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Abstract

The chapter gives a review of the literature on bootstrap methods for time series
data. It describes various possibilities on how the bootstrap method, initially intro-
duced for independent random variables, can be extended to a wide range of
dependent variables in discrete time, including parametric or nonparametric time
series models, autoregressive and Markov processes, long range dependent time
series and nonlinear time series, among others. Relevant bootstrap approaches,
namely the intuitive residual bootstrap and Markovian bootstrap methods, the
prominent block bootstrap methods as well as frequency domain resampling
procedures, are described.

Further, conditions for consistent approximations of distributions of parameters
of interest by these methods are presented. The presentation is deliberately kept
non-technical in order to allow for an easy understanding of the topic, indicating
which bootstrap scheme is advantageous under a specific dependence situation
and for a given class of parameters of interest. Moreover, the chapter contains an
extensive list of relevant references for bootstrap methods for time series.

Keywords: bootstrap methods, discrete Fourier transform, linear and nonlinear
time series, long range dependence, Markov chains, resampling, second order
correctness, stochastic processes.

1. Introduction

The bootstrap method, initially introduced by Efron (1979) for independent variables
and later extended to deal with more complex dependent variables by several authors,
is a class of nonparametric methods that allow the statistician to carry out statistical
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inference on a wide range of problems without imposing much structural assump-
tions on the underlying data-generating random process. By now, there exist several
books and monographs, e.g., Hall (1992), Efron and Tibshirani (1993), Shao and
Tu (1995), Davison and Hinkley (1997), and Lahiri (2003a), among others, which
describe different aspects of the bootstrap methodology at varying levels of sophistica-
tion and generality. Moreover, several papers in the literature give overviews of various
aspects of bootstrapping time series. Among them are Berkowitz and Kilian (2000),
Bose and Politis (1995), Bühlmann (2002), Carey (2005), Härdle et al. (2003), Li and
Maddala (1996), and Politis (2003). These papers consider bootstrap and resampling
methods for general stochastic processes and time series models. The review papers
by Paparoditis and Politis (2009) and by Ruiz and Pascual (2002) especially focus on
financial time series, while McMurry and Politis considers resampling methodology for
functional data. In this article, we aim to provide an easy-to-read description of some
of the key ideas and issues and present latest results on a set of selected topics in the
context of time series data showing temporal dependence.

The basic idea behind the bootstrap methods is very simple, and it can be described
in general terms as follows. Let X1, . . . , Xn be a stretch of a time series with joint distri-
bution Pn . For estimating a population parameter θ , suppose that we have constructed
an estimator θ̂n (e.g., using the generalized method of moments) based on X1, . . . , Xn .
A common problem that the statistician must deal with is to assess the accuracy of θ̂n ,
for example, by using an estimate of its mean squared error (MSE) or an interval esti-
mate of a given confidence level. However, any such measure of accuracy depends on
the sampling distribution of θ̂n − θ , which is typically unknown in practice and often
very complicated. Bootstrap methods provide a general recipe for estimating the dis-
tribution of θ̂n and its functionals without restrictive model assumptions on the time
series.

We now give a general description of the basic principle underlying the bootstrap
methods. As before, suppose that the data are generated by a part of a time series
{X1, . . . , Xn} ≡ Xn with joint distribution Pn . Given Xn , first construct an estimate P̂n

of Pn . Next, generate random variables {X∗1 , . . . , X∗n} ≡ X∗n from P̂n . If P̂n is a reason-
ably “good” estimator of Pn , then the relation between {X1, . . . , Xn} and Pn is closely
reproduced (in the bootstrap world) by {X∗1 , . . . , X∗n} and P̂n . Define the bootstrap ver-
sion θ̂∗n of θ̂n by replacing X1, . . . , Xn with X∗1 , . . . , X∗n , and similarly, define θ∗ by
replacing Pn in θ = θ(Pn) by P̂n . Then, the conditional distribution (function) Ĝn or
G∗n (say) of θ̂∗n − θ

∗ (given Xn) gives the bootstrap estimator of the distribution (func-
tion) Gn (say) of θ̂n − θ . Here, θ∗ is some properly chosen parameter, which in many
applications can be computed from P̂n along the same lines as θ is computed from Pn .
In almost all applications, the bootstrap is used to approximate distributions of the type
cn (θ̂n − θ), where the to infinity increasing sequence (cn) of non-negative real num-
bers is chosen such that the sequence of distributions converges to a nondegenerate
limit.

To define the bootstrap estimators of a functional of the distribution of θ̂n − θ , such
as the variance or the quantiles of θ̂n − θ , we may simply use the “plug-in” principle
and employ the corresponding functional to the conditional distribution of θ̂∗n − θ

∗.
Thus, the bootstrap estimator of the variance σ 2

n of θ̂n − θ is given by the conditional
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variance σ̂ 2
n of θ̂∗n − θ

∗, i.e., by

σ̂ 2
n = the bootstrap estimator of σ 2

n

= Var(θ̂∗n − θ
∗
|Xn)

=

∫
x2dĜn(x)−

[∫
xdĜn(x)

]2

.

Similarly, if qα,n denotes the α ∈ (0, 1) quantile of (the distribution of ) θ̂n − θ , then its
bootstrap estimator is given by

q̂α,n = Ĝ−1
n (α), the α quantile of the conditional distribution of θ̂∗n − θ

∗.

In general, having chosen a particular bootstrap method for a specific application,
it is very difficult (and often, impractical) to derive closed-form analytical expressions
for the bootstrap estimators of various population quantities. This is where the com-
puter plays an indispensable role. Bootstrap estimators of the distribution of θ̂n − θ

can be computed numerically using Monte-Carlo simulation. First, a large number
(usually in hundreds) of independent copies {θ̂∗kn : k = 1, . . . , K } of θ̂∗n are constructed
by repeated resampling. The empirical distribution of these bootstrap replicates gives
the desired Monte-Carlo approximation to the true bootstrap distribution of θ̂∗n − θ

∗

and to its functionals. Specifically, for the variance parameter σ 2
n = Var(θ̂n − θ), the

Monte-Carlo approximation to the bootstrap estimator σ̂ 2
n is given by

[σ̂mc
n ]2

≡ (K − 1)−1
K∑

k=1

θ̂∗kn − K−1
K∑

j=1

θ̂∗ j
n

2

,

the sample variance of the replicates {θ̂∗kn − θ
∗ : k = 1, . . . , K }. Similarly, the Monte-

Carlo approximation to the bootstrap estimator q̂α,n is given by

q̂mc
n,α ≡ θ̂

∗(bKαc)
n − θ∗,

the bKαc order statistic of the replicates {θ̂∗kn − θ
∗ : k = 1, . . . , K }, where for any real

number x , bxc denotes the largest integer not exceeding x . From this point of view,
the introduction of the bootstrap has been very timely; almost none of the interesting
applications of the bootstrap would have been possible without the computing power
of present day computers.

The rest of the paper is organized as follows. Section 2 presents and discusses resid-
ual bootstrap methods for parametric and nonparametric models. The proposals mainly
apply the classical bootstrap approach of drawing with replacement to residuals of a
fitted model to the data. As a special case, Section 3 considers in detail an approach
by fitting autoregressions of increasing order to the observed data. A rather relevant
model class of dependent observations to which bootstrap procedures successfully can
be applied are Markov chains (cf. Section 4).
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Section 5 discusses in detail the prominent block bootstrap methods for time series.
So far, all discussed bootstrap methods are in time domain. Of course, frequency
domain bootstrap methods exist and are presented in Section 6. Mixtures of both fre-
quency and time domain bootstrap methods are described in Section 7. A final Section 8
concentrates on bootstrap methods for time series with long-range dependence.

2. Residual bootstrap for parametric and nonparametric models

Since the original bootstrap idea of Efron (1979) for i.i.d. random variables of drawing
with replacement cannot be applied directly to dependent observations, because by
obvious reasons, it suggests itself to apply the classical bootstrap principle to residuals
of an (optimal) predictor of the X ′t s.

Suppose for the following that we are given observations X1, . . . , Xn . For some
fixed p ∈ N denote by m̂n(X t−1, . . . , X t−p), a parametric or nonparametric estimator
of the conditional expectation E[X t |X t−1, . . . , X t−p]. This estimator leads to residuals

êt := X t − m̂n(X t−1, . . . , X t−p), t = p + 1, . . . , n, (1)

and in a next step to a bootstrap time series

X∗t = m̂n(X
∗

t−1, . . . , X∗t−p)+ e∗t , t = 1, . . . , n. (2)

The bootstrap innovations e∗1 , . . . , e∗n follow a Laplace distribution over the set
{̂ec

p+1, . . . , êc
n} of centered estimated residuals êp+1, . . . , ên .

Here, we presumed that all residuals more or less share the same variance. In a
heteroscedastic situation, one might think of some kind of a localized selection of boot-
strap residuals or a wild bootstrap approach. The latter means that bootstrap innovations
are generated according to

e∗t := êt · η
∗

t , t = p + 1, . . . , n, (3)

where the (bootstrap) random variables (η∗t ) possess zero mean and unit variance, only.
Typically, it is not necessary to specify some distribution for the η∗t ’s. If a distributional
assumption is made, this ranges from rather simple discrete (even two-point) distribu-
tions to standard normal distribution. For reasons of better higher order performance
for properly studentized statistics, one additionally should ensure E∗ (η∗t )

3
= 1. The

simple discrete distribution taking values z1 = (1+
√

5)/2 and z2 = (1−
√

5)/2 with
probabilities p1 = (

√
5− 1)/(2

√
5) and p2 = (

√
5+ 1)/(2

√
5), respectively, satisfies

the assumption of zero mean and unit second and third moments.
If we decide to use a fully nonparametric estimator in (1), the probabilistic prop-

erties of the bootstrap time series (2) could be rather delicate to investigate, because
we, in principle, could not control the behavior of nonparametric estimators in regions
far away from the origin, because we do not have many underlying observations in
such regions. This typically leads to not very reliable estimators in that regions, and
therefore, the stability of the bootstrap process cannot easily be guaranteed (recall that
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models of type (2) typically need some quite restrictive growth conditions on the behav-
ior of the function m̂n(xt−1, . . . , xt−p)). But in order to establish asymptotic consistency
of this bootstrap proposal, we need at least some stability and typically moreover some
mixing or weak dependence properties for the triangular array of dependent observa-
tions in the bootstrap world. Such conditions would be rather helpful in order to prove
asymptotic results for the bootstrap process.

One way out of this problem is to define instead of (2), a regression model in the
bootstrap world, i.e., to generate bootstrap observations according to

X∗t = m̂n(X t−1, . . . , X t−p)+ e∗t , t = 1, . . . , n. (4)

Along this proposal, we do not obtain a time series in the bootstrap world any longer,
but an advantage of this proposal over (2) is that the design variables (which are lagged
original observations themselves) now indeed mimic the p-dimensional marginal
distribution of the underlying data by construction.

The investigation of a residual bootstrap procedure is much simpler; hence, we
decide to use a fully parametric estimator in (1). For example, an optimal linear
approximation of the conditional expectation, i.e., an autoregressive fit of order p
to the underlying data. The estimator m̂n in this case simplifies to m̂n(x1, . . . , x p) =∑p

k=1 âk xt−k . Using Yule-Walker parameter estimates âk in such a simple situation
always leads to a stable and causal process in the bootstrap world (cf. Kreiss and
Neuhaus (2006), Satz 8.7 and Bemerkung 8.8). But, of course, one can apply the
idea of a parametric fit to the conditional expectation to other models including
moving-average and ARMA models.

The question of main interest is in which situations and to what extent the described
bootstrap proposals asymptotically work.

In order to ensure that a fitted parametric model generates according to (2) bootstrap
data that are able to mimic all dependence properties of the underlying observations,
one has to assume that the data-generating process itself belongs to the parametric class,
i.e., possess a representation of the form

X t = mθ (X t−1, . . . , X t−p)+ et , t ∈ Z, (5)

with i.i.d. innovations and parametric conditional mean function mθ , which of course is
quite restrictive. However, it can be stated that the parametric residual bootstrap consis-
tently mimics the process (5). An obvious extension of the residual bootstrap (including
an estimator of the conditional deviation (volatility)) leads to a residual bootstrap which
consistently mimics the following slight deviation of model (5)

X t = mθ (X t−1, . . . , X t−p)+ sθ (X t−1, . . . X t−q) · et , t ∈ Z. (6)

In case, the data-generating process does not belong to class (5) or (6), a residual
bootstrap making use of such a model fit asymptotically can only work if the asymp-
totic distribution of the parameter of interest does not vary if switching from the true
underlying process to a process of type (5) or (6), respectively.

The simplest situation in this context one might think of is a causal (linear) autore-
gressive model of fixed and known order p and with i.i.d. innovations (et ) (having zero
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mean and at least finite second-order moments) for the data-generating process, i.e.,

X t =

p∑
k=1

ak X t−k + et−k , t ∈ Z. (7)

Of course in such a situation, it suffices to consider an autoregressive process of the
same order p with consistently estimated parameters âk (e.g., Yule-Walker estimates)
and consistently estimated distribution of the innovations in the bootstrap world. If the
statistic of interest is the centered autocovariance or centered autocorrelation function
evaluated at some lags, then it is known that the asymptotic distribution for these quan-
tities is not the same for linear AR(p) processes of type (7) and, for example, general
mixing processes. This means that the residual bootstrap based on an autoregressive fit
in general does not lead to consistent results.

As long as one is interested in the distribution of the coefficients of the (linear)
autoregressive fit itself and as long as the underlying model follows (7), even the wild
bootstrap proposal (4) leads to valid approximation results. The bootstrap estimators in
such a situation just are the coefficients of a linear regression of X∗t on X t−1, . . . , X t−p.
The reason is that the asymptotic distributions of Yule-Walker and least-squares estima-
tors for the coefficients in linear autoregression and linear regression with i.i.d. errors
coincide. For more general statistics, it is of course not true that the wild bootstrap pro-
posal (4) leads to asymptotically valid results, because in the bootstrap world, we even
do not generate a stochastic process.

The application of a residual resampling scheme (2) in principle is of course not
limited to causal (linear) autoregressive processes but easily can be extended to a broad
class of further parametric models (including ARMA, threshold, ARCH, and GARCH
models). Relevant references for ARMA models are Bose (1988), Bose (1990), and
Franke and Kreiss (1992). The multivariate ARMA situation is considered in Papar-
oditis and Streitberg (1991). Basawa et al. (1991), Datta (1996), and Heimann and
Kreiss (1996) dealt with the situation of general AR(1) models in which the parameter
value is not restricted to the stationary case. For first-order autoregressions with posi-
tive innovations, Datta and McCormick (1995a) considered a bootstrap proposal for an
estimator specific to the considered situation. Finally, Franke et al. (2006) considered
the application of the bootstrap to order selection in autoregression, and Paparoditis and
Politis (2005) considered bootstrap methods for unit root testing in autoregressions. It
is worth mentioning that the assumption of i.i.d. innovations is rather essential for the
asymptotic validity of the described bootstrap proposals for most statistics of interest.
For a bootstrap test for a unit root in autoregressions with weakly dependent errors, see
Psaradakis (2001).

Finally, let us come back to the fully nonparametric situation. If the data-generating
process follows a nonparametric model equation of the form

X t = m(X t−1, . . . , X t−p)+ s(X t−1, . . . , X t−q) · et , t ∈ Z, (8)

again with i.i.d. innovations (et ) (having zero mean and unit variance) and known
orders p, q, in order to define a bootstrap process according to (2) or (4), we have to
apply nonparametric estimators of the underlying functional parameters m : Rp

→ R
and s : Rq

→ [0,∞], which are conditional mean and conditional volatility function of
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the process. For smooth mean functions m and smooth volatility functions v, kernel-
based estimators successfully could be applied, while for more general situations,
wavelet-based estimators may be used. It can be expected that for almost all statisti-
cal quantities, a residual bootstrap based on a nonparametric model fit for (8) will lead
to a consistent resampling procedure.

As far as nonparametric estimators are of interest, one can take advantage of the
so-called whitening by windowing effect, which in many situations of interest implies
that the dependence structure of the underlying process does not show up in asymp-
totic distributions of nonparametric estimates. Because of this, one might also take
regression-type standard as well as wild residual bootstrap procedures like (4) into
consideration, which are often much easier to implement because they completely
ignore the underlying dependence structure. We refer to Franke et al. (2002a) and
Franke et al. (2002b) for nonparametric kernel-based-bootstrap methods. Neumann and
Kreiss (1998) and Kreiss (2000) considered to what extent the nonparametric regres-
sion type bootstrap procedures successfully can be applied to situations (8) as long
as nonparametric estimators and tests for conditional mean and/or volatility functions
in nonparametric autoregressions are considered. A local bootstrap approach to kernel
estimation for dependent observations is suggested and investigated in Paparoditis and
Politis (2000).

Nonparametric bootstrap applications to goodness-of-fit testing problems for mean
and volatilty functions in models of the form (8) are derived and discussed in Kreiss
and Neumann (1999) and Kreiss et al. (2008). Paparoditis and Politis (2003) applied
the concept of block bootstrap (cf. Section 5) to residuals in order to deal with rather
relevant unit root testing problems.

3. Autoregressive-sieve bootstrap

The main idea of autoregressive (AR)-sieve bootstrap follows the lines of residual boot-
strap described in Section 2. Instead of applying the drawing with replacement idea to
residuals of an in some sense optimal predictor, we restrict for the AR-sieve bootstrap to
(optimal) linear predictors, given an increasing number of past values of the underlying
process itself.

If we again assume that the underlying process is stationary and, moreover, has
positive variance γ (0) > 0 and asymptotically (as h →∞) vanishing autocovari-
ances γ (h), then we obtain from Brockwell and Davis (1991), Prop. 5.1.1, that the
matrix 0 p = (γ (i − j))i , j=1,2,...,p is positive definite, and therefore, immediately the
best (in mean square sense) linear predictor of X j+1 given p past values X j ,p =

(X j , . . . , X j−p+1) exists, which is unique and is given by X̂ j+1 =
∑p

j=1 a j (p)X t− j .
The coefficients (a j (p) j = 1, 2, . . . , p) efficiently can be calculated from

(a1(p), a2(p), . . . , ap(p))
T
= 0−1

p (γ (1), γ (2), . . . , γ (p))
T .

Now, one way to generate bootstrap pseudo-time series is to select a set of p start-
ing values X∗1 , X∗2 , . . . , X∗p and, given the past X∗1 , X∗2 , . . . , X∗j , j ≥ p, to generate
the next observation X∗j+1 using an estimated version of the best linear predictor

X̂ j+1 =
∑p

s=1 as(p)X∗j+1−s plus an error term which is selected randomly from the

set of centered estimated prediction errors X t+1 − X̂ t+1 = X t+1 −
∑p

s=1 as(p)X t+1−s .
This idea together with the order p converging to infinity as sample size n increases
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lead to the so-called AR-sieve bootstrap procedure, which can be summarized in the
following steps.

Step 1: Select an order p = p(n) ∈ N, p � n, and fit a pth order autoregres-
sive model to X1, X2, . . . , Xn . Denote by â(p) = (̂a j (p), j = 1, 2, . . . , p), the
Yule-Walker autoregressive parameter estimators, that is â(p) = 0̂(p)−1γ̂p,
where for 0 ≤ h ≤ p,

γ̂X (h) =
1

n

n−|h|∑
t=1

(X t − Xn)(X t+|h| − Xn),

Xn =
1
n

∑n
t=1 X t , 0̂(p)= (γ̂X (r − s))r ,s=1,2,...,p and γ̂p = (γ̂X (1), . . . , γ̂X (p))′.

Step 2: Let ε̃t (p) = X t −
∑p

j=1 â j (p)X t− j t = p + 1, p + 2, . . . , n, be the residuals

of the autoregressive fit and denote by F̂n the empirical distribution function of
the centered residuals ε̂t (p) = ε̃t (p)− ε, where ε = (n − p)−1∑n

t=p+1 ε̃t (p)
Let (X∗1 , X∗2 , . . . , X∗n) be a set of observations from the time series X∗ =

{X∗t : t ∈ Z}, where X∗t =
∑p

t=1 â j (p)X∗t− j + e∗t and the e∗t ’s are independent

random variables having identical distribution F̂n .
Step 3: Let T ∗n = Tn(X∗1 , X∗2 , . . . , X∗n) be the same estimator as the estimator Tn of

interest based on the pseudo-time series X∗1 , X∗2 , . . . , X∗n , and ϑ∗ the analogue
of ϑ associated with the bootstrap process X∗. The AR-sieve bootstrap approx-
imation of Ln = L(cn(θ̂n − θ)) is then given by L∗n = L∗(cn (T ∗n − ϑ

∗)).

Using Yule-Walker estimators in Step 1 of the AR-sieve bootstrap is rather con-
venient. Besides simple, stable, and fast computation (using the Durbin–Levinson
algorithm), it ensures that the complex polynomial Âp(z) = 1−

∑p
j=1 â j (p)z j has no

roots on or within the unit disc {z ∈ C : |z| ≤ 1}, i.e., the bootstrap process X∗ is always
a stationary and causal autoregressive process (cf. Kreiss and Neuhaus (2006), Satz 8.7
and Bemerkung 8.8).

The described AR-sieve bootstrap has been introduced by Kreiss (1988) and has
been investigated from several points of view in Paparoditis and Streitberg (1991),
Kreiss (1992), Paparoditis (1996), Bühlmann (1997), Kreiss (1997), Bühlmann (1998),
Choi and Hall (2000), Gonçalves and Kilian (2007), Poskitt (2008), and recently in
Kreiss et al. (2011). Park (2002) gives an invariance principle for the sieve bootstrap
and Bose (1988) worked out the edgeworth correction of bootstrap in autoregressions.
Kapetanios (2010) applied the idea of sieve bootstrap to long-memory processes.

The question of course is under what assumptions on the underlying stochastic pro-
cess (X t : t ∈ Z) and for what kind of statistics Tn(X1, . . . , Xn) can we successfully
approximate the distribution Ln by that of L∗n? In almost all papers concerning AR-
sieve bootstrap, it is assumed that (X t ) is a linear autoregression of possibly infinite
order, i.e.,

X t =

∞∑
j=1

a j X t− j + et , (9)

with (et ) an i.i.d. sequence and absolutely summable coefficients a j , which moreover
typically are assumed to decrease polynomially or even exponentially fast. An excep-
tion is the sample mean Xn =

1
n

∑n
t=1 X t , where Bühlmann (1997) showed that for this
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specific statistic, the assumption of i.i.d. innovations (et ) can be relaxed to martingale
differences.

Kreiss et al. (2011) used the fact that every purely nondeterministic, zero mean
stationary process possessing a strictly positive and continuous spectral density has
a unique Wold-type autoregressive representation of the form

X t =

∞∑
j=1

a j X t− j + εt , (10)

with absolutely summable coefficients ak and a white noise process (εt ) consisting
of zero mean, uncorrelated random variables. The representation (10) does by far not
mean that the underlying process is a linear, causal AR(∞) process driven by i.i.d.
innovations!

Kreiss et al. (2011) have shown that under rather mild regularity assumptions, the
AR-sieve bootstrap asymptotically correctly mimics the behavior of the following so-
called companion autoregressive process (X̃ t : t ∈ Z) defined according to

X̃ t =

∞∑
j=1

a j X̃ t− j + ε̃t , (11)

where the innovation process (̃εt ) consists of i.i.d. random variables whose marginal
distribution coincides with that of (εt ), i.e., L(εt ) = L(̃εt ) and the coefficients are
those of the Wold-type autoregressive representation (10). Note that the first- and
second-order properties of the two stochastic processes (X̃ t ) and (X t ) are the same,
i.e., autocovariances and the spectral density coincide. However, all probability char-
acteristics beyond second-order quantities are not necessarily the same and, in general,
will substantially differ. Kreiss et al. (2011) showed for a rather general class of statis-
tics that the AR-sieve bootstrap asymptotically works if the asymptotic distribution of
the statistics of interest is the same for the underlying process (X t ) and the compan-
ion autoregressive process (X̃ t ). This rather plausible check criterion for the AR-sieve
bootstrap to work leads, for example, for the arithmetic mean under very mild assump-
tions (much weaker than martingale differences for the innovations) to consistency
of the AR-sieve proposal. For autocorrelations, this check criterion shows that AR-
sieve bootstrap works if the underlying process possesses any linear representation
with i.i.d. errors not depending on whether this representation can be inverted to an
AR(∞)–representation with i.i.d. errors or not. For further details, we refer to Kreiss
et al. (2011).

4. Bootstrap for Markov chains

Extension of the Bootstrap methods from i.i.d. random variables to Markov chains was
initiated by Kulperger and Prakasa Rao (1989) for the finite state space case. Suppose
that {Xn}n≥0 be a stationary Markov chain with a finite state space S = {s1, . . . , s`},
where ` ∈ N and where N ≡ {1, 2, . . .} denotes the set of all natural integers. Let the `×
` transition probability matrix of the chain be given by P = ((pi j )) and the stationary
distribution by π = (π1, . . . ,π`). Thus, for any 1 ≤ i , j ≤ `, pi j = P(X1= s j |X)= si )
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and πi = P(X0 = si ). The joint distribution of the chain is completely determined by
the finitely many unknown parameters, given by the components of π and P. Given a
sample X0, . . . , X(n−1) of size n from the Markov chain, we can estimate the population
parameters πi ’s and pi j ’s as

π̂i = n−1
n−1∑
k=0

11(Xk = si ) p̂i j = n−1
n−2∑
k=0

11(Xk = si , Xk+1 = s j )/π̂i , (12)

1 ≤ i , j ≤ `. The bootstrap observations X∗0 , . . . , X∗n−1 can now be generated using the
estimated transition matrix and the marginal distribution. Specifically, first generate a
random variable X∗0 from the discrete distribution on {1, . . . , `} that assigns mass π̂i to
si , 1 ≤ i ≤ `. Next, having generated X∗0 , . . . , X∗k−1 for some 1 ≤ k < n − 1, generate
X∗k from the discrete distribution on {1, . . . , `} that assigns mass p̂i j to j , 1 ≤ j ≤ `,
where si is the value of X∗k−1. The bootstrap version of a given random variable Tn =

tn(Xn; θ) based on (X0, . . . , Xn−1) and a parameter θ of interest is now defined as

T ∗n = tn(X
∗

0 , . . . , X∗n−1; θ̂n)

where θ̂n is an estimator of θ based on X0, . . . , Xn−1. For example, for Tn = n1/2(X̄n −

µ), where X̄n = n−1∑n−1
k=0 X i and µ = E X0, we set T ∗n = n1/2(X̄∗n − µ̂n), where X̄∗n is

the average of the n bootstrap variables X∗k ’s and where µ̂n =
∑`

i=1 π̂i X i , the (condi-
tional) expectation of X∗0 given Xn . This approach has been extended to the countable
case by Athreya and Fuh (1992).

More recently, different versions of the Bootstrap method for Markov processes
based on estimated transition probability functions have been extended to the case,
where the state space is Euclidean. In this case, one can use the nonparametric func-
tion estimation methodology to estimate the marginal distribution and the transition
probability function. For consistency of the method, see Rajarshi (1990), and for the
second-order properties of the method, see Horowitz (2003). A “local” version of the
method (called the Local Markov Bootstrap or MLB, in short) has been put forward
by Paparoditis and Politis (2001b). The idea here is to construct the bootstrap chain by
sequential drawing – having selected a set of bootstrap observations, the next observa-
tion is randomly selected from a “neighborhood of close values” of the observation(s) in
the immediate past. Paparoditis and Politis (2001b) showed that the resulting bootstrap
chain was stationary and Markov and also that it enjoyed some robustness with regard
to the Markovian assumption. For more on the properties of the MLB, see Paparoditis
and Politis (2001b).

A completely different approach to bootstrapping Markov chains was introduced by
Athreya and Fuh (1992). Instead of using estimated transition probabilities, they for-
mulate a resampling scheme based on the idea of regeneration. A well-known result
(Athreya and Ney, 1978) on Markov chains literature says that for a large class of
Markov chains satisfying the so-called Harris recurrence condition, successive returns
to a recurrent state gives a decomposition of the chain into i.i.d. cycles (of random
lengths). The regeneration-based bootstrap resamples these i.i.d. cycles to generate the
bootstrap observations. Here, we describe it for a Markov Chain {Xn}n≥0 with values
in a general state space S, equipped with a countably generated σ -field S . Let P(x , dy)
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denote the transition probability function, and let π(·) denote the stationary distribu-
tion of the Markov chain. Suppose that {Xn}n≥0 is positive recurrent with a known
“accessible atom” A ∈ S; Here, a set A ∈ S is called an “accessible atom” if it satisfies

π(A) > 0 and P(x , ·) = P(y, ·) for all x , y ∈ A.

For a Harris recurrent Markov chain with a countable state space, this condition holds
trivially. Define the successive return times to A by

τ1 = inf{m ≥ 1 : Xm ∈ A} and

τk+1 = inf{m ≥ τk : Xm ∈ A}, k ≥ 1.

Then, by strong Markov property, the blocks Bk = {X i : τk + 1 ≤ i ≤ τk+1}, k ≥ 1 are
i.i.d. variables with values in the taurus ∪k≥1Sk . The regeneration-based bootstrap
resamples the collection of blocks{

Bk : Bk ⊂ {X0, . . . , Xn−1}

}
with replacement to generate the bootstrap observations. Validity of the method for
the sample mean in the countable state space case is established by Athreya and Fuh
(1992). For second-order properties of the regeneration-based bootstrap, see Datta and
McCormick (1995b), and its refinements in Bertail and Clemencon (2006). Bertail and
Clemencon (2006) show that the regeneration-based bootstrap, with a proper definition
of the bootstrap version, achieves almost the same level of accuracy as in the case of
i.i.d. random variables for linear statistics. As a result, for Markov chains satisfying the
requisite regularity conditions, one should use the regeneration-based bootstrap (with
blocks of random lengths) instead of the block bootstrap methods described below
which are applicable to more general processes but are not as accurate.

5. Block bootstrap methods

For time series that are not assumed to have a specific structural form, Künsch (1989)
formulated a general bootstrap method, currently known as the moving block boot-
strap or MBB, in short. Quite early in the bootstrap literature, Singh (1981) showed
that resampling single observations, as considered by Efron (1979) for independent
data, failed to produce valid approximations in presence of dependence. As a rem-
edy for the limitation of the single-data-value resampling scheme for dependent time
series data, Künsch (1989) advocated the idea of resampling blocks of observations at
a time (see also Bühlmann and Künsch (1995)). By retaining the neighboring obser-
vations together within the blocks, the dependence structure of the random variables
at short lag distances is preserved. As a result, resampling blocks allows one to carry
this information over to the bootstrap variables. The same resampling plan was also
independently suggested by Liu and Singh (1992), who coined the term “moving block
bootstrap.”

We now briefly describe the MBB. Suppose that {X t }t∈N is a stationary weakly
dependent time series and that {X1, . . . , Xn} ≡ Xn are observed. Let ` be an integer
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satisfying 1 ≤ ` < n. Define the overlapping blocks B1, . . . , BN of length ` contained
in Xn as

B1 = (X1, X2, . . . , X`),

B2 = (X2, . . . , X`, X`+1),

. . . . . .

BN= (Xn−`+1, . . . , Xn),

where N = n − `+ 1. For simplicity, suppose that ` divides n. Let b = n/`. To gen-
erate the MBB samples, we select b blocks at random with replacement from the
collection {B1, . . . , BN }. Since each resampled block has ` elements, concatenating
the elements of the b resampled blocks serially yields b · ` bootstrap observations
X∗1 , . . . , X∗n . Note that if we set ` = 1, then the MBB reduces to the ordinary boot-
strap method of Efron (1979) for i.i.d. data. However, for a valid approximation in the
dependent case, it is typically required that

`−1
+ n−1` = o(1) as n→∞. (13)

Some typical choices of ` are ` = Cn1/k for k = 3, 4, where C ∈ R is a constant. Next,
suppose that the random variable of interest is of the form Tn = tn(Xn; θ(Pn)), where
Pn = L(Xn) denotes the joint probability distribution of Xn . The MBB version of Tn

based on blocks of size ` is defined as

T ∗n = tn(X
∗

1 , . . . , X∗n ; θ(P̂n)),

where P̂n = L(X∗1 , . . . , X∗n |Xn), the conditional joint probability distribution of
X∗1 , . . . , X∗n , given Xn , and where we suppress the dependence on ` to ease the notation.
In the general case, where n is not a multiple of `, one may resample b = b0 blocks,
where b0 = min{k ≥ 1 : k` ≥ n} and retain the first n resampled data-values to define
the bootstrap replicate of Tn .

To illustrate the construction of T ∗n in a specific example, suppose that Tn is the
centered and scaled sample mean T 1/2

n (X̄n − µ). Then, the MBB version of Tn is given
by T ∗n = n1/2(X̄∗n − µ̃n), where X̄∗n is the sample mean of the bootstrap observations
and where µ̃n = E∗(X̄∗n). It is easy to check that

µ̃n = N−1
N∑

i=1

(
X i + · · · + X i+`−1

)
/`

= N−1

[
N∑

i=`

X i +

`−1∑
i=1

i

`

(
X i + Xn−i+1

)]
, (14)

which is different from X̄n for ` > 1. Lahiri (1991) established second-order correct-
ness of the MBB approximation for the normalized sample mean, where the bootstrap
sample mean is centered at µ̃n . The “naive” centering of X̄∗n at X̄n is not appropriate as
it leads to a loss of accuracy of the MBB approximation (Lahiri, 1992). Second-order
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correctness of the MBB approximation for studentized statistics has been established
independently by Götze and Künsch (1996) for stationary processes and by Lahiri
(1996) in multiple linear regression models with dependent errors.

Several variants of the block bootstrap method exist in the literature. One of the
early versions of the block bootstrap, implicit in the work of Carlstein (1986), restricts
attention to the collection of nonoverlapping blocks in the data, and resamples from this
smaller collection to generate the bootstrap observations. This is known as the nonover-
lapping block bootstrap (NBB). To describe it briefly, suppose that ` is an integer in
(1, n) satisfying (13). Also, for simplicity, suppose that ` divides n and set b = n/`.
The NBB samples are generated by selecting b blocks at random with replacement
from the collection {B̃1, . . . , B̃b}, where

B̃1= (X1, . . . , X`),

B̃2= (X`+1, . . . , X2`),

. . . . . .

B̃b= (X(b−1)`+1, . . . , Xn).

Because the blocks in the NBB construction do not overlap, it is easier to analyze
theoretical properties of NBB estimators than those of MBB estimators of a population
parameter. However, the NBB estimators typically have higher MSEs at any block size
` compared to their MBB counterparts (cf. Lahiri (1999)).

Other variants of the block bootstrap include the circular block bootstrap (CBB)
and the stationary bootstrap (SB) of Politis and Romano (1992, 1994), the matched
block bootstrap (MaBB) of Carlstein et al. (1998), the tapered block bootstrap (TBB)
of Paparoditis and Politis (2001a), among others. The CBB and the SB are primar-
ily motivated by the need to remove the uneven weighting of the observations at the
beginning and at the end in the MBB (cf. (14)) and are based on the idea of periodic
extension of the observed segment of the time series. Further, while most block boot-
strap methods are based on blocks of a deterministic length `, the SB is based on blocks
of random lengths that have a Geometric distribution with expected length ` satisfying
(13). The biases of the variance estimators generated by the MBB, NBB, CBB, and
SB are of the order O(`−1), while the variances are of the order O(n−1`), where `
denotes the block size and n the sample size. It turns out that the MBB and the CBB
have asymptotically equivalent performance and are also the most accurate of these
four methods. For relative merits of these four methods, see Lahiri (1999), Politis and
White (2004), and Nordman (2009). The MaBB uses a stochastic mechanism to reduce
the edge effects from joining independent blocks in the MBB, while the TBB shrinks
the boundary values in a block towards a common value, like the sample mean, to
achieve the same. Although somewhat more complex than the MBB or the CBB, both
the MaBB and the TBB yield more accurate variance estimators, with biases of the
order O(`−2) and variances of the order O(n−1`). In this sense, both MaBB and TBB
are considered second-generation block bootstrap methods.

Performance of the block bootstrap methods crucially depends on the choice of the
block size and on the dependent structure of the process. Explicit formulas for MSE-
optimal block sizes for estimating the variances of smooth functions of sample means
are known for the MBB, CBB, NBB, and SB (Hall et al., 1995; Lahiri, 1999). Thus,
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one can use these expressions to formulate plug-in estimators of the optimal block
sizes (Patton et al., 2009; Politis and White, 2004). For the variance estimation prob-
lem, Bühlmann and Künsch (1999) formulated a method based on linearization of an
estimator using its influence function, which is somewhat more general than the direct
plug-in approach. But perhaps the most widely used method in this context is given by
Hall et al. (1995) who develop a general empirical method for estimating the optimal
block sizes for estimating both the variance and the distribution function. The Hall et al.
(1995) method uses the subsampling method to construct an estimator of the MSE as
a function of the block size, and then minimize it to produce the estimator of the opti-
mal block size. An alternative method based on the Jackknife-after-bootstrap method
(Efron, 1992; Lahiri, 2002) has been recently proposed by Lahiri et al. (2007). They
call it a nonparametric plug-in (NPPI) method, as it works like a plug-in method, but
at the same time, it does not require the user to find an exact expression for the opti-
mal block size analytically. The key construction of the NPPI method combines more
than one resampling method suitably and, thereby, implicitly estimates the population
parameters that appear in the formulas for the optimal block sizes. Further, the NPPI
method is applicable to block bootstrap estimation problems involving the variance,
the distribution function, and the quantiles. However, it is a computationally intensive
method as it uses a combination of bootstrap and Jackknife methods.

For further discussion of the block length selection rules for block bootstrap
methods, see Lahiri (2003a, Chapter 7) and the references therein.

6. Frequency domain bootstrap methods

An alternative bootstrap method that completely avoids the difficult problem of block
length selection is given by the Frequency Domain Bootstrap (FDB).

One can apply the FDB for inference on population parameters of a second-order
stationary process that can be expressed as a functional of its spectral density. Here,
we give a short description of the FDB (see Paparoditis (2002) for an overview on
frequency domain bootstrap methods). Given the data Xn , define its Fourier transform

Yn(w) = n−1/2
n∑

t=1

X t exp(−ιwt), w ∈ (−π ,π ]. (15)

The formulation of the FDB is based on the following well-known results:

(i) the Fourier transforms Yn(λ1), . . . , Yn(λk) are asymptotically independent for
any set of distinct ordinates −π < λ1 < · · · < λk ≤ π (cf. Brockwell and Davis
(1991), Lahiri (2003b));

(ii) The original observations Xn admit a representation in terms of the transformed
values Yn = {Yn(w j ) : j ∈ In} as (cf. Brockwell and Davis (1991)),

X t = n−1/2
∑
j∈In

Yn(w j ) exp(ιtw j ), t = 1, . . . , n (16)

where ι =
√
−1, w j = 2π j/n, and In = {−b(n − 1)c/2, . . . , b(n − 1)c/2}.
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Thus, one can express a given variable Rn = rn(Xn; θ) also in terms of the transformed
values Yn and resample from the Y -values to define the FDB version of Rn . Variants
of the FDB method have been proposed and studied by Hurvich and Zeger (1987)
and Franke and Härdle (1992). Under some regularity conditions, Dahlhaus and Janas
(1996) established second-order correctness of the FDB for a class of estimators called
the “ratio statistics.” Ratio statistics are defined as the ratio of two “spectral mean” esti-
mators of the form

∫ π
0 g(w)In(w)dw, where g : [0,π)→ R is an integrable function

and where In(w) = |Y (w)|2 is the periodogram of Xn . A common example of a ratio
estimator is the lag-k sample autocorrelation coefficient, k ≥ 1, given by

ρ̂n(k) = rn(k)/rn(0),

where, for any m ≥ 0, rn(m) = n−1∑n−m
i=1 X i X i+m is a (mean-uncorrected) version

of the sample autocovariance function at lag m. It is easy to check that rn(m) =
2
∫ π

0 cos(mw)In(w)dw, and therefore, ρ̂n(k) is a ratio-statistic estimating the popu-
lation kth order lag autocorrelation coefficient ρ(k) = E X1 X1+k/E X2

1 , when {Xn} is a
zero-mean second-order stationary process.

Although the FDB avoids the problem of block length selection, second-order
accuracy of the FDB distributional approximations is available only under restrictive
regularity conditions (cf. Dahlhaus and Janas (1996)). Further, it is known (cf. Lahiri
(2003a, Section 9.2)) that accuracy of the FDB for spectral means and ratio estima-
tors is rather sensitive to deviations from the model assumptions. Frequency domain
bootstrap methods can also be applied to testing problems, cf. Dette and Paparoditis
(2009).

Paparoditis and Politis (1999) applied the idea of a localized bootstrap approach to
periodogram statistics, while a more general version of the FDB is proposed by Kreiss
and Paparoditis (2003), which adds an intermediate autoregressive model fitting step in
an attempt to capture higher order cross-cumulants of the DFTs. Kreiss and Paparoditis
(2003) show that the modified version of the FDB provides a valid approximation for
a wider class of spectral mean estimators that includes the class of ratio estimators
covered by the FDB. We elaborate on this in the next section.

7. Mixture of two bootstrap methods

So far, we discussed several bootstrap proposals which are either defined in time
domain (like block-, residual, AR-sieve and Markovian bootstrap) or defined in
frequency domain (like periodogram-bootstrap). In this section, we briefly discuss mix-
tures of two bootstrap proposals (so-called hybrid bootstrap procedures). The rational
behind such proposals is to bring together advantages of resampling approaches from
both fields.

The hybrid bootstrap procedure proposed in Kreiss and Paparoditis (2003) can be
understood as an extension of AR-sieve bootstrap as well as an extension of frequency
domain bootstrap. As described in Section 3, AR-sieve bootstrap uses an autoregres-
sive fit in order to obtain residuals of this fit. It can be argued that these residuals
under reasonably assumptions on the data-generating process can be regarded to behave
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approximately like i.i.d. random variables. Since such an i.i.d. property for the residu-
als does (if at all) at most holds approximately, it might be advisable to add a further
nonparametric step to the AR-sieve bootstrap which is able to correct for data features
which cannot or are not represented by the autoregressive fit.

On the other hand, frequency domain bootstrap as described above mainly uses
the fact that periodogram ordinates asymptotically behave like i.i.d. random variables.
But neglecting the existing and only asymptotically vanishing dependence structure
between contiguous periodogram ordinates leads to drawbacks of frequency domain
bootstrap. Therefore, an additional step of fitting a parametric model (e.g., an autore-
gressive model) to the data and applying – in the spirit of Tukey’s pre-whitening – a
frequency domain bootstrap approach to the residuals of the fit partly is able to remove
this remedy. If, for example, the true underlying spectral density has some dominant
peaks, then pre-whitening leads to a considerable improvement of nonparametric spec-
tral density estimators. An autoregressive fit really is able to catch the peaks of the
spectral density rather well and the curve In(λ)/ f̂AR(λ), cf. Step 5 below, is much
smoother than In(λ), thus much easier to estimate nonparametrically.

Based on this motivation, an autoregressive-aided frequency domain hybrid boot-
strap can be described along the following five steps. It is worth mentioning that fitting
an autoregression should be understood as a (convenient) example. Of course, fitting
other parametric models may be regarded as a pre-stage of frequency domain bootstrap.

Step 1: Given the observations X1, . . . , Xn , we fit an autoregressive process of order
p, where p may depend on the particular sample at hand.

This leads to estimated parameters â1(p), . . . , âp(p) and σ̂ (p), which are
obtained from the common Yule-Walker equations. Consider the estimated
residuals

ε̂t = X t −

p∑
ν=1

âν(p)X t−ν , t = p + 1, . . . , n,

and denote by F̂n the empirical distribution of the standardized quantities
ε̂p+1, . . . , ε̂n , i.e., F̂n has mean zero and unit variance.

Step 2: Generate bootstrap observations X+1 , X+2 , . . . , X+n , according to the following
autoregressive model of order p

X+t =
p∑
ν=1

âν(p)X
+

t−ν + σ̂ (p) · ε
+

t ,

where (ε+t ) constitutes a sequence of i.i.d. random variables with cumulative
distribution function F̂n (conditionally on the given observations X1, . . . , Xn).

The bootstrap process X+ = (X+t : t ∈ Z) possesses the following spectral
density:

f̂AR(λ) =
σ̂ 2(p)

2π

∣∣∣∣∣1−
p∑
ν=1

âν(p)e
−iνλ

∣∣∣∣∣
−2

, λ ∈ [0,π ].

Note that because we make use of the Yule-Walker parameter estimators in
Step 1, it is always ensured that f̂AR is well-defined, i.e., the polynomial
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1−
∑p

ν=1 âν(p)zν has no complex roots with magnitude less than or equal
to one. Moreover, the bootstrap autocovariances γ+(h) = E+X+1 X+1+h , h =
0, 1, . . . , p coincide with the empirical autocovariances γ̂n(h) of the underly-
ing observations. It should be noted that it is convenient, but not necessary
to work with Yule-Walker parameter estimates. Any

√
n-consistent parameter

estimates would suffice.
Step 3: Compute the periodogram of the bootstrap observations, i.e.,

I+n (λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

X+t e−iλt

∣∣∣∣∣
2

, λ ∈ [0,π ].

Step 4: Define the following nonparametric estimator q̂

q̂(λ) =
1

n

N∑
j=−N

Kh

(
λ− λ j

) In(λ j )

f̂AR(λ j )
, for λ ∈ [0,π),

while for λ = π , q̂(π) is defined as twice the quantity on the right-hand
side of the above equation taking into account that no Fourier frequencies
greater than π exist. Here and above, the λ j ’s denote the Fourier frequen-
cies, K : [−π ,π ]→ [0,∞) denotes a probability density (kernel), Kh(·) =

h−1 K (·/h), and h > 0 is the so-called bandwidth.
Step 5: Finally, the bootstrap periodogram I ∗n is defined as follows:

I ∗n (λ) = q̂(λ)I+n (λ), λ ∈ [0,π ].

Under some standard assumptions, the validity of this hybrid bootstrap was shown
in Kreiss and Paparoditis (2003) for spectral means (e.g., sample autocovariance and
spectral distribution function)

π∫
0

ϕ(ω)In(ω)dω, (17)

where it is necessary to fit (at least asymptotically) the correct model and for ratio
statistics (e.g., sample autocorrelation)

π∫
0

ϕ(ω)In(ω)dω/

π∫
0

In(ω)dω (18)

and kernel spectral estimators, where it is not necessary to fit the correct model.
As can be seen from Kreiss and Paparoditis (2003), the described hybrid bootstrap

procedure works well, and indeed the effect that on one hand the nonparametric cor-
rection step in frequency domain corrects for features which cannot be represented
by the autoregressive model and that on the other hand the superior properties of the



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 05-ch01-001-026-9780444538581 2012/4/23 23:14 Page 20 #18

20 J.-P. Kreiss and S. N. Lahiri

autoregressive bootstrap procedure show up can be observed. Especially, it is observed
that the frequency domain part of the described hybrid bootstrap leads to a much less
dependence of the hybrid bootstrap on the selected autoregressive order p than for the
parametric autoregressive bootstrap itself.

The so far described hybrid bootstrap procedure is applicable to statistics, which
can be written as functions of the periodogram only. But of course, relevant statistics
in time series analysis do not share this property as, for example, the simple sample
mean of the observations. Therefore, one is interested in a resampling procedure which
still uses some computational parts in frequency domain but which are able to produce
bootstrap observations X∗1 , . . . , X∗n in time domain. When we switch to the frequency
domain, as is, for example, suggested in Step 3 above, then we have to take into account
the fact that the periodogram I+n does not contain all information about the bootstrap
process X+ that is contained in the bootstrap observations X+1 , . . . , X+n . But, we can
write I+n (ω) = |J

+
n (ω)|

2, where

J+n (ω) =
1
√

2πn

n∑
s=1

X+s exp−isω (19)

denotes the discrete Fourier-transform (DFT). And of course, there is a one-to-one cor-
respondence between the n observations of a time series and the DFT evaluated at the
Fourier frequencies ω j = 2π j

n (cf. (16)). The solution now is to apply a nonparametric
correction in the frequency domain to the DFT instead of the periodogram and then use
the one-to-one correspondence to get back to the time domain. The modified hybrid
bootstrap procedure reads as follows:

Step 1: Fit an AR(p) model to the data, compute the estimated residuals ε̂t = X t −∑p
ν=1 âν(p)X t−ν , t = p + 1, . . . , n.

Step 2: Generate bootstrap observations X+1 , . . . , X+n according to X+t =
∑p

ν=1
âν(p)X

+

t−ν + σ̂ (p)ε
+
t , ε+t i.i.d. with empirical distribution of standardized

residuals.
Step 3: Compute the DFT J+n (ω) and the nonparametric correction term q̃(ω) =

q̂1/2(ω) at the fourier frequencies ω j = 2π j
n , j = 1, . . . , n.

Step 4: Compute the inverse DFT of the corrected DFT q̃(ω1)J+n (ω1), . . . ,
q̃(ωn)J+n (ωn) to obtain bootstrap observations X∗1 , . . . , X∗n according to

X∗t =

√
2π

n

n∑
j=1

q̃(ω j )J
+

n (ω j )e
i tω j , t = 1, . . . , n. (20)

This modified hybrid bootstrap proposal works for spectral means and ratio statis-
tics as the not modified hybrid bootstrap procedure of Kreiss and Paparoditis (2003)
does. Instead of using representations of statistics in frequency domain, we now sim-
ply can compute statistics in the time domain. The paper Jentsch and Kreiss (2010), to
which we refer for details, discusses the modified hybrid bootstrap procedure for the
multivariate case which in many respects is different.

So far, we only have considered autoregressions as parametric models to which we
apply nonparametric corrections in frequency domain. It is of course not necessary
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that the underlying model follows an autoregressive scheme of finite or infinite order,
because of the additional nonparametric correction step. Moreover, it is not necessary to
stay with autoregressive models; this has been done for simplicity only. So concerning
a hybrid bootstrap procedure, one may think of any parametric model fit in a first step
and a nonparametric correction as has been described in a second step. In the univariate
situation, the resulting hybrid bootstrap procedure will result in asymptotically correct
approximation results for statistics of observations from linear processes, which can
be written as functions of autocorrelations or of the standardized (having integral one)
spectral density as well as typically for the sample mean. The main reason for that
is that asymptotic distributions of such statistics only depend on second-order terms
of the underlying stochastic process, and these quantities are correctly mimicked by a
hybrid bootstrap proposals. In the multivariate case, the mentioned result concerning
the dependence of asymptotic distribution on second-order terms of linear time series
does not hold any more, and therefore, the multivariate situation is much more involved
(cf. Jentsch and Kreiss (2010)). A related method that allows resampling in frequency
domain to obtain bootstrap replicates in time domain is considered in Kirch and Politis
(2011). The papers Sergides and Paparoditis (2008) and Kreiss and Paparoditis (2011)
considered an autoregressive-aided frequency domain hybrid bootstrap procedure and
the modified hybrid bootstrap procedure along the lines described in this section for
locally stationary time series.

8. Bootstrap under long-range dependence

Let {X t }t∈N be a stationary process with EX2
1 ∈ (0,∞), autocovariance function r(·),

and spectral density function f (·). We say that the process {X t }t∈N is long-range depen-
dent (LRD) if

∑
∞

k=1 |r(k)| = ∞ or if f (λ)→∞ as λ→ 0. Otherwise, {X t }t∈N is said
to be short-range dependent (SRD). We also use the acronym LRD (SRD) for long-
(respectively, short) range dependence. Limit behaviors of many common statistics
and tests under LRD are different from their behaviors under SRD. For example, the
sample mean of n observations from a LRD process may converge to the population
mean at a rate slower than Op(n−1/2), and similarly, with proper centering and scaling,
the sample mean may have a non-normal limit distribution even when the population
variance is finite. More specifically, we consider the following result on the sample
mean under LRD. Let {Z t }t∈N be a zero mean unit variance Gaussian process with an
autocovariance function r1(·) satisfying

r1(k) ∼ Ck−α as k →∞, (21)

for some α ∈ (0, 1), where for any two sequences {sn}n≥1 in R and {tn}n≥1 in (0,∞),
we write sn ∼ tn if sn/tn → 1 as n→∞. Note that here

∑
∞

k=1 |r1(k)| = ∞, and hence,
the process {Z t } is LRD. Next suppose that the X t process derives from the Z t process
through the transformation

X t = Hq(Z t ), t ∈ N, (22)
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for some integer q ≥ 1, where Hq(x) is the qth Hermite polynomial, i.e., for x ∈ R,
Hq(x) = (−1)q

(
exp(x2/2)

)
dq

dxq

(
exp(−x2/2)

)
. Results in Taqqu (1975, 1979) and

Dobrushin and Major (1979) imply the following result on the sample mean:

Theorem 1. Suppose that {X t }t∈N admits the representation (22) for some q ≥ 1. If
α ∈ (0, q−1), then

nqα/2(X̄n − µ)→
d Wq (23)

where µ = EX1 and where Wq is defined in terms of a multiple Wiener-Ito integral with
respect to the random spectral measure W of the Gaussian white noise process as

Wq = A−q/2
∫

exp(ι(x1 + · · · + xq))− 1

ι(x1 + · · · + xq)

q∏
k=1

|xk |
(α−1)/2dW (x1) . . . dWq(xq) (24)

with A = 20(α) cos(απ/2).

For q = 1, Wq has a normal distribution with mean zero and variance 2/[(1− α)
(2− α)]. However, for q ≥ 2, Wq has a non-normal distribution. Although the boot-
strap methods described in the earlier sections are successful in a variety of problems
under SRD, they need not provide a valid answer under LRD. The following result
gives the behavior of the MBB approximation under LRD:

Theorem 2. Let X̄∗n denote the MBB sample mean based on blocks of size ` and resam-
ple size n. Suppose that the conditions of Theorem 1 hold and that nδ`−1

+ `n1−δ
=

o(1) as n→∞ for some δ ∈ (0, 1). Then,

sup
x∈R

∣∣∣P∗(cn(X̄
∗

n − µ̂) ≤ x
)
− P

(
nqα/2(X̄n − µ) ≤ x

)∣∣∣ = o(1) as n→∞ (25)

for some sequence {cn}n≥1 ∈ (0,∞) if and only if q = 1.

Theorem 2 is a consequence of the results in Lahiri (1993). It shows that for any
choice of the scaling sequence, the MBB method fails to capture the distribution of the
sample mean whenever the limit distribution of X̄n is non-normal. With minor modi-
fications of the arguments in Lahiri (1993), it can be shown that the same conclusion
also holds for the NBB and the CBB. Intuitively, this may not be very surprising. The
heuristic arguments behind the construction of these block bootstrap methods show (cf.
Section 5) that all three methods attempt to estimate the initial approximation P∞` to the
joint distribution P of {X t }t∈N, but P∞` itself gives an inadequate approximation to P
under LRD. Indeed, for the same reason, the MBB approximation fails even for q = 1
with the natural choice of the scaling sequence cn = nqα/2. In this case, the (limit) dis-
tribution can be captured by using the MBB only with specially constructed scaling
sequences {cn}n≥1, where cn ∼ [n/`1+qα]1/2 as n→∞. For the sample mean of an
LRD linear process with a normal limit, Kim and Nordman (2011) recently established
the validity of MBB. Formulation of a suitable bootstrap method that works for both
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normal and non-normal cases is still an open problem. For related results on subsam-
pling and empirical likelihood methods under LRD, see Hall et al. (1998), Nordman
et al. (2007), and the references therein.
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