version of On is of the order n 114 at any given point 
xo E IR, /x0 / =/= 1. For /xo/ = 1, the optimal order is n113, the same as that 
for estimating the bias and variance parameters 'P1n and 'P2n (cf. (7.11)). 
Relations (7.15) and (7.16) give optional block lengths for local estimation of 
the distribution function of the pivotal quantity vn( On- 8) IT n. The optimal 
block length for global estimation of the distribution function 'P3n(-) = 
P( yn(On- 8)/Tn :<::; ·) can be obtained by minimizing an expansion for the 
(weighted) mean integrated squared error (MISE) of <f>3n(·). An integration 
of the expansions (7.13) and (7.14) yields 

E J [<P3n(x;£)- 'P3n(x;£)r wa(x)dx 

v~3n-2£2 + B~3n~1g-2 + o(n-2£2 + n-1g-2) ' 

(7.17) 

where w0 (-) : JR. --+ (0, oo) is a nonnegative weight function with 
I wa(x)dx E (0, oo) and where v~3 = v~1 I(x2 - 1)2¢(x)2wo(x)dx and 
B~3 =I ¢(x)2 [B31 +B32(x2 -1)]2w0 (x)dx. Hence, the global optimal block 
length, defined as 

(7.18) 
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for a given E E (0, t), is given by 

0 1/4 [ 2 2 ] 
1
/
4 

1/4 g3n,global = n B33jv33 + o(n ) · (7.19) 

Next, consider the two-sided distribution function rp4n(xo) = P(lfo(On-
8)/Tnl:::; xo), xo E (0, oo). Hall, Horowitz and Jing(1995) give an expansion 
of the MSE of the MBB estimator tf>4n(xo; g) for the case where Bn = Xn 
and () = EX1. In this case, they show that the optimal block length for 
estimating the level-2 parameter rp4n(xo) is of the form 

go =go (x ) = nl/5c (x ) + o(n+1/5) 4n- 4n 0 0 0 (7.20) 

for some constant C0 (x0 ) E (0, oo ). We refer the interested reader to Hall, 
Horowitz and Jing (1995) for further details in the two-sided case. Thus, one 
needs to use blocks of a smaller order (viz., n 115) for optimal estimation of 
probabilities assigned to symmetric intervals than those in the asymmetric 
case. 

As pointed out in Chapter 1, the MSE and the optimal block length go 
are population-parameters that are determined by the sampling distribu­
tions of the bootstrap estimators of a level-2 parameter, and therefore, may 
be regarded as level-3 parameters. Thus, a general approach to the estima­
tion of MSE(tf>n(g)) and go is to apply two rounds of resampling methods 
iteratively. In Sections 7.3 and 7.4, we describe two such general meth­
ods, proposed by Hall, Horowitz and Jing (1995) and Lahiri, Furukawa and 
Lee (2003), respectively. The method proposed by Hall, Horowitz and Jing 
(1995) uses a combination of subsampling and bootstrapping the data. The 
other method, proposed by Lahiri, Furukawa and Lee (2003), is based on the 
Jackknife-After-Bootstrap method and it uses a combination of jackknifing 
and bootstrapping the data. In the same vein, one may use two rounds of 
block bootstrapping to estimate the level-3 parameters MSE(tf>n(g)) and 
go, although properties of this third alternative remain unexplored at this 
time. Estimation methods tailored to estimate the optimal block size for a 
specific functional are also known. For the case of the variance functional, 
Biihlmann and Kiinsch (1999b) propose some novel plug-in estimators of 
the optional block length for block bootstrap variance estimation and es­
tablish their convergence rates. For a more direct plug-in method in the 
variance functional case, see Politis and White (2003). They employ the 
"flat-top" kernel method of Politis and Romano (1995) to estimate the rel­
evant population parameters in the leading term of the optimal block size 
given by Corollary 7.1 above. 

7.3 A Method Based on Subsampling 

In this section, we describe the Hall, Horowitz and Jing (1995) method for 
choosing the theoretical optimal block size. For concreteness, suppose that 
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tf>n(g) denotes the MBB estimator of the level-2 parameter rpn, based on 
blocks of length g, where n is the sample size. Furthermore, suppose that 
the MSE of tfn (g) admits an expansion of the form 

(7.21) 

for some constants C1, C2 E (0, oo), r EN, and for some sequence {an}n~1 
of positive real numbers, over a suitable set .:ln C N of block sizes. We shall 

1 1 + assume that the set .:ln contains the set [n r+2 -<, n r+2 <] for some small 
E E (0, 1). Next, define the optimal block length g~ by 

g~ = argmin{ MSE(tf>n(g)) : l E .:ln} . (7.22) 

Note that by (7.21) and (7.22), the optimal block length g~ is of the order 
1 

nr+2. To define the Hall, Horowitz and Jing (1995) estimator of the theo-
retical optimal block length g~, we proceed as follows. Let m = mn be a 
sequence of real numbers satisfying 

(7.23) 

Consider the subsamples Xi,m =(Xi, ... ,Xi+m-1), i = 1, ... ,n- m + 1 
of length m. Let rpm denote the level-2 parameter rpn at n = m. For each 
i = 1, ... , n- m + 1, let tfm,i(g) be the MBB estimator of rpm obtained by 
resampling blocks of length g from the m observations Xi,m- Next define 
the subsampling estimator of MSE( tf>m (g)), the mean squared error of the 
MBB estimator of the level-2 parameter rpm based on a sample of size m, 
as 

--- n-m+1 2 

MSEm(g) = (n- m + 1)-1 L [0m,i(g)- tfn(g~)] (7.24) 
i=1 

where g~ is a plausible pilot block size. Let 

£~ = argmin{ MsEm(g) : g E .:lm} , (7.25) 

where we employ the set .:lm (not .:ln) to define£~. Then,£~ is an estimator 
of the theoretical optimal block length when the sample size is m. We need 
to rescale this initial estimator to get an estimator of g~ of (7.22). Since 
the optimal block length g~ in (7.22) is of the order nrt2, the right scaling 

factor here is [n/m] ri2. The Hall, Horowitz and Jing (1995) estimator of 
g~ is given by 

£~ = (C~). [n/m] rt2 . (7.26) 

Note that the Hall, Horowitz and Jing (1995) estimation method is ap­
plicable quite generally, requiring only that the MSE of the bootstrap es­
timator has (an expansion of) the form (7.21) for some r :2: 1 and that the 
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subsampling estimator MsEm(£) of MSE(cl>m(£)) converges in some suit­
able sense, say, in probability. In particular, the method is applicable even 
without an explicit expression for the constants C1 and C2 in (7.21). Sim­
ilarly, the method can be applied when a block bootstrap method other 
than the MBB is employed. A set of sufficient conditions for the consis­
tency of the subsampling estimator MsEm(£) are that the series {Xi}iEZ 
is stationary and has an absolutely summable strong mixing coefficient. 

From the description of the method, it is clear that accuracy of the Hall, 
Horowitz and Jing (1995) method depends on the choices of the subsam­
pling parameter m and the pilot block size £~. The optimal order of m is 
unknown at this stage. However, for the other smoothing parameter, viz., 
the pilot block size £~, Hall, Horowitz and Jing (1995) suggest a way to 
reduce the effect of£~ on the optimal block length estimator£~ of (7.26). 
To reduce the effect of £~, they suggest iterating the main steps of the 
algorithm, by replacing the pilot block size £~ with the estimated value 
i~ for the second iteration, and repeating this process until convergence. 
However, convergence of this iterative scheme is not guaranteed (see the 
numerical example below). 

We now describe the results of a small simulation study on finite sample 
properties of the Hall, Horowitz and Jing (1995) method. We consider the 
time series model 

(7.27) 

where { Ei}iEZ is a sequence of iid random variables with common distri­
bution (x2 (1)- 1), the centered Chi-squared distribution with one degree 
of freedom. Thus, EE1 = 0 and EEi = 2. We took the level-1 parameter() 
as EX1, and the estimator IJn as IJn = Xn, the sample mean with sample 
size n = 125. The level-2 parameters of interest are given by (cf. (7.3) and 
(7.4)) 

and 

'P2n = n.Var(Xn) 

'P3n P ( yn( ~ - ()) ~ 0) 
P(iJn ~ ()) . 

(7.28) 

(7.29) 

True values of 'P2n and 'P3n were found by 20,000 simulation runs. These 
are given by 'P2n = 3.984 and 'P3n = .5226. 

To find the theoretical optimal block lengths for t.p2n and 'P3n , we applied 
the MBB method to generate block bootstrap estimators of the level-2 
parameters 'P2n and t.p3n with several values of the block length £. Table 7.1 
below gives the expected value (Mean), the bias, the standard deviation 
(SD) and the MSE's of the MBB estimators based on 1000 simulation runs. 
From the table, it is evident that the optimal block lengths for estimating 
'P2n and t.p3n are respectively given by cgn = 3 and l'~n = 2. Next the 
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subsampling-based method of Hall, Horowitz and Jing (1995) was applied 
to select an optional block size empirically. We chose the subsample size 
m = 30, and the pilot block size parameter l''kn = 5 for both 'P2n and 'P3n· 

Thus, for k = 1, 2, the MSE estimator MsEm(£) of (7.24) for the level-2 
parameter 'Pkn is now evaluated by resampling overlapping blocks of size £ 
from each of the 96 ( = 125- 30 + 1) overlapping subsamples of size m = 30 
and then computing the MBB estimators cl>km,i(£) (say) of 'Pkn for the ith 

subsample, fori= 1, ... , 96. The centering value cl>kn(l''kn) in MsEm(£) is 
computed using the full sample of size n = 125, with l''kn = 5 for both k. 
All bootstrap estimates (including those related to Table 7.2 below) were 
evaluated using 800 Monte-Carlo replicates. 

TABLE 7.1. Determination of the true optimal block sizes for MBB estimation 
of the level-2 parameters 'P2n and 'P3n of (7.28) and (7.29) for model (7.27). The 
results are based on 1000 simulation runs. An asterisk(*) denotes the minimun 
MSE value for a functionaL 

(a) Variance Estimation 
L Mean Bias SD MSE 
1 1.947 -2.037 0.705 4.645 
2 2.902 -1.082 1.089 2.358 
3 3.204 -0.780 1.244 2.157* 
4 3.320 -0.664 1.334 2.221 
5 3.394 -0.590 1.412 2.341 
6 3.437 -0.547 1.482 2.497 
7 3.452 -0.532 1.542 2.660 
8 3.460 -0.524 1.594 2.814 
9 3.460 -0.524 1.648 2.990 

10 3.469 -0.515 1.713 3.198 

(b) Distribution Function Estimation 
L E.phi Bias SD MSE 
1 0.5099 -0.0126 0.0136 0.000345 
2 0.5132 -0.0094 0.0132 0.000262* 
3 0.5127 -0.0099 0.0142 0.000299 
4 0.5136 -0.0089 0.0139 0.000272 
5 0.5123 -0.0103 0.0144 0.000313 
6 0.5125 -0.0100 0.0149 0.000322 
7 0.5125 -0.0100 0.0150 0.000324 
8 0.5121 -O.Q105 0.0154 0.000347 
9 0.5123 -0.0103 0.0157 0.000352 

10 0.5103 -0.0122 0.0164 0.000419 
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Table 7.2 gives the frequency distribution of the optimal block size esti­
mator £~n for 'Pkn, computed by formula (7.26) using 500 simulation runs. 
As in Hall, Horowitz and Jing (1995), in this simulation study also, the 
optimal block size estimators converged after a couple of iterations in a 
majority of the cases. However, in some instances, there was a circular 
behavior of the estimated optimal block size in successive iterations (e.g., 
the initial value 5 led to 8 which led to 3 and then, 3 led back to 5). The 
frequency of such cases is given under the value -1. This problem ap­
peared to be more prevalent for distribution function estimation (i.e., for 
'P3n of (7.29)) than for variance estimation (i.e., for 'P2n of (7.28)). In such 
a situation, one may pick a value of £~n (from the set of all optimal block 
lengths in different iterations) that corresponds to the minimum estimated 

MSEm(£). 
Parts (a) and (b) of Table 7.2 show that for both level-2 parameters 

'P2n and 'P3n, the estimated optimal block sizes have a pronounced mode 
at the true optional block sizes, i.e., at £gn = 3 for 'P2n and at £gn = 2 
for 'P3n· Furthermore, the distribution of the estimated optimal block size 
for variance estimation has a longer right tail compared to that for the 
distribution function estimation. However, the performance of this method 
improves as the sample size n increases. See Hall, Horowitz and Jing (1995) 
for further numerical examples and discussions. 

TABLE 7.2. Frequency distribution of the optimal block sizes selected by the 
Hall, Horowitz and Jing (1995) method for model (7.27) with n = 125, m = 30, 
and initial block size £j;n = 5, k = 1, 2. Results are based on 500 simulation runs. 
The value -1 of i~n' k = 1,2, corresponds to the cases where the iterations of 
the method failed to converge. 

(a) Variance Estimation 
'0 
e2n -1 2 3 5 7 9 10 12 14 15 17 19 21 

Freq. 35 137 200 63 18 12 13 8 6 2 3 1 2 

(b) Distribution Function Estimation 
'o 
e3n -1 2 3 4 6 7 9 10 12 13 

Freq. 137 276 50 5 7 13 8 1 2 1 

7.4 A Nonparametric Plug-in Method 

In this section, we describe a plug-in method for selecting the optimal 
block length based on a recent work of Lahiri, Furukawa and Lee (2003). 
The plug-in method estimates the leading term in the first-order expan­
sion of the optimal block length using a resampling method, and does 
not require an explicit expression for the level-3 population parameters. 
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In Section 7.4.1, we describe the motivation and basic construction of the 
plug-in estimator and in Section 7.4.2, we describe estimation of the level-3 
parameter associated with the bias part of the block bootstrap estima­
tors. Estimation of the level-3 parameter associated with the variance part 
employ the Jackknife-After-Bootstrap (JAB) method of Efron (1992) and 
Lahiri (2002a). In Section 7.4.3, we describe the JAB method for dependent 
data. The nonparametric plug-in estimators of the optimal block lengths 
are presented in Section 7.4.4. Some finite sample results are given in Sec­
tion 7.4.5. In all of Section 7.4, we restrict attention to the optimal block 
lengths for the MBB method. 

1.4.1 Motivation 

Let 'Pn be a level-2 parameter of interest and let <.fn(£) be a block bootstrap 
estimator of 'Pn based on blocks of length£. From the discussion of Section 
7.2, it follows that under suitable regularity conditions, the variance of 
<Pn ( £) and the bias of <Pn ( £) admit expansions of the form 

(7.30) 

and 

(7.31) 

for some population parameters B E IR, v E (0, oo) and for some known 
constants a E (0, oo), r EN. For example, for the bias and variance func­
tionals 'Pn = 'Pln, 'P2n, r = 1, and a= 1, while for the distribution function 
(at a given point xo) 'Pn = 'P3n(xo) with lxol =f. 1, r = 2 and a= 1/2. In 
this case, the MSE-optimal block size£~= £~(cpn) is given by 

0 (2B2
) r!2 1 £n = ~ nr+2 (1 + o(1)) . (7.32) 

Like any other plug-in method, the nonparametric plug-in method focuses 
. (2B2)-' 1 on the leadmg term r:v r+2 n r+ 2 but estimates the level-3 parameters B 

and v nonparametrically, as follows. Note that from (7.30) and (7.31), we 
have 

(7.33) 

and 

(7.34) 

This suggests that consistent estimators of v and B may be derived if we can 
estimate Var(<.fn(£)) and Bias(<.fn(£)) consistently. Let YARn and BIAsn be 
non parametric estimators of Var( <Pn ( £)) and Bias( <Pn ( £)), respectively, that 
are consistent in the following sense: 

YARn 
-~-....:.:..__ ----+ 1 as n ---> oo 
Var(<.fn(£1)) P 

(7.35) 
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and 

(7.36) 

along some suitable sequence { l'1} = { l'1n}n::>:1· 
Then, using (7.33) and (7.34), we define estimators of the parameters v 

and Bas 
' ' (n ) 2a V-----AR ( -1 nr)-1 Vn = Vn f-1 = n n · n f-1 , (7.37) 

and 

(7.38) 

The nonparametric plug-in estimator £~ of the optimal block length l'~ is 
then given by replacing the level-3 parameters v and B in the leading term 
in (7.32) by the above estimators, i.e., by 

iJO [ 2iJ;] ri2 _1_ {. = -- nr+2 
n rvn 

(7.39) 

It is clear that the performance of the estimator l~ depends on the se­
quence {£1n}n:;::1, on the level-2 parameter 'Pn, and on the basic estimators 

~ and BIASn employed in the construction of Vn and En in (7.37) and 
(7.38), respectively. In the next section we describe the plug-in method of 
Lahiri, Furukawa and Lee (2003) who used the JAB method for estimating 
Var(~n(l')) and constructed an estimator of Bias(~n(l')) by combining two 
block bootstrap estimators suitably. The use of these basic estimators were 
prompted by considerations regarding computational efficacy and accuracy 
of the proposed plug-in method. As explained below, the JAB variance 
estimator has some computational advantage over other common resam­
pling methods in that the JAB variance estimator can be computed by 
reusing the block bootstrap resamples used in the Monte-Carlo evaluation 
of ~n(l'1 ), and thus, do not involve iterated levels of resampling. Similarly, 
the bias estimator proposed in Lahiri, Furukawa and Lee (2003) also in­
volves a single level of resampling. In the section below, we describe further 
details of the construction. 

7.4.2 The Bias Estimator 

For constructing the bias estimator, we begin with relation (7.31), which 
gives an asymptotic representation for the bias part of the bootstrap esti­
mator ~n ( £) and may be rewritten as 

(7.40) 
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If (7.40) holds for the sequences {l'1} = {l'1n}n>1 and {2£1} = {2l'1n}n>1, - -
then we may combine the corresponding expansions to conclude that 

E [ ~n (£1) - ~n (2£1)] 

[ { <{Jn + n~1 + o(n-al'11)}- { <{Jn + 2!£1 + o(n-a£11)} J 

2
Bo +o(n-a£11) as n-+oo. (7.41) 

naf-1 

This suggests that a consistent estimator of Bias(~n(£1)) satisfying (7.36) 
may be constructed as 

(7.42) 

1 
Indeed, if the optimal order of the block length for estimating <{Jn is n r+ 2 ( cf. 
(7.32)), then by Cauchy-Schwarz inequality, it follows that for any sequence 
{ l'1} = { £1n}n:;::1 satisfying the requirement 

(7.43) 

BIASn is consistent. A specific choice of { £1n}n:;::1 will be suggested in 
Section 7.4.4 for the plug-in estimator£~ of (7.39). Note that, as pointed 

out earlier, the estimator BIASn is based on only two block bootstrap 
estimator of <{Jn and may be computed using only one level of resampling. 

In the next section, we describe the JAB method for dependent data. 
Readers familiar with the method may skip this section and proceed to 
Section 7.4.4. 

7.4.3 The JAB Variance Estimator 

The JAB method was proposed by Efron (1992) for assessing accuracy of 
bootstrap estimators based on the liD bootstrap method for independent 
data. A modified version of the method for block bootstrap estimators 
in the case of dependent data was proposed by Lahiri (2002a). The JAB 
method for dependent data applies a version of the block jackknife method 
to a block bootstrap estimator. For the sake of completeness, first we briefly 
describe the block jackknife method. 

Let Xn = {X1, ... , Xn} be the observations and let i'n = tn(Xn) be an 
estimator of a level-1 parameter of interest/· The block jackknife method 
systematically deletes blocks of consecutive observations to define the jack­
knife copies (called the block jackknife point values) of i'n and combines 
these to produce estimators of the bias and the variance of i'n. Like the 
block bootstrap methods, different versions of the block jackknife method, 
such as, overlapping, nonoverlapping, and weighted block jackknife meth­
ods have been proposed in the literature (cf. Kiinsch (1989), Liu and Singh 
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(1992)). Here we describe the overlapping version of the block jackknife or 
the moving blocks jackknife (MBJ) of Kiinsch (1989) and Liu and Singh 
(1992). (Like the term "MBB," the term MBJ was also introduced by Liu 
and Singh (1992)). Let m = mn be a sequence of integers such that m goes 
to infinity but at a rate slower than n, i.e., 

(7.44) 

Herem denotes the number of observations (or the size of the block) to 
be deleted for defining the MBJ point values. Fori= 1, ... , n- m + 1, let 
Xn,i = Xn \{X;, ... , Xi+m- 1 } denote the set of observations after the block 
{X;, ... , Xi+m-d of size m has been deleted from Xn· Then, the ith MBJ 
point value i'~i) is defined as 

i'~i) = tn-m(Xn,i), i = 1, ... , n- m + 1 . (7.45) 

The MBJ estimator of the variance of i'n is given by 

n-m+1 2 VAR (A ) _ m 1 " (-(i) A ) 
MBJ In - (n _ m) · n _ m + 1 {:;t In -In (7.46) 

where .:y~i) = m - 1 ( ni'n - ( n - m )i~i)) is the ith MBJ pseudo-value corre­
sponding to i'n· For consistency and finite sample properties of the MBJ 
and its other variants, we refer the reader to Kiinsch (1989), Liu and Singh 
(1992), Shao and Tu (1995), Davison and Hinkley (1997), and the references 
therein. Note that, if we set m = 1, i.e., if we delete a single observation at 
a time, then the MBJ variance estimator in (7.46) reduces to the classical 
delete-1 jackknife variance estimator for independent data 

1 n 2 
VAR (A ) - "(-(i) A ) 

J In - n(n- 1) {:;t In -In (7.47) 

For properties of the jackknife method for independent data, see Miller 
(1974), Efron (1982), Wu (1990), Liu and Singh (1992), Efron and Tib­
shirani (1993), Shao and Tu (1995), Davison and Hinkley (1997), and the 
references therein. 

Next we describe the JAB method for dependent data. Let <Pn = <Pn(R.) be 
the MBB estimator of a level-2 parameter 'Pn based on (overlapping) blocks 
of size£ from Xn = {X1, ... , Xn}· Let Bi ={Xi, ... , Xi+£-d, i = 1, ... , N 
(with N = n-£+1) denote the collection of all overlapping blocks contained 
in Xn that are used for defining the MBB estimator <Pn· Also, let m be 
an integer such that (7.44) holds. Note that the MBB estimator <Pn(R.) 
is defined in terms of the "basic building blocks" B;'s. Hence, instead of 
deleting blocks of original observations {X;, ... , Xi+m-l}, as done in the 
MBJ method described above, the JAB method of Lahiri (2002a) defines 
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the jackknife point-values by deleting blocks of B;'s. Later in this section, 
we will discuss how this simple modification plays an important role in 
ensuring computational efficacy of the JAB method. 

Since there are N observed blocks of length £, we can define M = N -
m + 1 many JAB point-values corresponding to the bootstrap estimator 
<Pn, by deleting the overlapping "blocks of blocks" { B;, ... , Bi+m- 1} of size 
m for i = 1, ... , M. Let IP = {1, ... , N} \ { i, ... , i + m- 1 }, i = 1, ... , M. 
To define the ith JAB point-value<{;~)=<{;~)(£), we need to resample b = 
ln/R.J blocks randomly and with replacement from the reduced collection 
{ Bj : j E IP} and construct the MBB estimator of 'Pn using these resampled 
blocks. More precisely, suppose that Tn = tn(Xn; (}) be a random variable 
with probability distribution Gn and let 'Pn = rp(Gn) for some functional rp. 
Let J;1, ... , J;b be a collection of b random variables such that, conditional 
on Xn, these are iid with common distribution 

(7.48) 

Then, the resampled blocks to be used for defining the JAB point-value 
<{;~) are given by 

{B*(i) - B · . - b} j = J;j • J - 1, ... , . (7.49) 

Let X~(i) denote the resampled data obtained by concatenating {s;<il,j = 

1, ... , b }. Also, let T~(i) = tn
1 
(X~(i); Bn,i) be the MBB version ofTn, defined 

using the resampled data X~(i) and using a suitable estimator Bn,i of (}. 

Then, the JAB point-value <{;~) is given by applying the functional rp to 
the conditional distribution Gn,i (say) of T~(i) as 

(7.50) 

For an example illustrating the definition of T~(i), suppose that 

(7.51) 

with On = H(Xn) and (} = H(!-L) for some (smooth) function H : JRd ----+ 

IR, where {X;};Ez is a stationary sequence of JE.d-valued random vectors, 

Xn = n- 1 2:::~= 1 Xi and f-L = EX1 . Let X~(i) denote the MBB sample mean 

based on the n 1 =b.£ resampled values in {s;<il,j = 1, ... , b}. Then, the 

MBB version T~(i) for the ith JAB point-value is defined as 

r*<iJ = 'rl:"(e*<iJ - 8 ·) n V lt-1 n n,-z. ' (7.52) 

where (}~(i) = H(X~(i)) and where we set Bn,i H(fln,i) with fln,i 

E X-*(i) . -1 M * n ,~- , ... , . 
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Next we return to the general case of Tn = tn(Xn; 0) and define the JAB 
variance estimator of <Pn as (cf. (7.46)) 

1 M 2 
-A (A ) _ m "' ( -(i) A ) 
V RJAB 'Pn - (N- m) . M ~ 'Pn - 'Pn (7.53) 

where cp~) = m-1(N<Pn- (N- m)<P~)) denotes the ith JAB pseudo-value 
corresponding to <Pn and where <P~),s are defined by (7.50). As with the 

given MBB estimator <Pn, computation of the point-values <P~) 'sand hence, 
of the pseudo-values cp~) are typically done using the Monte-Carlo method. 
A simple representation result, initially noted by Efron (1992) in the con­
text of liD bootstrap, makes it possible to compute the JAB variance 
estimator by reusing the resampled blocks used in the computation of the 
given bootstrap estimator <Pn· We now give a statement of this result below. 

Proposition 7.1 Let J1 , ... , Jb be iid random variables with the Discrete 
Uniform Distribution on {1, ... , N} and let Ji1, ... , Jib be iid random vari-
ables with the Discrete Uniform Distribution on If, 1 ::; i ::; M. Let 
Pi = b-1 '2:~=1 ]_(Jj E If), 1 ::; i ::; M. Then, for any i = 1, ... , M, 
the conditional distribution of (h, ... , Jb) given Pi = 1 is the same as the 
unconditional distribution of ( Ji1, ... , Jib). 

Proof: For any j 1 , ... , ]b E If, 

P(J1 = j1, ... , Jb = ]b I Pi= 1) 
P(J1 =]l, ... ,Jb Ejb)/P(pi = 1) 
[N-b]/[(N- m)/N]b 

(N- m)-b = P(Jil = j1, ... , Jib =]b) · 

This completes the proof of the proposition. D 

To appreciate the relevance of this result, suppose that {kBi, ... , ~eBb}, 
k = 1, ... , K denote the set of blocks drawn randomly, with replacement 
from the collection { B1, ... , B N} for the Monte-Carlo evaluation of the 
given block bootstrap estimator <Pn· Let {kJ1, ... , ~cJb} denote the random 
indices corresponding to {kBi, ... ,~cBb}, i.e., ~cBj = ~cBkJ;> 1::; j::; b, 
k = 1, ... ,K. Then for any k, if all b indices ~cJt, ... ,kJb lie in If, by 
Proposition 7.2, we may consider (~cJ1 , ... , kJb) as a random sample of size 
b from the reduced index set If= {1, ... , N}\{i, ... , i + m- 1}. Let 

I! = {k: 1::; k::; K, di E If for all j = 1, ... , b} 

denote the index set of all such random vectors (1cJ1, ... , kJb)· Then, 
{ (k h, ... , k Jb) : k E Ii} gives us an iid collection of random vectors (of 
possibly different sizes for different i E {1, ... , M} ), each having the same 
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distribution as ( Ji1, ... , Jib) of the Proposition. Thus, the resamples for 

computing the ith JAB point-value <P~) may be obtained by extracting 
the subcollection { (~cBi, ... , ~cB;) : k E Ii} from the original resamples 
{(~cBi, ... , ~cB;) : 1 ::; k ::; K}, and no additional resampling is needed. 
The Monte-Carlo approximations generated by this method are close to 
the true values of <P~) 's, provided K is large. 

As an illustration, consider the random variable Tn of (7.51) and suppose 
that the level-2 parameter of interest is 'Pn = cp( Gn) for some functional 
cp where Gn is the sampling distribution of Tn. Figures 7.1 and 7.2 give 
a schematic description of the main steps involved in the computations of 
the MBB estimator <Pn and its JAB point-values <P~), i = 1, ... , M. For 
computing <Pn, we generate K iid sets of b many blocks {kBi, .. . , ~eBb} 
for k = 1, ... , K, compute the bootstrap sample mean ~eX~ and the boot­
strap version ~cT~ = fo(~ce~ - Bn) for each set with ~cO~ = H(~cX~) and 
Bn = H(fln). Then, the Monte-Carlo approximation to <Pn is given by cp(G~) 
where G~ denotes the empirical distribution of the bootstrap replicates 
{kT~ : k = 1, ... , K}. For computing <P~), we scan the K sets of resam-
pled blocks {kBi, ... , ~eBb}, k = 1, ... , K and extract the ~c8~-values corre-
sponding to the block-sets {kBi, ... , ~eBb} that do not contain any of the 

blocks Bi, ... , Bi+m-1· Next, the bootstrap version of T~(i) are computed 

by employing these ke~ 's in the formula ~cT~(i) = ylnl(~cO~ - Bn,i) where 
Bn,i = H(/ln,i)· Note that fln,i is given by the average of block-averages 
in the reduced collection { Bj : j E If} and can be computed without any 

resampling. The copies ~cT~(i),s are now combined to generate the Monte­
Carlo approximation to <P~), just in the same way the ~cT~'s are used for 
computing the original bootstrap estimate <Pn. 

1.4.4 The Optimal Block Length Estimator 

We now return to the problem of choosing the optimal block length for block 
bootstrap methods using the nonparametric plug-in method. Let <Pn = 
<Pn(£) be an MBB estimator of a level-2 parameter 'Pn with an MSE of the 
form (cf. (7.30),(7.31)) 

(7.54) 

where v E (0, oo), B E JR, B =/= 0 are unknown parameters and where 
r E N, a E (0, oo). Then, the theoretical optimal block length£~ is given 
by (cf. (7.32)) 

(2B2) r!2 1 
£~= --:;:;; w+z(1+o(1)) (7.55) 
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G~ = empirical distribution of 1 (}~ ,2 (}~, · · · ,K (}~ 

FIGURE 7.1. Monte-Carlo computation of the MBB estimator of 'Pn = <p(Gn) 
where Gn is the probability distribution of Tn of (7.51). 

The nonparametric plug-in method, described in Section 7.4.1, suggests (cf. 

(7.39)) 

(7.56) 

as an estimator of the optional block length, where En = na £1 BIASn and 
vn = [n -l £'1]-1 n 2a YARn are estimators of the level-3 parameters B and v, 

and BIASn = BIAsn(£1) and YARn= YARn(£1) are some consistent esti­
mators of the bias and the variance parts of the block bootstrap estimator 
'f3n(£1 ) based on some suitable initial block length £1 (cf. (7.35)~6)). 
Lahiri Furukawa and Lee (2003) suggest using the bias estimator BIASn of , -----
(7.42) to define En and using the JAB variance estimator VARJAB(tPn(ft)) 
for defining Vn· With these choices, the plug-in estimator of the optimal 
block length £~ is given by 

£0 = n 
(7.57) 
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{kBr, ... ,k Bb} n {Bi, ... , Bi+m-t 

=0 

yes 

FIGURE 7.2. Computation of the ith JAB point value cp~) starting with 
the resampled blocks {!B;, ... ,lBI:}, ... ,{kBi, ... ,kBb} generated for the 
Monte-Carlo computation of the block bootstrap estimator tPn of Figure 7.1. 

where Bn = 2ft[0n(£1)- 0n(2£1)] and Vn = (n£;_-r) · YARJAB(tPn(£1)), 

and YARJAB(tPn(ft)) is defined by (7.53) with£= £1. The na and n 2a 

factors in the definitions of Bn and Vn are left out as they cancel from the 
numerator and the denominator of (7.56). 

We now show that this naive construction yields consistent estimators of 
£~ for various functionals 'Pn without explicit form of the constants B and 
v in (7.54). For this, we suppose that {Xi}iEZ is a sequence of stationary 
random vectors with values in JRd and the level-1 parameter 8 and its 
estimator Bn satisfy the requirements of the Smooth Function Model (7.8), 
i.e., Bn = H(Xn) and (} = H(f-1,) for some smooth function H : JRd --+ JR, 
Xn = n-1 2::7=1 Xi and JL = EX1 . First, we consider the bias and the 
variance functionals ( cf. (7.2),(7.3)) 

(7.58) 
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(7.59) 

Fork= 1, 2, let C~n denote the optional block length for estimating 'Pkn, 
defined by (7.6). Then, we have the following result. 

Theorem 7.3 Suppose that Condition (5.Dr) of Section 5.4 holds with 
r=4, 

(7.60) 

and 
(7.61) 

Also, suppose that Condition (5.Mr) of Section 5.4 holds with r = 2+k(2+ 
a0 ) where a0 is as in the statement of Condition (5.Dr)· Then 

(7.62) 

fork= 1, 2. 

Proof: See Lahiri, Furukawa and Lee (2003). 0 

Under suitable regularity conditions, Lahiri, Furukawa and Lee (2003) 
also prove consistency of the plug-in estimator £~ for bootstrap distribu­
tion function estimation and for bootstrap quantile estimation for certain 
studentized versions of {}n- For these functionals, expansion (7.54) for the 
corresponding MSEs hold with r = 2 and a = 1/2, as in the case of the 
distribution function <p3n ( x0 ) of the normalized version of {jn for lxo I =J 1. 
Thus, the optimal block sizes for these functionals in the studen!ized case 
are of the order n 114 and the corresponding plug-in estimators C~ are de­
fined with r = 2 in such cases. For the normalized version of {jn, consistency 
of £~ for the distribution function estimator 'P3n of (7.4) also holds ( cf. 
Lahiri (1996d)), provided we set r = 2 for lxol =J 1, and r = 1 for lxol = 1. 
Thus, the plug-in estimator provides a consistent and computationally ef­
ficacious method for estimating the optimal block length for a variety of 
level-2 parameters. 

Although the nonparametric plug-in method produces a valid (i.e., con­
sistent) estimator of the optimal block length, finite sample performance 
of the estimator depends on the choice of the smoothing parameter £1, and 
on the JAB "blocks of blocks" deletion parameter m. It turns out that a 
reasonable choice of £1 in (7.57) depends on the functional 'Pn· A careful 
analysis of the MSE of En shows that the optimal choice of £1 is of the 
form 

(7.63) 

where r is as in (7.54), and C3 is a population parameter. As for the other 
smoothing parameter, an heuristic argument in Lahiri (2002a) suggests 
that a reasonable choice of the JAB parameter misgiven by 

_ C 1/3n2/3 m- 4n {_ 1 (7.64) 
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for some constant C4. Numerical results of Lahiri, Furukawa and Lee (2003) 
show that the choice c3 = 1 in (7.63) for the initial block size l\ yields 
good results for both the variance and the distribution function estimation 
problems, while the corresponding values for c4 in (7.64) are given by 
c4 = 1.0 for the variance functional and c4 = 0.1 for the distribution 
function. Below we report the results from a small simulation study with 
the above choices of C3 and C4 . For more simulation results, see Lahiri, 
Furukawa and Lee (2003). 

We consider the moving average model of Section 7.3, given by ( cf. (7.27)) 
xi = (Ei + ~"i-1)/v"i., i E Z, where {t:i}iEZ is a sequence of iid random 
variables having the centered Chi-squared distribution with one degree of 
freedom. As in Section 7.3, we also set the Ievel-l parq.meter to be()= EX1, 
the estimator {jn to be the sample mean Xn, and the level-2 parameters as 
'P2n = n.Var(Xn) and 'P3n = P(y'n({}n- B)/Tn ~ 0). The true value of 
() is zero. Also, we take the sample size n to be 125. As stated in Section 
7.3, the true values of 'P2n and 'P3n are 'P2n = 3.984 and 'P3n = 0.5226. 
Furthermore, the theoretical optimal block sizes for estimating 'P2n and 
<p3n by the MBB are cgn = 3 and cgn = 2, as shown in Table 7.1. 

Next we applied the nonparametric plug-in method to estimate the tar­
get values cgn and cgn. Table 7.3 gives the frequency distribution of the 
estimated optimal block sizes based on 500 simulation runs. The block 
boostrap estimators in each case were evaluated using 1000 Monte-Carlo 
replicates. Table 7.3 shows that more than 80% of the mass of the esti­
mated block size egn for variance estimation lies in the interval [2,5] (the 
true value being cgn = 3). The method also produces very good results for 
distribution function estimation, with a pronounced mode at the true value 
cgn = 2, and a small support set {1, 2, 3}. 

TABLE 7.3. Frequency distribution of the optimal block sizes selected by the 
nonparametric plug-in method for model (7.27) with n = 125. 

(a) Variance Estimation 
'o c2n 1 2 3 4 5 6 7 8 9 10 

Frequency 50 114 125 94 71 29 10 3 2 2 

(b) Distribution Function Estimation 
'o c3n 1 2 3 

Frequency 172 268 60 


