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THE MODEL CONFIDENCE SET

BY PETER R. HANSEN, ASGER LUNDE, AND JAMES M. NASON1

This paper introduces the model confidence set (MCS) and applies it to the selection
of models. A MCS is a set of models that is constructed such that it will contain the
best model with a given level of confidence. The MCS is in this sense analogous to
a confidence interval for a parameter. The MCS acknowledges the limitations of the
data, such that uninformative data yield a MCS with many models, whereas informative
data yield a MCS with only a few models. The MCS procedure does not assume that a
particular model is the true model; in fact, the MCS procedure can be used to compare
more general objects, beyond the comparison of models. We apply the MCS procedure
to two empirical problems. First, we revisit the inflation forecasting problem posed by
Stock and Watson (1999), and compute the MCS for their set of inflation forecasts.
Second, we compare a number of Taylor rule regressions and determine the MCS of
the best regression in terms of in-sample likelihood criteria.

KEYWORDS: Model confidence set, model selection, forecasting, multiple compar-
isons.

1. INTRODUCTION

ECONOMETRICIANS OFTEN FACE a situation where several models or meth-
ods are available for a particular empirical problem. A relevant question is,
“Which is the best?” This question is onerous for most data to answer, espe-
cially when the set of competing alternatives is large. Many applications will
not yield a single model that significantly dominates all competitors because
the data are not sufficiently informative to give an unequivocal answer to this
question. Nonetheless, it is possible to reduce the set of models to a smaller set
of models—a model confidence set—that contains the best model with a given
level of confidence.

The objective of the model confidence set (MCS) procedure is to determine
the set of models, M∗� that consists of the best model(s) from a collection of
models, M0� where best is defined in terms of a criterion that is user-specified.
The MCS procedure yields a model confidence set, M̂∗, that is a collection of
models built to contain the best models with a given level of confidence. The
process of winnowing models out of M0 relies on sample information about
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the relative performances of the models in M0. This sample information drives
the MCS to create a random data-dependent set of models, M̂∗. The set M̂∗

includes the best model(s) with a certain probability in the same sense that a
confidence interval covers a population parameter.

An attractive feature of the MCS approach is that it acknowledges the lim-
itations of the data. Informative data will result in a MCS that contains only
the best model. Less informative data make it difficult to distinguish between
models and may result in a MCS that contains several (or possibly all) mod-
els. Thus, the MCS differs from extant model selection criteria that choose a
single model without regard to the information content of the data. Another
advantage is that the MCS procedure makes it possible to make statements
about significance that are valid in the traditional sense—a property that is not
satisfied by the commonly used approach of reporting p-values from multiple
pairwise comparisons. Another attractive feature of the MCS procedure is that
it allows for the possibility that more than one model can be the best, in which
case M∗ contains more than a single model.

The contributions of this paper can be summarized as follows: First, we in-
troduce a model confidence set procedure and establish its theoretical prop-
erties. Second, we propose a practical bootstrap implementation of the MCS
procedure for a set of problems that includes comparisons of forecasting mod-
els evaluated out of sample and regression models evaluated in sample. This
implementation is particularly useful when the number of objects to be com-
pared is large. Third, the finite sample properties of the bootstrap MCS proce-
dure are analyzed in simulation studies. Fourth, we apply the MCS procedure
to two empirical applications. We revisit the out-of-sample prediction problem
of Stock and Watson (1999) and construct MCSs for their inflation forecasts.
We also build a MCS for Taylor rule regressions using three likelihood criteria
that include the Akaike information criterion (AIC) and Bayesian information
criterion (BIC).

1.1. Theory of Model Confidence Sets

We do not treat models as sacred objects; neither do we assume that a partic-
ular model represents the true data generating process. Models are evaluated
in terms of a user-specified criterion function. Consequently, the “best” model
is unlikely to be replicated for all criteria. Also, we use the term “models”
loosely. It can refer to econometric models, competing forecasts, or alterna-
tives that need not involve any modelling of data, such as trading rules. So the
MCS procedure is not specific to comparisons of models. For example, one
could construct a MCS for a set of different “treatments” by comparing sam-
ple estimates of the corresponding treatment effects or construct a MCS for
trading rules with the best Sharpe ratio.

A MCS is constructed from a collection of competing objects, M0, and a
criterion for evaluating these objects empirically. The MCS procedure is based



THE MODEL CONFIDENCE SET 455

on an equivalence test, δM, and an elimination rule, eM� The equivalence test
is applied to the set M = M0. If δM is rejected, there is evidence that the
objects in M are not equally “good” and eM is used to eliminate from M
an object with poor sample performance. This procedure is repeated until δM
is “accepted” and the MCS is now defined by the set of “surviving” objects.
By using the same significance level, α, in all tests, the procedure guarantees
that limn→∞ P(M∗ ⊂ M̂∗

1−α) ≥ 1 − α; in the case where M∗ consists of one
object, we have the stronger result that limn→∞ P(M∗ = M̂∗

1−α)= 1� The MCS
procedure also yields p-values for each of the objects. For a given object, i ∈
M0, the MCS p-value, p̂i, is the threshold at which i ∈ M̂∗

1−α if and only if
p̂i ≥ α. Thus, an object with a small MCS p-value makes it unlikely that it is
one of the best alternatives in M0�

The idea behind the sequential testing procedure that we use to construct the
MCS may be recognized by readers who are familiar with the trace-test proce-
dure for selecting the rank of a matrix. This procedure involves a sequence of
trace tests (see Anderson (1984)), and is commonly used to select the number
of cointegration relations within a vector autoregressive model (see Johansen
(1988)). The MCS procedure determines the number of superior models in
the same way the trace test is used to select the number of cointegration rela-
tions. A key difference is that the trace-test procedure has a natural ordering
in which the hypotheses are to be tested, whereas the MCS procedure requires
a carefully chosen elimination rule to define the sequence of tests. We discuss
this issue and related testing procedures in Section 4.

1.2. Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of the MCS procedure that is con-
venient when the number of models is large. The bootstrap implementation is
simple to use in practice and avoids the need to estimate a high-dimensional
covariance matrix. White (2000b) is the source of many of the ideas that un-
derlies our bootstrap implementation.

We study the properties of our bootstrap implementation of the MCS pro-
cedure through simulation experiments. The results are very encouraging be-
cause the best model does end up in the MCS at the appropriate frequency and
the MCS procedure does have power to weed out all the poor models when the
data contain sufficient information.

1.3. Empirical Analysis of Inflation Forecasts and Taylor Rules

We apply the MCS to two empirical problems. First, the MCS is used to
study the inflation forecasting problem. The choice of an inflation forecast-
ing model is an especially important issue for central banks, treasuries, and
private sector agents. The 50-plus year tradition of the Phillips curve suggests
it remains an effective vehicle for the task of inflation forecasting. Stock and
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Watson (1999) made the case that “a reasonably specified Phillips curve is the
best tool for forecasting inflation”; also see Gordon (1997), Staiger, Stock, and
Watson (1997b), and Stock and Watson (2003). Atkeson and Ohanian (2001)
concluded that this is not the case because they found it is difficult for any of
the Phillips curves they studied to beat a simple no-change forecast in out-of-
sample point prediction.

Our first empirical application is based on the Stock and Watson (1999)
data set. Several interesting results come out of our analysis. We partition
the evaluation period in the same two subsamples as did Stock and Watson
(1999). The earlier subsample covers a period with persistent and volatile in-
flation: this sample is expected to be relatively informative about which models
might be the best forecasting models. Indeed, the MCS consists of relatively
few models, so the MCS proves to be effective at purging the inferior fore-
casts. The later subsample is a period in which inflation is relatively smooth
and exhibits little volatility. This yields a sample that contains relatively little
information about which of the models deliver the best forecasts. However,
Stock and Watson (1999) reported that a no-change forecast, which uses last
month’s inflation rate as the point forecast, is inferior in both subsamples. In
spite of the relatively low degree of information in the more recent subsam-
ple, we are able to conclude that this no-change forecast is indeed inferior to
other forecasts. We come to this conclusion because the Stock and Watson
no-change forecast never ends up in the MCS. Next, we add the no-change
forecast employed by Atkeson and Ohanian (2001) to the comparison. Their
forecast uses the past year’s inflation rate as the point prediction rather than
month-over-month inflation. This turns out to matter for the second subsam-
ple, because the no-change (year) forecast has the smallest mean square pre-
diction error (MSPE) of all forecasts. This enables us to reconcile Stock and
Watson (1999) with Atkeson and Ohanian (2001) by showing that their differ-
ent definitions of the benchmark forecast—no-change (month) and no-change
(year), respectively—explain the different conclusions they reach about these
forecasts.

Our second empirical example shows that the MCS approach is a useful tool
for in-sample evaluation of regression models. This example applies the MCS
to choosing from a set of competing (nominal) interest rate rule regressions on
a quarterly U.S. sample that runs from 1979 through 2006. These regressions
fall into the class of interest rate rules promoted by Taylor (1993). His (Taylor’s)
rule forms the basis of a class of monetary policy rules that gauge the success of
monetary policy at keeping inflation low and the real economy close to trend.
The MCS does not reveal which Taylor rule regressions best describe the actual
U.S. monetary policy; neither does it identify the best policy rule. Rather the
MCS selects the Taylor rule regressions that have the best empirical fit of the
U.S. federal funds rate in this sample period, where the “best fit” is defined by
different likelihood criteria.

The MCS procedure begins with 25 regression models. We include a pure
first-order autoregression, AR(1), of the federal funds rate in the initial MCS.
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The remaining 24 models are Taylor rule regressions that contain different
combinations of lagged inflation, lags of various definitions of real economic
activity (i.e., the output gap, the unemployment rate gap, or real marginal cost),
and in some cases the lagged federal funds rate.

It seems that there is limited information in our U.S. sample for the MCS
procedure to narrow the set of Taylor rule regressions. The one exception is
that the MCS only holds regressions that admit the lagged interest rate. This
includes the pure AR(1). The reason is that the time-series properties of the
federal funds rate is well explained by its own lag. Thus, the lagged federal
funds rate appears to dominate lags of inflation and the real activity variables
for explaining the current funds rate. There is some solace for advocates of in-
terest rate rules, because under one likelihood criterion, the MCS often tosses
out Taylor rule regression lacking in lags of inflation. Nonetheless, the MCS
indicates that the data are consistent with either lags of the output gap, the un-
employment rate gap, or real marginal cost playing the role of the real activity
variables in the Taylor rule regression. This is not a surprising result. Mea-
surement of gap and marginal cost variables remain an unresolved issue for
macroeconometrics; for example, see Orphanides and Van Norden (2002) and
Staiger, Stock, and Watson (1997a). It is also true that monetary policymakers
rely on sophisticated information sets that cannot be spanned by a few aggre-
gate variables (see Bernanke and Boivin (2003)). The upshot is that the sam-
ple used to calculate the MCS has difficulties extracting useful information to
separate the pure AR(1) from Taylor rule regressions that include the lagged
federal funds rate.

1.4. Outline of Paper

The paper is organized as follows. We present the theoretical framework of
the MCS in Section 2. Section 3 outlines practical bootstrap methods to imple-
ment the MCS. Multiple model comparison methods related to the MCS are
discussed in Section 4. Section 5 reports the results of simulation experiments.
The MCS is applied to two empirical examples in Section 6. Section 7 con-
cludes. The Supplemental Material (Hansen, Lunde, and Nason (2011)) pro-
vides detailed description of our bootstrap implementation and some tables
that substantiate the results presented in the simulation and empirical section.

2. GENERAL THEORY FOR MODEL CONFIDENCE SET

In this section, we discuss the theory of model confidence sets for a general
set of alternatives. Our leading example concerns the comparison of empiri-
cal models, such as forecasting models. Nevertheless, we do not make specific
references to models in the first part of this section, in which we lay out the
general theory.

We consider a set, M0� that contains a finite number of objects that are
indexed by i = 1� � � � �m0� The objects are evaluated in terms of a loss func-
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tion and we denote the loss that is associated with object i in period t as Li�t�
t = 1� � � � � n� For example, in the situation where a point forecast Ŷi�t of Yt is
evaluated in terms of a loss function L� we define Li�t =L(Yt� Ŷi�t).

Define the relative performance variables

dij�t ≡Li�t −Lj�t� for all i� j ∈ M0�

This paper assumes that μij ≡ E(dij�t) is finite and does not depend on t for all
i� j ∈ M0� We rank alternatives in terms of expected loss, so that alternative i
is preferred to alternative j if μij < 0�

DEFINITION 1: The set of superior objects is defined by

M∗ ≡ {i ∈ M0 :μij ≤ 0 for all j ∈ M0}�
The objective of the MCS procedure is to determine M∗� This is done

through a sequence of significance tests, where objects that are found to be
significantly inferior to other elements of M0 are eliminated. The hypotheses
that are being tested take the form

H0�M :μij = 0 for all i� j ∈ M�(1)

where M ⊂ M0� We denote the alternative hypothesis, μij 
= 0 for some i� j ∈
M� by HA�M. Note that H0�M∗ is true given our definition of M∗, whereas
H0�M is false if M contains elements from M∗ and its complement, M0 \ M∗�
Naturally, the MCS is specific to a set of candidate models, M0� and therefore
silent about the relative merits of objects that are not included in M0�

We define a model confidence set to be any subset of M0 that contains all
of M∗ with a given probability (its coverage probability). The challenge is to
design a procedure that produces a set with the proper coverage probability.
The next subsection introduces a generic MCS procedure that meets this re-
quirement. This MCS procedure is constructed from an equivalence test and
an elimination rule that are assumed to have certain properties. Next, Sec-
tion 3 presents feasible tests and elimination rules that can be used for specific
problems, such as comparing out-of-sample forecasts and in-sample regression
models.

2.1. The MCS Algorithm and Its Properties

As stated in the Introduction, the MCS procedure is based on an equivalence
test, δM� and an elimination rule, eM� The equivalence test, δM� is used to test
the hypothesis H0�M for any M ⊂ M0, and eM identifies the object of M that
is to be removed from M in the event that H0�M is rejected. As a convention,
we let δM = 0 and δM = 1 correspond to the cases where H0�M are accepted
and rejected, respectively.
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DEFINITION 2—MCS Algorithm:
Step 0. Initially set M = M0.
Step 1. Test H0�M using δM at level α�
Step 2. If H0�M is accepted, define M̂∗

1−α = M; otherwise, use eM to elimi-
nate an object from M and repeat the procedure from Step 1.

The set M̂∗
1−α, which consists of the set of surviving objects (those that sur-

vived all tests without being eliminated), is referred to as the model confidence
set. Theorem 1, which is stated below, shows that the term “confidence set” is
appropriate in this context, provided that the equivalence test and the elimina-
tion rule satisfy the following assumption.

ASSUMPTION 1: For any M ⊂ M0, we assume about (δM� eM) that
(a) lim supn→∞ P(δM = 1|H0�M) ≤ α, (b) limn→∞ P(δM = 1|HA�M) = 1, and
(c) limn→∞ P(eM ∈ M∗|HA�M)= 0�

The conditions that Assumption 1 states for δM are standard requirements
for hypothesis tests. Assumption 1(a) requires the asymptotic level not exceed
α and Assumption 1(b) requires the asymptotic power be 1, whereas Assump-
tion 1(c) requires that a superior object i∗ ∈ M∗ not be eliminated (as n→ ∞)
as long as there are inferior models in M.

THEOREM 1—Properties of MCS: Given Assumption 1, it holds that
(i) lim infn→∞ P(M∗ ⊂ M̂∗

1−α) ≥ 1 − α and (ii) limn→∞ P(i ∈ M̂∗
1−α) = 0 for

all i /∈ M∗�

PROOF: Let i∗ ∈ M∗� To prove (i) we consider the event that i∗ is elim-
inated from M� From Assumption 1(c) it follows that P(δM = 1� eM =
i∗|HA�M) ≤ P(eM = i∗|HA�M)→ 0 as n→ ∞� So the probability that a good
model is eliminated when M contains poor models vanishes as n → ∞�
Next, Assumption 1(a) shows that lim supn→∞ P(δM = 1� eM = i∗|H0�M) =
lim supn→∞ P(δM = 1|H0�M)≤ α such that the probability that i∗ is eliminated
when all models in M are good models is asymptotically bounded by α� To
prove (ii), we first note that limn→∞ P(eM = i∗|HA�M)= 0 such that only poor
models will be eliminated (asymptotically) as long as M � M∗� On the other
hand, Assumption 1(b) ensures that models will be eliminated as long as the
null hypothesis is false. Q.E.D.

Consider first the situation where the data contain little information such
that the equivalence test lacks power and the elimination rule may question
a superior model prior to the elimination of all inferior models. The lack of
power causes the procedure to terminate too early (on average), and the MCS
will contain a large number of models, including several inferior models. We
view this as a strength of the MCS procedure. Since lack of power is tied to
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the lack of information in the data, the MCS should be large when there is
insufficient information to distinguish good and bad models.

In the situation where the data are informative, the equivalence test is pow-
erful and will reject all false hypotheses. Moreover, the elimination rule will
not question any superior model until all inferior models have been eliminated.
(This situation is guaranteed asymptotically.) The result is that the first time a
superior model is questioned by the elimination rule is when the equivalence
test is applied to M∗� Thus, the probability that one (or more) superior model
is eliminated is bounded (asymptotically) by the size of the test! Note that ad-
ditional superior models may be eliminated in subsequent tests, but these tests
will only be performed if H0�M∗ is rejected. Thus, the asymptotic familywise
error rate (FWE), which is the probability of making one or more false rejec-
tions, is bounded by the level that is used in all tests.

Sequential testing is key for building a MCS. However, econometricians of-
ten worry about the properties of a sequential testing procedure, because it
can “accumulate” Type I errors with unfortunate consequences (see, e.g., Leeb
and Pötscher (2003)). The MCS procedure does not suffer from this problem
because the sequential testing is halted when the first hypothesis is accepted.

When there is only a single model in M∗ (one best model), we obtain a
stronger result.

COROLLARY 1: Suppose that Assumption 1 holds and that M∗ is a singleton.
Then limn→∞ P(M∗ = M̂∗

1−α)= 1�

PROOF: When M∗ is a singleton, M∗ = {i∗}� then it follows from Theo-
rem 1 that i∗ will be the last surviving element with probability approaching 1
as n→ ∞� The result now follows, because the last surviving element is never
eliminated. Q.E.D.

2.2. Coherency Between Test and Elimination Rule

The previous asymptotic results do not rely on any direct connection be-
tween the hypothesis test, δM, and the elimination rule, eM. Nonetheless when
the MCS is implemented in finite samples, there is an advantage to the hypoth-
esis test and elimination rule being coherent. The next theorem establishes a
finite sample version of the result in Theorem 1(i) when there is a certain co-
herency between the hypothesis test and the elimination rule.

THEOREM 2: Suppose that P(δM = 1� eM ∈ M∗)≤ α. Then we have

P(M∗ ⊂ M̂∗
1−α)≥ 1 − α�

PROOF: We only need to consider the first instance that eM ∈ M∗, because
all preceding tests will not eliminate elements that are in M∗� Regardless of
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the null hypothesis being true or false, we have P(δM = 1� eM ∈ M∗)≤ α� So it
follows that α bounds the probability that an element from M∗ is eliminated.
Additional elements from M∗ may be eliminated in subsequent tests, but these
test will only be undertaken if all preceding tests are rejected. So we conclude
that P(M∗ ⊂ M̂∗

1−α)≥ 1 − α. Q.E.D.

The property that P(δM = 1� eM ∈ M∗) ≤ α holds under both the null hy-
pothesis and the alternative hypothesis is key for the result in Theorem 2.
For a test with the correct size, we have P(δM = 1|H0�M) ≤ α� which implies
P(δM = 1� eM ∈ M∗|H0�M) ≤ α� The additional condition, P(δM = 1� eM ∈
M∗|HA�M) ≤ α� ensures that a rejection, δM = 1, can be taken as significant
evidence that eM is not in M∗.

In practice, hypothesis tests often rely on asymptotic results that cannot
guarantee P(δM = 1� eM ∈ M∗) ≤ α holds in finite samples. We provide a
definition of coherency between a test and an elimination rule that is useful
in situations where testing is grounded on asymptotic distributions. In what
follows, we use P0 to denote the probability measure that arises via imposing
the null hypothesis via the transformation dij�t �→ dij�t − μij� Thus P is the true
probability measure, whereas P0 is a simple transformation of P that satisfies
the null hypothesis.

DEFINITION 3: There is said to be coherency between test and elimination
rule when

P(δM = 1� eM ∈ M∗)≤ P0(δM = 1)�

The coherency in conjunction with an asymptotic control of the Type I er-
ror, lim supn→∞ P0(δM = 1) ≤ α� translates into an asymptotic version of the
assumption we made in Theorem 2. Coherency places restrictions on the com-
binations of tests and elimination rules we can employ. These restrictions go
beyond those imposed by the asymptotic conditions we formulated in Assump-
tion 1. In fact, coherency serves to curb the reliance on asymptotic properties
so as to avoid perverse outcomes in finite samples that could result from absurd
combinations of test and elimination rule. Coherency prevents us from adopt-
ing the most powerful test of the hypothesis H0�M in some situations. The rea-
son is that tests do not necessarily identify a single element as the cause for the
rejection. A good analogy is found in the standard regression model, where an
F -test may reject the joint hypothesis that all regression coefficients are zero,
even though all t-statistics are insignificant.2

In our bootstrap implementations of the MCS procedure, we adopt the re-
quired coherency between the test and the elimination rule.

2Another analogy is that it is easier to conclude that a murder has taken place than it is to
determine who committed the murder.
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2.3. MCS p-Values

In this section we introduce the notion of MCS p-values. The elimination
rule, eM� defines a sequence of (random) sets M0 = M1 ⊃ M2 ⊃ · · · ⊃ Mm0�
where Mi = {eMi

� � � � � eMm0
} and m0 is the number of elements in M0� So

eM0 = eM1 is the first element to be eliminated in the event that H0�M1� is
rejected, eM2 is the second element to be eliminated, and so forth.

DEFINITION 4—MCS p-Values: Let PH0�Mi
denote the p-value associated

with the null hypothesisH0�Mi
� with the convention that PH0�Mm0

≡ 1� The MCS
p-value for model eMj

∈ M0 is defined by p̂eMj
≡ maxi≤j PH0�Mi

.

The advantage of this definition of MCS p-values will be evident from The-
orem 3 which is stated below. Since Mm0 consists of a single model, the null
hypothesis, H0�Mm0

� simply states that the last surviving model is as good as
itself, making the convention PH0�Mm0

≡ 1 logical.
Table I illustrates how MCS p-values are computed and how they relate to

p-values of the individual tests PH0�Mi
� i = 1� � � � �m0. The MCS p-values are

convenient because they make it easy to determine whether a particular object
is in M̂∗

1−α for any α� Thus, the MCS p-values are an effective way to convey
the information in the data.

THEOREM 3: Let the elements of M0 be indexed by i = 1� � � � �m0� The MCS
p-value, p̂i� is such that i ∈ M̂∗

1−α if and only if p̂i ≥ α for any i ∈ M0�

TABLE I

COMPUTATION OF MCS p-VALUESa

Elimination Rule p-Value for H0�Mk
MCS p-Value

eM1 PH0�M1
= 0�01 p̂eM1

= 0�01
eM2 PH0�M2

= 0�04 p̂eM2
= 0�04

eM3 PH0�M3
= 0�02 p̂eM3

= 0�04
eM4 PH0�M4

= 0�03 p̂eM4
= 0�04

eM5 PH0�M5
= 0�07 p̂eM5

= 0�07
eM6 PH0�M6

= 0�04 p̂eM6
= 0�07

eM7 PH0�M7
= 0�11 p̂eM7

= 0�11
eM8 PH0�M8

= 0�25 p̂eM8
= 0�25

���
���

���
eM(m0)

PH0�Mm0
≡ 1�00 p̂eMm0

= 1�00

aNote that MCS p-values for some models do not coincide with the p-values for
the corresponding null hypotheses. For example, the MCS p-value for eM3

(the third
model to be eliminated) exceeds the p-value for H0�M3

, because the p-value associ-
ated with H0�M2

—a null hypothesis tested prior to H0�M3
—is larger.
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PROOF: Suppose that p̂i < α and determine the k for which i= eMk
� Since

p̂i = p̂eMk
= maxj≤k PH0�Mj

, it follows that H0�M1� � � � �H0�Mk
are all rejected at

significance level α. Hence, the first accepted hypothesis (if any) occurs after
i = eMk

has been eliminated. So p̂i < α implies i /∈ M̂∗
1−α� Suppose now that

p̂i ≥ α� Then for some j ≤ k, we have PH0�Mj
≥ α� in which case H0�Mj

is ac-
cepted at significance level α that terminates the MCS procedure before the
elimination rule gets to eMk

= i� So p̂i ≥ α implies i ∈ M̂∗
1−α� This completes

the proof. Q.E.D.

The interpretation of a MCS p-value is analogous to that of a classical p-
value. The analogy is to a (1 − α) confidence interval that contains the “true”
parameter with a probability no less than 1 −α. The MCS p-value also cannot
be interpreted as the probability that a particular model is the best model,
exactly as a classical p-value is not the probability that the null hypothesis is
true. Rather, the probability interpretation of a MCS p-value is tied to the
random nature of the MCS because the MCS is a random subset of models
that contains M∗ with a certain probability.

3. BOOTSTRAP IMPLEMENTATION

3.1. Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimination rule that sat-
isfy Assumption 1. The following assumption is sufficiently strong to enable us
to implement the MCS procedure with bootstrap methods.

ASSUMPTION 2: For some r > 2 and γ > 0, it holds that E|dij�t |r+γ <∞ for all
i� j ∈ M0 and that {dij�t}i�j∈M0 is strictly stationary with var(dij�t) > 0 and α-mixing
of order −r/(r − 2).

Assumption 2 places restrictions on the relative performance variables,
{dij�t}� not directly on the loss variables {Li�t}� For example, a loss function
need not be stationary as long as the loss differentials, {dij�t}� i� j ∈ M0� satisfy
Assumption 2. The assumption allows for some types of structural breaks and
other features that can create nonstationary {Li�t} as long as all objects in M0

are affected in a similar way that preserves the stationarity of {dij�t}�
3.1.1. Quadratic-Form Test

Let M be some subset of M0 and let m be the number of models in M =
{i1� � � � � im}. We define the vector of loss variables Lt ≡ (Li1�t � � � � �Lim�t)

′� t =
1� � � � � n� and its sample average L̄≡ n−1

∑n

t=1Lt� and we let ι≡ (1� � � � �1)′ be
the column vector where all m entries equal 1. The orthogonal complement to
ι is an m× (m− 1) matrix, ι⊥ that has full column rank and satisfies ι′⊥ι = 0
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(a vector of zeros). The m− 1-dimensional vector Xt ≡ ι′⊥Lt can be viewed as
m − 1 contrasts, because each element of Xt is a linear combination of dij�t ,
i� j ∈ M� which has mean zero under the null hypothesis.

LEMMA 1: Given Assumption 2, letXt ≡ ι′⊥Lt and define θ≡ E(Xt). The null

hypothesis H0�M is equivalent to θ= 0 and it holds that n1/2(X̄ − θ) d→N(0�Σ)�
where X̄ ≡ n−1

∑n

t=1Xt and Σ≡ limn→∞ var(n1/2X̄)�

PROOF: Note that Xt = ι′⊥Lt can be written as a linear combination of dij�t ,
i� j ∈ M0� because ι′⊥ι = 0� Thus H0�M is given by θ = 0 and the asymptotic
normality follows by the central limit theorem for α-mixing processes (see, e.g.,
White (2000a)). Q.E.D.

Lemma 1 shows that H0�M can be tested using traditional quadratic-form
statistics. An example is TQ ≡ nX̄ ′Σ̂#X̄ , where Σ̂ is some consistent estimator
of Σ and Σ̂# denotes the Moore–Penrose inverse of Σ̂.3 The rank q≡ rank(Σ̂)
represents the effective number of contrasts (the number of linearly indepen-
dent comparisons) under H0�M. Since Σ̂

p→ Σ (by assumption), it follows that
TQ

d→ χ2
(q), where χ2

(q) denotes the χ2 distribution with q degrees of freedom.
Under the alternative hypothesis, TQ diverge to infinity with probability 1. So
the test δM will meet the requirements of Assumption 1 when constructed from
TQ� Although the matrix ι⊥ is not fully identified by the requirements ι′⊥ι= 0
and det(ι′⊥ι⊥) 
= 0 (but the subspace spanned by the columns of ι⊥ is), there is
no problem because the statistic TQ is invariant to the choice for ι⊥�

A rejection of the null hypothesis based on the quadratic-form test need not
identify an inferior alternative because a large value of TQ can stem from sev-
eral d̄ij being slightly different from zero. To achieve the required coherence
between test and elimination rule, additional testing is needed. Specifically,
one needs to test all subhypotheses of any rejected hypothesis, unless the sub-
hypothesis is nested in an accepted hypothesis, before further elimination is
justified. The underlying principle is known as the closed testing procedure (see
Lehmann and Romano (2005, pp. 366–367)).

When m is large relative to the sample size, n� reliable estimates of Σ are
difficult to obtain, because the number of elements of Σ to be estimated are of
orderm2� It is convenient to use a test statistic that does not require an explicit
estimate of Σ in this case. We consider test statistics that resolve this issue in
the next section.

3Under the additional assumption that {dij�t}i�j∈M is uncorrelated (across t), we can use
Σ̂= n−1 ∑n

t=1(Xt − X̄)(Xt − X̄)′. Otherwise, we need a robust estimator along the lines of Newey
and West (1987). In the context of comparing forecasts, West and Cho (1995) were the first in-
vestigators to use the test statistic TQ. They based their test on (asymptotic) critical values from
χ2
(m−1).
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3.1.2. Tests Constructed From t-Statistics

This section develops two tests that are based on multiple t-statistics. This
approach has two advantages. First, it bypasses the need for an explicit esti-
mate of Σ� Second, the multiple t-statistic approach simplifies the construction
of an elimination rule that satisfies the notion of coherency formulated in De-
finition 3.

Define the relative sample loss statistics d̄ij ≡ n−1
∑n

t=1 dij�t and d̄i· ≡
m−1

∑
j∈M d̄ij� Here d̄ij measures the relative sample loss between the ith and

jth models, while d̄i· is the sample loss of the ith model relative to the average
across models in M� The latter can be seen from the identity d̄i· = (L̄i − L̄·)�
where L̄i ≡ n−1

∑n

t=1Li�t and L̄· ≡m−1
∑

i∈M L̄i� From these statistics, we con-
struct the t-statistics

tij = d̄ij√
v̂ar(d̄ij)

and ti· = d̄i·√
v̂ar(d̄i·)

for i� j ∈ M�

where v̂ar(d̄ij) and v̂ar(d̄i·) denote estimates of var(d̄ij) and var(d̄i·), respec-
tively. The first statistic, tij� is used in the well known test for comparing two
forecasts; see Diebold and Mariano (1995) and West (1996). The t-statistics tij
and ti· are associated with the null hypothesis that Hij :μij = 0 and Hi· :μi· = 0,
where μi· = E(d̄i·)� These statistics form the basis of tests of the hypothe-
sis H0�M. We take advantages of the equivalence between H0�M� {Hij for all
i� j ∈ M}, and {Hi· for all i ∈ M}. With M = {i1� � � � � im} the equivalence fol-
lows from

μi1 = · · · = μim ⇔ μij = 0 for all i� j ∈ M
⇔ μi· = 0 for all i ∈ M�

Moreover, the equivalence extends to {μi· ≤ 0 for all i ∈ M} as well as {|μij| ≤ 0
for all i� j ∈ M}� and these two formulations of the null hypothesis map natu-
rally into the test statistics

Tmax�M = max
i∈M

ti· and TR�M ≡ max
i�j∈M

|tij|�

which are available to test the hypothesis H0�M.4 The asymptotic distributions
of these test statistics are nonstandard because they depend on nuisance pa-
rameters (under the null and the alternative). However, the nuisance para-
meters pose few obstacles, as the relevant distributions can be estimated with
bootstrap methods that implicitly deal with the nuisance parameter problem.

4An earlier version of this paper has results for the test statistics TD =∑n
j=1 t

2
i· and TQ�
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This feature of the bootstrap has previously been used in this context by Kilian
(1999), White (2000b), Hansen (2003b, 2005), and Clark and McCracken
(2005).

Characterization of the MCS procedure needs an elimination rule, eM�
that meets the requirements of Assumption 1(c) and the coherency of Defi-
nition 3. For the test statistic Tmax�M, the natural elimination rule is emax�M ≡
arg maxi∈M ti· because a rejection of the null hypothesis identifies the hy-
pothesis μj· = 0 as false for j = emax�M� In this case the elimination rule re-
moves the model that contributes most to the test statistic. This model has
the largest standardized excess loss relative to the average across all mod-
els in M� With the other test statistic, TR�M� the natural elimination rule is
eR�M = arg maxi∈M supj∈M tij because this model is such that teR�Mj = TR�M for
some j ∈ M� These combinations of test and elimination rule will satisfy the
required coherency.

PROPOSITION 1: Let δmax�M and δR�M denote the tests based on the statistics
Tmax�M and TR�M� respectively. Then (δmax�M� emax�M) and (δR�M� eR�M) satisfy
the coherency of Definition 3.

PROOF: Let Ti denote either ti· or maxj∈M tij� and note that the test statistics
Tmax�M and TR�M are both of the form T = maxi∈M Ti� Let P0 be as defined in
Section 2.2. From the definitions of ti· and tij , we have for i ∈ M∗ the first-
order stochastic dominance result P0(maxi∈M′ Ti > x)≥ P(maxi∈M′ Ti > x) for
any M′ ⊂ M∗ and all x ∈ R� The coherency now follows from

P(T > c�eM = i for some i ∈ M∗)

= P(T > c�T = Ti for some i ∈ M∗)

= P
(

max
i∈M∩M∗ Ti > c�Ti ≥ Tj for all j ∈ M

)
≤ P

(
max

i∈M∩M∗ Ti > c
)

≤ P0

(
max

i∈M∩M∗ Ti > c
)

≤ P0

(
max
i∈M

Ti > c
)

= P0(T > c)�

This completes the proof. Q.E.D.

Next, we establish two intermediate results that underpin the bootstrap im-
plementation of the MCS.

LEMMA 2: Suppose that Assumption 2 holds and define Z̄ = (d̄1·� � � � � d̄m·)′�
Then

n1/2(Z̄ −ψ) d→Nm(0�Ω) as n→ ∞�(2)

where ψ ≡ E(Z̄) and Ω ≡ limn→∞ var(n1/2Z̄)� and the null hypothesis H0�M is
equivalent to: ψ= 0�
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PROOF: From the identity d̄i· = L̄i − L̄· = L̄i − m−1
∑

j∈M L̄j = m−1 ×∑
j∈M(L̄i − L̄j)=m−1

∑
j∈M d̄ij , we see that the elements of Z̄ are linear trans-

formations of X̄ from Lemma 1. Thus for some (m−1)×mmatrixG, we have
Z̄ = G′X̄ and the result now follows, where ψ = G′θ and Ω = G′ΣG� (The
m×m covariance matrix Ω has reduced rank, as rank(Ω)≤m− 1.) Q.E.D.

In the following discussion, we let  denote the m ×m correlation matrix
that is implied by the covariance matrix Ω of Lemma 2. Further, given the
vector of random variables ξ ∼Nm(0�)� we let F denote the distribution of
maxi ξi.

THEOREM 4: Let Assumption 2 hold and suppose that ω̂2
i ≡ v̂ar(n1/2d̄i·) =

nv̂ar(d̄i·)
p→ ω2

i � where ω2
i , i = 1� � � � �m, are the diagonal elements of Ω� Under

H0�M, we have Tmax�M
d→ F, and under the alternative hypothesisHA�M� we have

Tmax�M → ∞ in probability. Moreover, under the alternative hypothesis, we have
Tmax�M = tj·, where j = emax�M /∈ M∗ for n sufficiently large.

PROOF: Let D ≡ diag(ω2
1� � � � �ω

2
m) and D̂ ≡ diag(ω̂2

1� � � � � ω̂
2
m)� From

Lemma 2 it follows that ξn = (ξ1�n� � � � � ξm�n)
′ ≡D−1/2n1/2Z̄

d→Nm(0�), since

 = D−1/2ΩD−1/2� From ti· = d̄i·/
√

v̂ar(d̄i·) = n1/2d̄i·/ω̂i = ξi�n
ωi
ω̂i

, it now fol-

lows that Tmax�M = maxi ti· = maxi(D̂−1/2n1/2Z̄)i
d→ F� Under the alterna-

tive hypothesis, we have d̄j·
p→ μj· > 0 for any j /∈ M∗� so that both tj· and

Tmax�M diverge to infinity at rate n1/2 in probability. Moreover, it follows that
emax�M /∈ M∗ for n sufficiently large. Q.E.D.

Theorem 4 shows that the asymptotic distribution of Tmax�M depends on the
correlation matrix � Nonetheless, as discussed earlier, bootstrap methods can
be employed to deal with this nuisance parameter problem. Thus, we con-
struct a test ofH0�M by comparing the test statistic Tmax�M to an estimate of the
95% quantile, say, of its limit distribution under the null hypothesis. Although
the quantile may depend on � our bootstrap implementation leads to an as-
ymptotically valid test because the bootstrap consistently estimates the desired
quantile. A detailed description of our bootstrap implementation is available
in a separate appendix (Hansen, Lunde, and Nason (2011)).

Theorem 4 formulates results for the situation where the MCS is constructed
with Tmax�M and emax�M = arg maxi ti·� Similar results hold for the MCS that is
constructed from TR�M and eR�M� The arguments are almost identical to those
used for Theorem 4.

3.2. MCS for Regression Models

This section shows how to construct the MCS for regression models using
likelihood-based criteria. Information criteria, such as the AIC and BIC, are
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special cases for building a MCS of regression models. The MCS approach de-
parts from standard practice where the AIC and BIC select a single model, but
are silent about the uncertainty associated with this selection.5 Thus, the MCS
procedure yields valuable additional information about the uncertainty sur-
rounding model selection. In Section 6.2, application of the MCS procedure in
sample to Taylor rule regressions indicates this uncertainty can be substantial.

Although we focus on regression models for simplicity, it will be evident that
the MCS procedure laid out in this setting can be adapted to more complex
models, such as the type of models analyzed in Sin and White (1996).

3.2.1. Framework and Assumptions

Consider the family of regression models Yt = β′
jXj�t + εj�t , t = 1� � � � � n,

where Xj�t is a subset of the variables in Xt for j = 1� � � � �m0� The set of re-
gression models, M0�may consist of nested, nonnested, and overlapping spec-
ifications.

Throughout we assume that the pair (Yt�X ′
t ) is strictly stationary and sat-

isfies Assumption 1 in Goncalves and White (2005). This justifies our use
of the moving-block bootstrap to implement our resampling procedure. The
framework of Goncalves and White (2005) permits weak serial dependence in
(Yt�X

′
t )� which is important for many applications.

The population parameters for each of the models are defined by β0j =
[E(Xj�tX

′
j�t)]−1E(Xj�tYt) and σ2

0j = E(ε2
j�t)� where εj�t = Yt − β′

0jXj�t� t =
1� � � � � n� Furthermore, the Gaussian quasi-log-likelihood function is, apart
from a constant, given by

�(βj�σ
2
j )= −n

2
logσ2

j − σ−2
j

1
2

n∑
t=1

(Yt −β′
jXj�t)

2�

3.2.2. MCS by Kullback–Leibler Divergence

One way to define the best regression model is in terms of the Kullback–
Leibler information criterion (KLIC) (see, e.g., Sin and White (1996)). This is
equivalent to ranking the models in terms of the expected value of the quasi-
log-likelihood function when evaluated at their respective population parame-
ters, that is, E[�(β0j� σ

2
0j)]� It is convenient to define

Q(Z� θj)= −2�(βj�σ2
j )= n logσ2

j +
n∑
t=1

(Yt −β′
jXj�t)

2

σ2
j

�

5The same point applies to the Autometrics procedure; see Doornik (2009) and references
therein. Autometrics is constructed from a collection of tests and decision rules but does not
control a familywise error rate, and the set of models that Autometrics seeks to identify is not
defined from a single criterion, such as the Kullback–Leibler information criterion.
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where θj can be viewed as a high-dimensional vector that is restricted by the
parameter spaceΘj ⊂Θ that defines the jth regression model. The population
parameters are here given by θ0j = arg minθ∈Θj E[Q(Z� θ)], j = 1� � � � �m0� and
the best model is defined by minj E[Q(Z� θ0j)]� In the notation of the MCS
framework, the KLIC leads to

M∗
KLIC =

{
j : E[Q(Z� θ0j)] = min

i
E[Q(Z� θ0i)]

}
�

which (as always) permits the existence of more than one best model.6 The
extension to other criteria, such as the AIC and the BIC, is straightforward.
For instance, the set of best models in terms of the AIC is given by M∗

AIC =
{j : E[Q(Z� θ0j) + 2kj] = mini E[Q(Z� θ0i) + 2ki]}, where kj is the degrees of
freedom in the jth model.

The likelihood framework enables us to construct either M̂∗
KLIC or M̂∗

AIC

by drawing on the theory of quasi-maximum-likelihood estimation (see,
e.g., White (1994)). Since the family of regression models is linear, the
quasi-maximum-likelihood estimators are standard, β̂j = (

∑n

t=1Xj�tX
′
j�t)

−1 ×∑n

t=1Xj�tYt� and σ̂2
j = n−1

∑n

t=1 ε̂
2
j�t� where ε̂j�t = Yt − β̂′

jXj�t � We have

Q(Z� θ̂j)−Q(Z� θ0j)

= n
{
(logσ2

0j − log σ̂2
j )+

(
n−1

n∑
t=1

ε2
j�t/σ

2
0j − 1

)}
�

which is the quasi-likelihood ratio (QLR) statistic for the null hypothesis,
H0 :θ= θ0j .

In the event that the jth model is correctly specified, it is well known that
the limit distribution of Q(Z� θ̂j) − Q(Z� θ0j) is χ2

(kj)
� where the degrees of

freedom, kj� is given by the dimension of θ0j = (β′
0j� σ

2
0j)

′� In the present mul-
timodel setup, it is unlikely that all models are correctly specified. More gener-
ally, the limit distribution of the QLR statistic has the form,

∑kj
i=1 λi�jZ

2
i�j� where

λ1�j� � � � � λkj�j are the eigenvalues of I −1
j Jj and Z1�j� � � � �Zkj�j ∼ i�i�d�N(0�1).

The information matrices Ij and Jj are those associated with the jth model,

6In the present situation, we have E[Q(Zj� θ0j)] ∝ σ2
0j � The implication is that the error vari-

ance, σ2
0j � induces the same ranking as KLIC, so that M∗

KLIC = {j :σ2
0j = minj′ σ2

0j′ }�
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Ij = diag(σ−2
0j E(Xj�tX

′
j�t)�

1
2σ

−4
0j ) and

Jj = E

⎛⎜⎜⎜⎜⎝
σ−4

0j n
−1

n∑
s�t=1

Xj�sεj�sεj�tX
′
j�t

1
2
σ−6

0j n
−1

n∑
s�t=1

Xj�sεj�sε
2
j�t

• 1
4
σ−8

0j n
−1

n∑
s�t=1

(ε2
j�sε

2
j�t−σ4

0j)

⎞⎟⎟⎟⎟⎠ �
The effective degrees of freedom, k�j � is defined by the mean of the QLR limit
distribution:

k�j = λ1�j + · · · + λkj�j = tr{I −1
j Jj}

= tr

{
[E(Xj�tX

′
j�t)]−1σ−2

0j n
−1

n∑
s�t=1

E(Xj�sεj�sX
′
j�tεj�t)

}

+ n−1 1
2

n∑
s�t=1

E
(
ε2
j�sε

2
j�t

σ4
0j

− 1
)
�

The previous expression points to estimating k�j with heteroskedasticity and
autocorrelation consistent (HAC) type estimators that account for the auto-
correlation in {Xj�tεj�t} and {ε2

j�t} (e.g., Newey and West (1987) and Andrews
(1991)). Below we use a simple bootstrap estimate of k�j � which is also em-
ployed in our simulations and our empirical Taylor rule regression application.

The effective degrees of freedom in the context of misspecified models was
first derived by Takeuchi (1976). He proposed a modified AIC, sometimes re-
ferred to as the Takeuchi information criterion (TIC), which computes the
penalty with the effective degrees of freedom rather than the number of pa-
rameters as is used by the AIC; see also Sin and White (1996) and Hong and
Preston (2008). We use the notation AIC� and BIC� to denote the information
criteria that are defined by substituting the effective degrees of freedom k�j for
kj in the AIC and BIC, respectively. In this case, our AIC� is identical to the
TIC proposed by Takeuchi (1976).

3.2.3. The MCS Procedure

The MCS procedure can be implemented by the moving-block bootstrap
applied to the pair (Yt�Xt); see Goncalves and White (2005). We compute re-
samples Z ∗

b = (Y ∗
b�t�X

∗
b�t)

n
t=1 for b= 1� � � � �B� which equates the original point

estimate, θ̂j , to the population parameter in the jth model under the bootstrap
scheme.

The literature has proposed several bootstrap estimators of the effective
degrees of freedom, k�j = E[Q(Z� θ0j) − Q(Z� θ̂j)]; see, for example, Efron



THE MODEL CONFIDENCE SET 471

(1983, 1986) and Cavanaugh and Shumway (1997). These and additional esti-
mators are analyzed and compared in Shibata (1997). We adopt the estimator
for k�j that is labelled B3 in Shibata (1997). In the regression context, this esti-
mator takes the form

k̂�j = B−1
B∑
b=1

Q(Z ∗
b � θ̂j)−Q(Z ∗

b � θ̂
∗
b�j)

= B−1
B∑
b=1

{
n log

σ̂2
j

σ̂∗2
b�j

+

n∑
t=1

(ε∗
b�j�t)

2

σ̂2
j

− n
}
�

where ε∗
b�j�t = Y ∗

b�t−β̂′
jX

∗
b�j�t� ε̂

∗
b�j�t = Y ∗

b�t−β̂∗′
b�jX

∗
b�j�t� and σ̂∗2

b�j = n−1
∑n

t=1(ε̂
∗
b�j�t)

2�
This is an estimate of the expected overfit that results from maximization of
the likelihood function. For a correctly specified model, we have k�j = kj , so we
would expect k̂�j ≈ kj when the jth model is correctly specified. This is indeed
what we find in our simulations; see Section 5.2.

Given an estimate of the effective degrees of freedom k̂�j � compute the AIC�

statisticQ(Z� θ̂j)+ k̂�j , which is centered about E{Q(Z� θ0j)}� The null hypoth-
esis H0�M states that E[Q(Z� θ0i)−Q(Z� θ0j)] = 0 for all i� j ∈ M� This moti-
vates the range statistic

TR�M = max
i�j∈M

∣∣[Q(Z� θ̂i)+ k̂�i ] − [Q(Z� θ̂j)+ k̂�j ]
∣∣

and the elimination rule eM = arg maxj∈M[Q(Z� θ̂j) + k̂�j ]� This elimination
rule removes the model with the largest bias adjusted residual variance. Our
test statistic, TR�M� is a range statistic over recentered QLR statistics computed
for all pairs of models in M� In the special case with independent and identi-
cally distributed (i.i.d.) data and just two models in M� we could simply adopt
the QLR test of Vuong (1989) as our equivalence test.

Next, we estimate the distribution of TR�M under the null hypothesis. The
estimate is calculated with methods similar to those used in White (2000b) and
Hansen (2005). The joint distribution of(

Q(Z� θ̂1)+ k�1 − E[Q(Z� θ01)]� � � � �
Q
(

Z� θ̂m0

)+ k�m0
− E

[
Q
(

Z� θ0m0

)])
is estimated by the empirical distribution of{

Q(Z ∗
b � θ̂

∗
b�1)+ k̂�1 −Q(Z� θ̂1)� � � � �Q

(
Z ∗
b � θ̂

∗
b�m0

)+ k̂�m0
−Q(Z� θ̂m0

)}
(3)
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for b = 1� � � � �B� because Q(Z� θ̂j) plays the role of E[Q(Z� θ0j)] under the
resampling scheme. These bootstrap statistics are relatively easy to compute
because the structure of the likelihood function is

Q(Z ∗
b � θ̂

∗
b�j)−Q(Z� θ̂j)= n(log σ̂∗2

b�j + 1)− n(log σ̂2
j + 1)= n log

σ̂∗2
b�j

σ̂2
j

�

where σ̂∗2
b�j = n−1

∑n

t=1(Y
∗
b�t − β̂∗′

b�jX
∗
b�j�t)

2� For each of the bootstrap resamples,
we compute the test statistic

T ∗
b�R�M = max

i�j∈M

∣∣{Q(Z ∗
b � θ̂

∗
b�i)+ k̂�i −Q(Z� θ̂i)}

− {Q(Z ∗
b � θ̂

∗
b�j)+ k̂�j −Q(Z� θ̂j)}

∣∣�
The p-value for the hypothesis test with which we are concerned is computed
by

pM = B−1
B∑
b=1

1{T ∗
b�R�M≥TR�M}�

The empirical distribution of n−1/2T ∗
b�R�M yields a conservative estimate of the

distribution of n−1/2TR�M as n�B → ∞� The conservative nature of this esti-
mate refers to the p-value, pM� being conservative in situations where the
comparisons involve nested models. We discuss this issue at some length in the
next subsection.

It is also straightforward to construct the MCS using either the AIC, the
BIC, the AIC�, or the BIC�. The relevant test statistic has the form

TR�M = max
i�j∈M

∣∣[Q(Z� θ̂i)+ ci] − [Q(Z� θ̂j)+ cj]
∣∣�

where cj = 2kj for the AIC, cj = log(n)kj for the BIC, cj = 2k̂�j for the AIC�,
and cj = log(n)k̂�j for the BIC�. The computation of the resampled test statis-
tics, T ∗

b�R�M� is identical for the three criteria. The reason is that the location
shift cj has no effect on the bootstrap statistics once the null hypothesis is im-
posed. Under the null hypothesis, we recenter the bootstrap statistics about
zero and this offsets the location shift ci − cj .
3.2.4. Issues Related to the Comparison of Nested Models

When two models are nested, the null hypothesis used with KLIC, E[Q(Z�
θ0i)] = E[Q(Z� θ0j)]� has the strong implication that Q(Z� θ0i) = Q(Z� θ0j)
a.e. (almost everywhere), and this causes the limit distribution of the quasi-
likelihood ratio statistic,Q(Z� θ̂i)−Q(Z� θ̂j)� to differ for nested or nonnested
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comparisons (see Vuong (1989)). This property of nested comparisons can be
imposed on the bootstrap resamples by replacing Q(Z� θ̂j) with Q(Z ∗� θ̂j)�
because the latter is the bootstrap variant of Q(Z� θ0j)� The MCS pro-
cedure can be adapted so that different bootstrap schemes are used for
nested and nonnested comparisons, and imposing the stronger null hypoth-
esis Q(Z� θ0i) = Q(Z� θ0j) a.e. may improve the power of the procedure.
The key difference is that the null hypothesis with KLIC has Q(Z� θ̂i) −
Q(Z� θ̂j)=Op(1) for nested comparisons and Q(Z� θ̂i)−Q(Z� θ̂j)=Op(n1/2)
for nonnested comparisons. Our bootstrap implementation is such that
{Q(Z ∗

b � θ̂
∗
b�i) + k̂�i − Q(Z� θ̂i)} − {Q(Z ∗

b � θ̂
∗
b�j) + k̂�j − Q(Z� θ̂j)} is Op(n1/2),

whether the comparison involves nested or nonnested models, which causes
the bootstrap critical values to be conservative. Under the alternative,
Q(Z� θ̂i)−Q(Z� θ̂j) diverges at rate n for nested and nonnested comparisons,
so the bootstrap testing procedure is consistent in both cases.

Since nested and nonnested comparisons result in different rates of conver-
gence and different limit distributions, there are better ways to construct an
adaptive procedure than through the test statistic TR�M, for instance, by com-
bining the p-values for the individual subhypotheses. We shall not pursue such
an adaptive bootstrap implementation in this paper. It is, however, important
to note that the issue with nested models is only relevant for KLIC because the
underlying null hypotheses of other criteria, including AIC� and BIC�, do not
imply Q(Z� θ0i)=Q(Z� θ0j) a.e. for nested models.

4. RELATION TO EXISTING MULTIPLE COMPARISONS METHODS

The Introduction discussed the relationship between the MCS and the trace
test used to select the number of cointegration relations (see Johansen (1988)).
The MCS and the trace test share an underlying testing principle known as
intersection–union testing (IUT). Berger (1982) was responsible for formalizing
the IUT, while Pantula (1989) applied the IUT to the problem of selecting the
lag length and order of integration in univariate autoregressive processes.

Another way to cast the MCS problem is as a multiple comparisons prob-
lem. The multiple comparisons problem has a long history in the statistics lit-
erature; see Gupta and Panchapakesan (1979), Hsu (1996), Dudoit, Shaffer,
and Boldrick (2003), and Lehmann and Romano (2005, Chap. 9) and refer-
ences therein. Results from this literature have recently been adopted in the
econometrics literature. One problem is that of multiple comparisons with best,
where objects are compared to those with the best sample performance. Statis-
tical procedures for multiple comparisons with best are discussed and applied
to economic problems in Horrace and Schmidt (2000). Shimodaira (1998) used
a variant of Gupta’s subset selection (see Gupta and Panchapakesan (1979))
to construct a set of models that he terms a model confidence set. His proce-
dure is specific to a ranking of models in terms of E(AICj)� and his framework
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is different from ours in a number of ways. For instance, his preferred set of
models does not control the FWE. He also invoked a Gaussian approximation
that rules out comparisons of nested models.

Our MCS employs a sequential testing procedure that mimics step-down
procedures for multiple hypothesis testing; see, for example, Dudoit, Shaf-
fer, and Boldrick (2003), Lehmann and Romano (2005, Chap. 9), or Romano,
Shaikh, and Wolf (2008). Our definition of MCS p-values implies the mono-
tonicity, p̂eM1

≤ p̂eM2
≤ · · · ≤ p̂eMm0

that is key for the result of Theorem 3.
This monotonicity is also a feature of the so-called step-down Holm adjusted
p-values.

4.1. Relationship to Tests for Superior Predictive Ability

Another related problem is the case where the benchmark, to which all ob-
jects are compared, is selected independently of the data used for the compari-
son. This problem is known as multiple comparisons with control. In the context
of forecast comparisons, this is the problem that arises when testing for supe-
rior predictive ability (SPA); see White (2000b), Hansen (2005), and Romano
and Wolf (2005).

The MCS has several advantages over tests for superior predictive ability.
The reality check for data snooping of White (2000b) and the SPA test of Hansen
(2005) are designed to address whether a particular benchmark is significantly
outperformed by any of the alternatives used in the comparison. Unlike these
tests, the MCS procedure does not require a benchmark to be specified, which
is very useful in applications without an obvious benchmark. In the situation
where there is a natural benchmark, the MCS procedure can still address the
same objective as the SPA tests. This is done by observing whether the desig-
nated benchmark is in the MCS, where the latter corresponds to a rejection of
the null hypothesis that is relevant for a SPA test.

The MCS procedure has the advantage that it can be employed for model
selection, whereas a SPA test is ill-suited for this problem. A rejection of the
SPA test only identifies one or more models as significantly better than the
benchmark.7 Thus, the SPA test offers little guidance about which models re-
side in M∗. We are also faced with a similar problem in the event that the null
hypothesis is not rejected by the SPA test. In this case, the benchmark may be
the best model, but this label may also be applied to other models. This issue
can be resolved if all models serve as the benchmark in a series of compar-
isons. The result is a sequence of SPA tests that define the MCS to be the set
of “benchmark” models that are found not to be significantly inferior to the
alternatives. However, the level of individual SPA tests needs to be adjusted

7Romano and Wolf (2005) improved on the reality check by identifying the entire set of alter-
natives that significantly dominate the benchmark. This set of models is specific to the choice of
benchmark and has, therefore, no direct relation to the MCS.
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for the number of tests that are computed to control the FWE. For example, if
the level in each of the SPA tests is α/m, the Bonferroni bound states that the
resulting set of surviving benchmarks is a MCS with coverage (1−α). Nonethe-
less, there is a substantial loss of power associated with the small level applied
to the individual tests. The loss of power highlights a major pitfall of sequential
SPA tests.

Another drawback of constructing a MCS from SPA-tests is that the null of
a SPA test is a composite hypothesis. The null is defined by several inequal-
ity constraints which affect the asymptotic distribution of the SPA test statistic
because it depends on the number of binding inequalities. The binding inequal-
ity constraints create a nuisance parameter problem. This makes it difficult to
control the Type I error rate, inducing an additional loss of power; see Hansen
(2003a). In comparison, the MCS procedure is based on a sequence of hy-
pothesis tests that only involve equalities, which avoids composite hypothesis
testing.

4.2. Related Sequential Testing Procedures for Model Selection

This subsection considers some relevant aspects of out-of-sample evaluation
of forecasting models and how the MCS procedure relates to these issues.

Several papers have studied the problem of selecting the best forecasting
model from a set of competing models. For example, Engle and Brown (1985)
compared selection procedures that are based on six information criteria and
two testing procedures (general-to-specific and specific-to-general), Sin and
White (1996) analyzed information criteria for possibly misspecified models,
and Inoue and Kilian (2006) compared selection procedures that are based on
information criteria and out-of-sample evaluation. Granger, King, and White
(1995) argued that the general-to-specific selection procedure is based on an
incorrect use of hypothesis testing, because the model chosen to be the null
hypothesis in a pairwise comparison is unfairly favored. This is problematic
when the data set under investigation does not contain much information,
which makes it difficult to distinguish between models. The MCS procedure
does not assume that a particular model is the true model; neither is the null
hypothesis defined by a single model. Instead, all models are treated equally in
the comparison and only evaluated on out-of-sample predictive ability.

4.3. Aspects of Parameter Uncertainty and Forecasting

Parameter estimation can play an important role in the evaluation and com-
parison of forecasting models. Specifically, when the comparison of nested
models relies on parameters that are estimated using certain estimation
schemes, the limit distribution of our test statistics need not be Gaussian; see
West and McCracken (1998) and Clark and McCracken (2001). In the present
context, there will be cases that do not fulfil Assumption 2. Some of these
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problems can be avoided by using a rolling window for parameter estimation,
known as the rolling scheme. This is the approach taken by Giacomini and
White (2006). Alternatively one can estimate the parameters once (using data
that are dated prior to the evaluation period) and then compare the forecasts
conditional on these parameter estimates. However, the MCS should be applied
with caution when forecasts are based on estimated parameters because our
assumptions need not hold in this case. As a result, modifications are needed in
the case with nested models; see Chong and Hendry (1986), Harvey and New-
bold (2000), Chao, Corradi, and Swanson (2001), and Clark and McCracken
(2001) among others. The key modification that is needed to accommodate
the case with nested models is to adopt a test with a proper size. With proper
choices for δM and eM, the general theory for the MCS procedure remains.
However, in this paper we will not pursue this extension because it would ob-
scure our main objective, which is to lay out the key ideas of the MCS.

4.4. Bayesian Interpretation

The MCS procedure is based on frequentist principles, but resembles some
aspects of Bayesian model selection techniques. By specifying a prior over the
models in M0, a Bayesian procedure would produce a posterior distribution
for each model, conditional on the actual data. This approach to MCS con-
struction includes those models with the largest posteriors that sum at least to
1 − α� If the Bayesian were also to choose models by minimizing the “risk” as-
sociated with the loss attributed to each model, the MCS would be a Bayes de-
cision procedure with respect to the model posteriors. Note that the Bayesian
and frequentist MCSs rely on the metric under which loss is calculated and
depend on sample information.

We argue that our approach to the MCS and its bootstrap implementation
compares favorably to Bayesian methods of model selection. One advantage
of the frequentist approach is that it avoids having to place priors on the ele-
ments of M0 (and their parameters). Our probability statement is associated
with the random data-dependent set of models that is the MCS. It therefore is
meaningful to state that the best model can be found in the MCS with a cer-
tain probability. The MCS also places moderate computational demands on
the researcher, unlike the synthetic data creation methods on which Bayesian
Markov chain Monte Carlo methods rely.

5. SIMULATION RESULTS

This section reports on Monte Carlo experiments that show the MCS to be
properly sized and possess good power in various simulation designs.
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5.1. Simulation Experiment I

We consider two designs that are based on the m-dimensional vector
θ = (0� 1

m−1 � � � � �
m−2
m−1 �1)′λ/

√
n that defines the relative performances μij =

E(dij�t)= θi −θj . The experimental design ensures that M∗ consists of a single
element, unless λ= 0, in which case we have M∗ = M0. The stochastic nature
of the simulation is primarily driven by

Xt ∼ i�i�d�Nm(0�Σ)� where

Σij =
{

1 for i= j,
ρ for i 
= j, for some 0 ≤ ρ≤ 1,

where ρ controls the degree of correlation between alternatives.

DESIGN I.A—Symmetric Distributed Loss: Define the (vector of) loss vari-
ables to be

Lt ≡ θ+ at√
E(a2

t )
Xt� where

at = exp(yt)� yt = −ϕ
2(1 +ϕ) +ϕyt−1 + √

ϕεt�

and εt ∼ i�i�d�N(0�1)� This implies that E(yt)= −ϕ/{2(1 −ϕ2)} and var(yt)=
ϕ/(1−ϕ2) such that E(at)= exp{E(yt)+var(yt)/2} = exp{0} = 1 and var(at)=
(exp{ϕ/(1 − ϕ2)} − 1). Furthermore, E(a2

t ) = var(at) + 1 = exp{ϕ/(1 − ϕ2)}
such that var(Lt) = 1. Note that ϕ = 0 corresponds to homoskedastic er-
rors and ϕ > 0 corresponds to (generalized autoregressive conditional het-
eroskedasticity) (GARCH type) heteroskedastic errors.

The simulations employ 2,500 repetitions, where λ = 0, 5, 10, 20, ρ = 0�00,
0.50, 0.75, 0.95, ϕ= 0�0, 0.5, 0.8, and m= 10, 40, 100. We use the block boot-
strap, in which blocks have length l = 2, and results are based on B = 1�000
resamples. The size of a synthetic sample is n = 250. This approximates sam-
ple sizes often available for model selection exercises in macroeconomics.

We report two statistics from our simulation experiment based on α= 10%:
one is the frequency at which M̂∗

90% contains M∗; the other is the average
number of models in M̂∗

90%. The former shows the size properties of the MCS
procedure; the latter is informative about the power of the procedure.

Table II presents simulation results that show that the small sample prop-
erties of the MCS procedure closely match its theoretical predictions. The
frequency that the best models are contained in the MCS is almost always
greater than (1 − α), and the MCS becomes better at separating the infe-
rior models from the superior model, as the μijs become more disperse (e.g.,
as λ increases). Note also that a larger correlation makes it easier to sep-
arate inferior models from superior model. This is not surprising because
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TABLE II

SIMULATION DESIGN I.Aa

m= 10 m= 40 m= 100

λ ρ= 0 0�5 0�75 0�95 0 0�5 0�75 0�95 0 0�5 0�75 0�95

Panel A: ϕ= 0
Frequency at which M∗ ⊂ M̂∗

90% (size)
0 0.885 0.898 0.884 0.885 0�882 0�882 0�877 0�880 0�880 0�870 0�877 0�875
5 0.990 0.988 0.991 1.000 0�980 0�979 0�976 0�984 0�975 0�976 0�975 0�976

10 0.994 0.998 0.999 1.000 0�978 0�983 0�985 0�993 0�973 0�975 0�974 0�980
20 0.998 1.000 1.000 1.000 0�988 0�981 0�991 1�000 0�975 0�978 0�986 0�992
40 1.000 1.000 1.000 1.000 0�992 0�996 0�998 1�000 0�981 0�984 0�990 0�998

Average number of elements in M̂∗
90% (power)

0 9.614 9.658 9.646 9.632 38�68 38�78 38�91 38�82 97�02 96�84 97�11 97�20
5 6.498 4.693 3.239 1.544 25�30 18�79 13�35 6�382 59�87 43�92 32�51 15�04

10 3.346 2.390 1.732 1.027 13�59 9�829 7�142 3�266 32�32 23�04 16�97 7�902
20 1.702 1.307 1.062 1.000 7�060 5�010 3�617 1�674 17�03 12�40 8�785 4�049
40 1.072 1.005 1.000 1.000 3�572 2�597 1�840 1�052 8�778 6�375 4�521 2�083

Panel B: ϕ= 0�5
Frequency at which M∗ ⊂ M̂∗

90% (size)
0 0.908 0.897 0.905 0.894 0�911 0�907 0�910 0�916 0�925 0�918 0�909 0�913
5 0.985 0.990 0.995 1.000 0�971 0�976 0�977 0�987 0�974 0�974 0�973 0�973

10 0.992 0.999 1.000 1.000 0�978 0�985 0�982 0�995 0�975 0�969 0�983 0�984
20 0.999 1.000 1.000 1.000 0�988 0�989 0�988 1�000 0�979 0�976 0�981 0�992
40 1.000 1.000 1.000 1.000 0�996 0�996 1�000 1�000 0�980 0�982 0�991 0�999

Average number of elements in M̂∗
90% (power)

0 9.660 9.664 9.664 9.649 38�97 38�93 39�03 39�05 98�35 98�05 97�94 97�73
5 6.076 4.497 3.213 1.564 24�33 17�72 13�13 6�112 57�84 41�60 30�35 14�54

10 3.188 2.278 1.680 1.035 12�95 9�268 6�791 3�136 30�54 22�30 16�56 7�510
20 1.700 1.274 1.069 1.000 6�819 4�883 3�563 1�659 16�04 11�56 8�430 3�894
40 1.085 1.008 1.000 1.000 3�506 2�517 1�811 1�061 8�339 6�166 4�360 2�034

Panel C: ϕ= 0�8
Frequency at which M∗ ⊂ M̂∗

90% (size)
0 0.931 0.940 0.939 0.947 0�963 0�968 0�958 0�962 0�970 0�975 0�969 0�972
5 0.990 0.997 0.998 1.000 0�977 0�980 0�989 0�993 0�970 0�975 0�976 0�981

10 0.998 1.000 1.000 1.000 0�984 0�987 0�992 0�998 0�982 0�976 0�974 0�991
20 1.000 1.000 1.000 1.000 0�990 0�993 0�996 1�000 0�982 0�982 0�992 0�998
40 1.000 1.000 1.000 1.000 0�999 1�000 1�000 1�000 0�988 0�994 0�996 1�000

Average number of elements in M̂∗
90% (power)

0 9.739 9.814 9.794 9.799 39�61 39�61 39�53 39�55 99�00 99�44 99�15 99�43
5 4.301 3.318 2.386 1.322 16�26 12�31 9�118 4�401 39�69 28�13 20�56 10�12

10 2.424 1.864 1.419 1.062 9�133 6�643 4�727 2�349 20�72 14�77 11�26 5�470
20 1.455 1.220 1.092 1.010 4�770 3�520 2�535 1�454 11�15 8�014 5�948 2�840
40 1.098 1.037 1.011 1.003 2�645 1�967 1�490 1�081 5�932 4�356 3�248 1�645

aThe two statistics are the frequency at which M̂∗
90% contains M∗ and the other is the average number of models

in M̂∗
90%. The former shows the ‘size’ properties of the MCS procedure and the latter is informative about the ‘power’

of the procedure.
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var(dij�t) = var(Lit) + var(Ljt) − 2 cov(Lit�Ljt) = 2(1 − ρ)� which is decreas-
ing in ρ. Thus, a larger correlation (holding the individual variances fixed) is
associated with more information that allows the MCS to separate good from
bad models. Finally, the effects of heteroskedasticity are relatively small, but
heteroskedasticity does appear to add power to the MCS procedure. The av-
erage number of models in M̂∗

90% tends to fall as ϕ increases.
Corollary 1 has a consistency result that applies when λ > 0. The implica-

tion is that only one model enters M∗ under this restriction. Table II shows
that M∗ often contains only one model given λ > 0. The MCS matches this
theoretical prediction in Table II because M̂∗

90% = M∗ in a large number of
simulations. This equality holds especially when λ and ρ are large. These are
also the simulation experiments that yield size and power statistics equal (or
nearly equal) to 1. With size close to 1 or equal to 1, observe that M∗ ⊂ M̂∗

90%

(in all the synthetic samples). On the other hand, M̂∗
90% is reduced to a single

model (in all the synthetic samples) when power is close to 1 or equal to 1.

DESIGN I.B—Dependent Loss: This design sets Lt ∼ i�i�d�N10(θ�Σ), where
the covariance matrix has the structure Σij = ρ|i−j| for ρ= 0�0�5, and 0�75. The
mean vector takes the form θ= (0� � � � �0� 1

5 � � � � �
1
5)

′ so that the number of zero
elements in θ defines the number of elements in M∗� We report simulation
results for the case where m0 = 10 and M∗ consists of either one, two, or five
models.

The simulation results are presented in Figure 1. The left panels display the
frequency at which M̂∗

90% contains M∗ (size) at various sample sizes. The right
panels present the average number of models in M̂∗

90% (power). The two upper
panels contain the results for the case where M∗ is a single model. The upper-
left panel indicates that the best model is almost always contained in the MCS.
This agrees with Corollary 1, which states that M̂∗

1−α
p→ M∗ as n→ ∞� when-

ever M∗ consists of a single model. The upper-right panel illustrates the power
of the procedure based on Tmax�M = maxi∈M ti·. We note that it takes about 800
observations to weed out the 9 inferior models in this design. The MCS pro-
cedure is barely affected by the correlation parameter ρ� but we note that a
larger ρ results in a small loss in power. In the lower-left panel, we see that the
frequency at which M∗ is contained in M̂∗

90% is reasonably close to 90% except
for the very short sample sizes. From the middle-right and lower-right panels,
we see that it takes about 500 observations to remove all the poor models.

The middle-right and lower-right panels illustrate another aspect of the MCS
procedure. For large sample sizes, we note that the average number of models
in M̂∗

90% falls below the number of models in M∗� The explanation is sim-
ple. After all poor models have been eliminated, as occurs with probability
approaching 1 as n→ ∞� there is a positive probability that H0�M∗ is rejected,
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FIGURE 1.—Simulation Design I.B with 10 alternatives and 1, 2, or 5 elements in M∗. The left
panels report the frequency at which M∗ is contained in M̂∗

90% (size properties) and the right
panels report the average number of models in M̂∗

90% (power properties).

which causes the MCS procedure to eliminate a good model. Thus, the infer-
ences we draw from the simulation results are quite encouraging for the Tmax�M
test.
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5.2. Simulation Experiment II: Regression Models

Next we study the properties of the MCS procedure in the context of in-
sample evaluation of regression models as we laid out in Section 3.2. We con-
sider a setup with six potential regressors, Xt = (X1�t� � � � �X6�t)

′� that are dis-
tributed as

Xt ∼ i�i�d�N6(0�Σ)� where

Σij =
{

1 for i= j�
ρ for i 
= j� for some 0 ≤ ρ < 1,

where ρ measures the degree of dependence between the regressors. We
define the dependent variable by Yt = μ + βX1�t + √

1 −β2εt , where εt ∼
i�i�d�N(0�1). In addition to the six variables in Xt� we include a constant,
X0�t = 1� in all regression models. The set of regressions being estimated is
given by the 12 regression models that are listed in each of the panels in Ta-
ble III.

We report simulation results based on 10,000 repetitions, using a design with
an R2 = 50% (i.e., β2 = 0�5) and either ρ= 0�3 or ρ= 0�9.8 For the number of
bootstrap resamples, we use B= 1,000. Since X0�t = 1 is included in all regres-
sion models, the relevant MCS statistics are invariant to the actual value for μ,
so we set μ= 0 in our simulations.

The definition of M∗ will depend on the criterion. With KLIC, the set of best
models is given by the set of regression models that includes X1� The reason
is that KLIC does not favor parsimonious models, unlike the AIC� and BIC�.
With these two criteria, M∗ is defined to be the most parsimonious regression
model that includesX1. The models in M∗ are identified by the shaded regions
in Table III.

Our simulation results are reported in Table III. The average value of
Q(Zj� θ̂j) is given in the first pair of data columns, followed by the average
estimate of the effective degrees of freedom, k̂�� The Gaussian setup is such
that all models are correctly specified, so the effective degrees of freedom is
simply the number of free parameters, which is the number of regressors plus
1 for σ2

j � Table III shows that the average value of k̂�j is very close to the number
of free parameters in the jth regression model. The last three pairs of columns
report the frequency that each of the models are in M̂∗

90%�We want large num-
bers inside the shaded region and small numbers outside the shaded region.
The results are intuitive. As the sample size increases from 50 to 100 and then
to 500, the MCS procedure becomes better at eliminating the models that do
not reside in M∗�With a sample size of n= 500� the consistent criterion, BIC�,

8Simulation results for β2 = 0�1 and 0�9 are available in a separate appendix; see Hansen,
Lunde, and Nason (2011).
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TABLE III

SIMULATION EXPERIMENT IIa

Q(Zj � θ̂j ) k̂� KLIC AIC� (TIC) BIC�

ρ= 0�3 0�9 0�3 0�9 0�3 0�9 0�3 0�9 0�3 0�9

Panel A: n= 50
X0 48�1 48�1 1.99 2.00 0.058 0.038 0.085 0.070 0.118 0.124
X0�X1 12�4 12�4 3.02 3.02 0.998 0.999 1.000 1.000 1.000 1.000
X0� � � � �X2 11�3 11�3 4.08 4.08 0.998 0.999 0.962 0.999 0.566 0.940
X0� � � � �X3 10�2 10�2 5.18 5.18 0.999 0.999 0.940 0.998 0.469 0.912
X0� � � � �X4 9�09 9�04 6.32 6.32 1.000 1.000 0.905 0.997 0.367 0.803
X0� � � � �X5 7�95 7�88 7.50 7.50 1.000 1.000 0.867 0.994 0.279 0.598
X0� � � � �X6 6�77 6�69 8.73 8.74 1.000 1.000 0.806 0.990 0.203 0.400
X0�X2 44�7 21�0 3.02 3.02 0.086 0.905 0.100 0.935 0.099 0.877
X0�X2�X3 42�3 18�1 4.08 4.08 0.106 0.948 0.107 0.949 0.077 0.806
X0�X2� � � � �X4 40�4 16�3 5.18 5.18 0.120 0.958 0.105 0.938 0.054 0.665
X0�X2� � � � �X5 38�8 14�8 6.32 6.32 0.132 0.962 0.100 0.913 0.036 0.501
X0�X2� � � � �X6 37�2 13�4 7.50 7.51 0.145 0.964 0.094 0.869 0.022 0.348

Panel B: n= 100
X0 98�0 98�1 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
X0�X1 27�6 27�8 3.00 3.00 0.998 1.000 1.000 1.000 1.000 1.000
X0� � � � �X2 26�6 26�7 4.03 4.03 0.999 1.000 0.959 0.982 0.402 0.675
X0� � � � �X3 25�5 25�7 5.07 5.06 0.999 1.000 0.939 0.975 0.276 0.619
X0� � � � �X4 24�4 24�6 6.12 6.12 1.000 1.000 0.908 0.960 0.174 0.545
X0� � � � �X5 23�4 23�6 7.19 7.18 1.000 1.000 0.864 0.942 0.101 0.390
X0� � � � �X6 22�3 22�5 8.28 8.27 1.000 1.000 0.800 0.920 0.059 0.238
X0�X2 92�4 45�1 3.00 3.01 0.000 0.548 0.000 0.585 0.000 0.490
X0�X2�X3 88�8 40�4 4.03 4.03 0.000 0.691 0.000 0.666 0.000 0.443
X0�X2� � � � �X4 86�1 38�1 5.07 5.07 0.000 0.736 0.000 0.675 0.000 0.338
X0�X2� � � � �X5 83�9 36�3 6.12 6.12 0.000 0.759 0.000 0.655 0.000 0.236
X0�X2� � � � �X6 82�0 34�8 7.19 7.19 0.001 0.772 0.000 0.631 0.000 0.143

Panel C: n= 500
X0 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
X0�X1 151 151 3.00 3.00 0.999 0.999 1.000 1.000 1.000 1.000
X0� � � � �X2 150 150 4.00 4.00 0.999 0.999 0.958 0.960 0.207 0.206
X0� � � � �X3 149 149 5.01 5.01 0.999 1.000 0.938 0.938 0.100 0.099
X0� � � � �X4 148 148 6.02 6.01 1.000 1.000 0.907 0.901 0.044 0.042
X0� � � � �X5 147 147 7.03 7.02 1.000 1.000 0.858 0.852 0.020 0.017
X0� � � � �X6 145 146 8.04 8.03 1.000 1.000 0.790 0.792 0.006 0.008
X0�X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
X0�X2�X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002
X0�X2� � � � �X4 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.001
X0�X2� � � � �X5 444 206 6.02 6.01 0.000 0.006 0.000 0.006 0.000 0.001
X0�X2� � � � �X6 439 203 7.03 7.02 0.000 0.008 0.000 0.007 0.000 0.000

aThe average value of the maximized log-likelihood function multiplied by −2 is reported in the first two data
columns. The next pair of columns has the average of the effective degrees of freedom. The last three pairs of columns
report the frequency that a particular regression model is in the M̂∗

90% for each of the three criteria: KLIC, AIC� ,
and BIC� .
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has reduced the MCS to the single best model in the majority of simulations�
This is not true for the AIC� criterion. Although it tends to settle on more par-
simonious models than the KLIC, the AIC� has a penalty that makes it possible
for an overparameterized model to have the best AIC�� The bootstrap testing
procedure is conservative when the comparisons involve nested models under
KLIC; see our discussion in the last paragraph of Section 3.2. This explains
that both Type I and Type II errors are close to zero when n = 500� an ideal
outcome that is not guaranteed when M∗

KLIC includes nonnested models.9

6. EMPIRICAL APPLICATIONS

6.1. U.S. Inflation Forecasts: Stock and Watson (1999) Revisited

This section revisits the Stock and Watson (1999) study of the best out-of-
sample predictors of inflation. Their empirical application consists of pairwise
comparisons of a large number of inflation forecasting models. The set of infla-
tion forecasting models includes several that have a Phillips curve interpreta-
tion, along with autoregressive and a no-change (month-over-month) forecast.
We extend their set of forecasts by adding a second no-change (12-months-
over-12-months) forecast that was used in Atkeson and Ohanian (2001).

Stock and Watson (1999) measured inflation, πt , as either the CPI-U, all
items (PUNEW), or the headline personal consumption expenditure implicit
price deflator (GMDC).10 The relevant Phillips curve is

πt+h −πt =φ+β(L)ut + γ(L)(1 − L)πt + et+h�(4)

where ut is the unemployment rate, L is the lag polynomial operator, and et+h
is the long-horizon inflation forecast innovation. Note that the natural rate
hypothesis is not imposed on the Phillips curve (4) and that inflation as a re-
gressor is in its first difference. Stock and Watson also forecasted inflation with
(4) where the unemployment rate ut is replaced with different macrovariables.

The entire sample runs from 1959:M1 to 1997:M9. Following Stock and Wat-
son, we study the properties of their forecasting models on the pre- and post-
1984 subsamples of 1970:M1–1983:M12 and 1984:M1–1996:M9.11 The former
subsample contains the great inflation of the 1970s and the rapid disinflation
of the early 1980s. Inflation does not exhibit this volatile behavior in the post-
1984 subsample. We follow Stock and Watson so as to replicate their inflation

9In an unreported simulation study where M∗
KLIC was designed to include nonnested models,

we found the frequency by which M∗
KLIC ⊂ M̂∗

90% converges to 90%�
10The data for this applications was downloaded from Mark Watson’s web page. We refer the

interested reader to Stock and Watson (1999) for details about the data and model specifications.
11Stock and Watson split their sample at the end of 1983 to account for structural change in

inflation dynamics. This structural break is ignored when estimating the Phillips curve model (4)
and the alternative inflation forecasting equations. This is justified by Stock and Watson because
the impact of the 1984 structural break on their estimated Phillips curve coefficients is small.



484 P. R. HANSEN, A. LUNDE, AND J. M. NASON

forecasts. However, our MCS bootstrap implementation, which is described
in Section 3, relies on an assumption that dij�t is stationary. This is not plau-
sible when the parameters are estimated with a recursive estimation scheme,
as was used by Stock and Watson (1999). We avoid this problem by following
Giacomini and White (2006) and present empirical results that are based on
parameters estimated over a rolling window with a fixed number of observa-
tions.12 Regressions are estimated on data that begin no earlier than 1960:M2,
although lagged regressors impinge on observations back to 1959:M1.

We compute the MCS across all of the Stock and Watson inflation forecast-
ing models. This includes the Phillips curve model (4), the inflation forecasting
equation that runs through all of the macrovariables considered by Stock and
Watson, a univariate autoregressive model, and two no-change forecasts. The
first no-change forecast is the past month’s inflation rate; the second no-change
forecast uses the past year’s inflation rate as its forecast. The former matches
the no-change forecast in Stock and Watson (1999) and the latter matches the
no-change forecast in Atkeson and Ohanian (2001). Stock and Watson also
presented results for forecast combinations and forecasts based on principal
component indicator variables.13

Tables IV and V report (the level of) the root mean square error (RMSE)
and MCS p-values for each of the inflation forecasting models. The second col-
umn of Table IV also lists the transformation of the macrovariable employed
by the forecasting equation.

Our Table IV matches the results reported in Stock and Watson (1999, Ta-
ble 2). The initial model space M0 is filled with a total of 19 models. The results
for the two no-change forecasts and the AR(p) are the first three rows of Ta-
ble IV. The RMSEs and the p-values for the Phillips curve forecasting model
(4) appear in the bottom row of our Table IV. The rest of the rows of Ta-
ble IV are the “gap” and “first difference” specifications of Stock and Watson’s
aggregate activity variables that appear in place of ut in inflation forecasting
equation (4). The gap variables are computed with a one-sided Hodrick and
Prescott (1997) filter; see Stock and Watson (1999, p. 301) for details.14

A glance at Table IV reveals that the MCS of subsamples 1970:M1–
1983:M12 and 1984:M1–1996:M9 are strikingly different for both inflation se-
ries, PUNEW and GMDC. The MCS of the pre-1984 subsample places seven

12The corresponding empirical results that are based on parameters that are estimated with the
recursive scheme, as was used in Stock and Watson (1999), are available in a separate appendix;
see Hansen, Lunde, and Nason (2011). Although our assumption does not justify the recursive
estimation scheme, it produces pseudo-MCS results that are very similar to those obtained under
the rolling window estimation scheme.

13See Stock and Watson (1999) for details about their modelling strategy, forecasting proce-
dures, and data set.

14The MCS p-values are computed using a block size of l = 12 in the bootstrap implementa-
tion. The MCS p-values are qualitatively similar when computed with l = 6 and l = 9� These are
reported in a separate appendix; see Hansen, Lunde, and Nason (2011).
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TABLE IV

MCS FOR SIMPLE REGRESSION-BASED INFLATION FORECASTSa

PUNEW GMDC

1970–1983 1984–1996 1970–1983 1984–1996

Variable Trans RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

No change (month) 3.290 0.001 2.140 0.122 ∗ 2.208 0.042 1.751 0.113∗

No change (year) – 2.798 0.006 1.207 1.00∗∗ 2.100 0.109∗ 0.888 1.00∗∗

uniar – 2.802 0.004 1.330 0.736∗∗ 2.026 0.145∗ 1.070 0.411∗∗

Gap specifications
dtip DT 2.597 0.059 1.475 0.651∗∗ 2.103 0.095 1.050 0.411∗∗

dtgmpyq DT 2.751 0.020 1.691 0.299∗∗ 2.090 0.157∗ 1.125 0.317∗∗

dtmsmtq DT 2.202 0.872∗∗ 1.704 0.477∗∗ 1.806 0.464∗∗ 1.046 0.411∗∗

dtlpnag DT 2.591 0.068 1.433 0.694∗∗ 2.132 0.075 1.026 0.411∗∗

ipxmca LV 2.609 0.034 1.318 0.736∗∗ 2.040 0.261∗∗ 1.034 0.411∗∗

hsbp LN 2.114 1.00∗∗ 1.582 0.579∗∗ 1.967 0.364∗∗ 1.034 0.411∗∗

lhmu25 LV 2.968 0.006 1.439 0.651∗∗ 2.231 0.061 1.040 0.411∗∗

First difference specifications
ip DLN 2.344 0.306∗∗ 1.393 0.736∗∗ 1.946 0.298∗∗ 1.058 0.411∗∗

gmpyq DLN 2.306 0.842∗∗ 1.524 0.421∗∗ 1.709 1.00∗∗ 1.158 0.317∗∗

msmtq DLN 2.158 0.872∗∗ 1.391 0.736∗∗ 1.857 0.464∗∗ 1.066 0.411∗∗

lpnag DLN 2.408 0.430∗∗ 1.341 0.736∗∗ 1.940 0.298∗∗ 1.027 0.411∗∗

dipxmca DLV 2.379 0.139∗ 1.353 0.736∗∗ 1.903 0.446∗∗ 1.041 0.411∗∗

dhsbp DLN 2.850 0.003 1.456 0.665∗∗ 2.076 0.075 1.070 0.411∗∗

dlhmu25 DLV 2.383 0.169∗ 1.440 0.579∗∗ 2.035 0.102∗ 1.065 0.411∗∗

dlhur DLV 2.296 0.631∗∗ 1.429 0.691∗∗ 1.904 0.330∗∗ 1.067 0.411∗∗

Phillips curve
lhur 2.637 0.034 1.388 0.736∗∗ 2.076 0.098 1.162 0.325∗∗

aRMSEs and MCS p-values for the different forecasts. The forecasts in M̂∗
90% and M̂∗

75% are identified by one
and two asterisks, respectively.

forecasting models in PUNEW-M̂∗
75% and nine models in GMDC-M̂∗

75%. For
the post-1984 subsample, all but one model ends up in M̂∗

75% for both PUNEW
and GMDC. The only model that is consistently kicked out of these MCSs is
the monthly no-change forecast, which uses last month’s inflation rate as its
forecast.

Another intriguing feature of Table IV is the inflation forecasting models
that reside in the MCS when faced with the 1970:M1–1983:M12 subsample.
The seven models that are in PUNEW-M̂∗

75% are driven by macrovariables
related either to real economic activity (e.g., manufacturing and trade, and
building permits) or to the labor market. The labor market variables are lp-
nag (employees on nonagricultural payrolls) and dlhur (first difference of the
unemployment rate, all workers 16 years and older). Thus, there is labor mar-
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TABLE V

MCS RESULTS FOR SHRINKAGE-TYPE INFLATION FORECASTSa

PUNEW GMDC

1970–1983 1984–1996 1970–1983 1984–1996

Variable RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

No change (month) 3.290 0.006 2.140 0.000 2.208 0.006 1.751 0.000
No change (year) 2.798 0.020 1.207 1.00∗∗ 2.100 0.120∗ 0.888 1.00∗∗

Univariate 2.802 0.012 1.330 0.718∗∗ 2.026 0.046 1.070 0.378∗∗

Panel A. All indicators
Mul. factors 2.367 0.266∗∗ 1.407 0.069 2.105 0.088 1.013 0.570∗∗

1 factor 2.106 1.00∗∗ 1.351 0.186∗ 1.746 1.00∗∗ 1.038 0.570∗∗

Comb. mean 2.423 0.093 1.269 0.869∗∗ 1.880 0.585∗∗ 1.030 0.570∗∗

Comb. median 2.585 0.030 1.294 0.869∗∗ 1.939 0.323∗∗ 1.055 0.530∗∗

Comb. ridge reg. 2.121 0.975∗∗ 1.318 0.869∗∗ 1.918 0.518∗∗ 1.013 0.570∗∗

Panel B. Real activity indicators
Mul. factors 2.245 0.768∗∗ 1.416 0.022 1.959 0.323∗∗ 0.990 0.570∗∗

1 factor 2.115 0.975∗∗ 1.347 0.358∗∗ 1.774 0.720∗∗ 1.041 0.570∗∗

Comb. mean 2.284 0.615∗∗ 1.263 0.869∗∗ 1.827 0.698∗∗ 1.012 0.570∗∗

Comb. median 2.329 0.495∗∗ 1.284 0.869∗∗ 1.854 0.647∗∗ 1.038 0.553∗∗

Comb. ridge reg. 2.160 0.953∗∗ 1.326 0.855∗∗ 1.888 0.518∗∗ 1.013 0.570∗∗

Panel C. Interest rates
Mul. factors 2.828 0.019 1.512 0.005 2.215 0.008 1.294 0.008
1 factor 2.776 0.030 1.463 0.003 2.111 0.007 1.102 0.161∗

Comb. mean 2.474 0.092 1.349 0.123∗ 1.935 0.323∗∗ 1.060 0.522∗∗

Comb. median 2.567 0.077 1.377 0.034 1.974 0.290∗∗ 1.066 0.418∗∗

Comb. ridge reg. 2.436 0.164∗ 1.372 0.069 1.962 0.216∗ 1.052 0.530∗∗

Panel D. Money
Mul. factors 2.801 0.015 1.340 0.597∗∗ 2.028 0.020 1.075 0.057
1 factor 2.805 0.013 1.352 0.186∗ 2.027 0.031 1.104 0.026
Comb. mean 2.742 0.019 1.390 0.022 2.033 0.012 1.088 0.015
Comb. median 2.752 0.019 1.340 0.386∗∗ 2.032 0.008 1.077 0.095
Comb. ridge reg. 2.721 0.019 1.446 0.007 2.013 0.088 1.088 0.010

Phillips curve
LHUR 2.637 0.030 1.388 0.022 2.076 0.031 1.162 0.423∗∗

aRMSEs and MCS p-values for the different forecasts. The forecasts in M̂∗
90% and M̂∗

75% are identified by one
and two asterisks, respectively.

ket information that is important for predicting inflation during the pre-1984
subsample. This result is consistent with traditional Keynesian measures of ag-
gregate demand.

Table IV also shows that there are two levels and five first difference specifi-
cations of the forecasting equation that consistently appear in M̂∗

75% using the
1970:M1–1983:M12 subsample. On this subsample, only msmtq (total real man-
ufacturing and trade) is consistently embraced by PUNEW- and GMDC-M̂∗

75%
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whether in levels or first differences. In summary, we interpret these variables
as signals about the anticipated path of either real aggregate demand or real
aggregate supply that helps to predict inflation out of sample in the pre-1984
subsample.

There are several more inferences to draw from Table IV. These concern the
two types of no-change forecasts whose predictive accuracy is strikingly differ-
ent. The no-change (month) forecast fails to appear in M̂∗

75% either on the
pre-1984 or on the post-1984 subsamples, whereas the no-change (year) fore-
cast finds its way into M̂∗

75% for the post-1984 subsample, but not the 1970:M1–
1983:M12 subsample. These results are especially of interest because the no-
change (year) forecast yields the best inflation forecasts on the 1984:M1–
1996:M9 subsample for both PUNEW and GMDC. These empirical results
for the no-change inflation forecasts are interesting because they reconcile the
results of Stock and Watson (1999) with those of Atkeson and Ohanian (2001).
Stock and Watson (1999, p. 327) found that “[T]he conventionally specified
Phillips curve, based on the unemployment rate, was found to perform rea-
sonably well. Its forecasts are better than univariate forecasting models (both
autoregressions and random walk models).” In contrast, Atkeson and Ohanian
(2001, p. 10) concluded that “economists have not produced a version of the
Phillips curve that makes more accurate inflation forecasts than those from a
naive model that presumes inflation over the next four quarters will be equal
to inflation over the last four quarters.” The source of the disagreement is that
Stock and Watson and Atkeson and Ohanian studied different no-change in-
flation forecasts. The no-change forecast Stock and Watson (1999) deployed
is last month’s inflation rate, whereas the no-change forecasts in Atkeson and
Ohanian (2001) is the past year’s inflation rate.

We agree with Stock and Watson that the Phillips curve is a device that yields
better forecasts of inflation in the pre-1984 period. The relevant M̂∗

75% do not
include either of the no-change forecasts for PUNEW and GMDC. However,
for the post-1984 sample, we observe that no-change (year) forecast has the
smallest sample loss of all forecasts, which supports the conclusion of Atkeson
and Ohanian (2001).

Table V generates MCSs using factor models and forecast combination
methods that replicate the set of forecasts in Stock and Watson (1999, Table 4).
They combined a large set of inflation forecasts from an array of 168 models
using sample means, sample medians, and ridge estimation to produce forecast
weighting schemes. The other forecasting approach depends on principal com-
ponents of the 168 macropredictors. The idea is that there exists an underlying
factor or factors (e.g., real aggregate demand, financial conditions) that sum-
marize the information of a large set of predictors. For example, Solow (1976)
argued that a motivation for the Phillips curves of the 1960s and 1970s was that
unemployment captured, albeit imperfectly, the true unobserved state of real
aggregate demand.
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The factor models and forecast combination methods produce inflation fore-
casts that are, in general, better than those in Table IV. The forecasts con-
structed from “All indicators” and “Real activity indicators” in Panels A and B
do particularly well across the board. Interestingly, the best forecast during the
1970:M1–1983:M12 subsample is the one-factor “All indicators” model, while
the second best is the one-factor “Real activity indicators” model. Most of the
forecasts constructed from the “Money” variables do not find their way into
the MCSs.

Despite the better predictive accuracy produced by factor models and fore-
cast combinations, during the post-1984 period the best forecast is the no-
change (year) forecast.

6.2. Likelihood-Based Comparison of Taylor-Rule Models

Monetary policy is often evaluated with the Taylor (1993) rule. A Taylor rule
summarizes the objectives and constraints that define monetary policy by map-
ping (implicitly) from this decision problem to the path of the short-term nom-
inal interest rate. A canonical monetary policy loss function penalizes the deci-
sion maker for inflation volatility against its target and output volatility around
its trend. The mapping generates a Taylor rule that the interest rate responds
to inflation and output deviations from trend. Thus, Taylor rules measure ex
post the success monetary policy has had at meeting the goals of keeping infla-
tion close to target and output at trend. Articles by Taylor (1999), Clarida, Galí,
and Gertler (2000), and Orphanides (2003) are leading examples of using Tay-
lor rules to evaluate actual monetary policy, while McCallum (1999) provided
an introduction for consumers of monetary policy rules.

This section shows how the MCS can be used to evaluate which Taylor rule
regression best approximates the underlying data generating process. We posit
the general Taylor rule regression

Rt = (1 − ρ)
[
γ0 +

pπ∑
j=1

γπ�jπt−j +
py∑
j=1

γy�jyt−j

]
+ ρRt−1 + vt�(5)

where Rt denotes the short-term nominal interest rate, πt is inflation, yt equals
deviations of output from trend (i.e., the output gap), and the error term, vt� is
assumed to be a martingale difference process. The Taylor principle is satisfied
if
∑pπ

j=1 γπ�j exceeds 1 because a 1% rise in the sum of pπ lags of inflation indi-
cates thatRt should rise by more than 100 basis points. The monetary policy re-
sponse to real side fluctuations is given by

∑py
j=1 γy�j on the py lags of the output

gap. The intercept γ0 is the equilibrium steady state real rate plus the target in-
flation rate (weighted by 1 −∑pπ

j=1 γπ�j). The Taylor rule regression (5) includes
lagged interest, Rt−1� which may be interpreted as interest rate smoothing by
the central bank. Alternatively, the lagged interest rate could be interpreted as
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TABLE VI

TAYLOR RULE REGRESSION DATA SETa

Observable Construction

Dependent variable
Rt : Interest rate Effective Fed Funds Rate (EFFR), Temporally aggregate daily

Rfed funds�t return (annual rate) to quarterly,
Rt = 100 × ln[1 +Rfed funds�t/100]

Independent variables
πt : Inflation Implicit GDP deflator, Pt , πt = 400 × ln[Pt/Pt−1]

seasonally adjusted (SA)

yt : Output gap lnQt − trendQt , i.e., transitory Apply Hodrick–Prescott filter
component of output, where Qt to lnQt

is real GDP in billions of chained
2000 $, SA at annual rates

urt : Unemployment URt − trend URt , i.e., transitory Temporally aggregate monthly
rate gap component of URt , where URt is the to quarterly frequency to get URt .

is the civilian unemployment rate, SA Apply Baxter–King filter to URt

rulct : Real unit The cointegrating residual of nominal rulct = LSt − LPt − â0 − â1t
labor costs ULCt (= LSt − LSt) and lnPt . LSt is −â2 lnPt

labor share, i.e., log of compensation
per hour in the nonfarm business
sector; LPt is labor productivity, i.e.,
log of output per hour of all persons
nonfarm business sector

aThe effective federal funds rate is obtained from H.15 Selected Interest Rates in Federal Reserve Statistical
Releases. The implicit price deflator, real GDP, the unemployment rate, compensation per hour, and output per hour
of all persons are constructed by the Bureau of Economic Analysis and are available at the FRED Data Bank at the
Federal Reserve Bank of St. Louis. The sample period is 1979:Q1–2006:Q4. The data are drawn from data available
online from the Board of Governors and FRED at the Federal Reserve Bank of St. Louis.

a proxy for other determinants of the interest rate that are not captured by the
regression (5). Note also that the Taylor rule regression (5) avoids issues that
arise in the estimation of simultaneous equation systems because contempora-
neous inflation, πt , and the output gap, yt , are not regressors, only lags of these
variables are. In this case, structural interpretations have to be applied to the
Taylor rule regression (5) with care.

The Taylor rule regression (5) is estimated by ordinary least squares on a
U.S. sample that runs from 1979:Q1 to 2006:Q4. Table VI provides details about
the data used to estimate the Taylor rule regression.15 The (effective) federal
funds rate defines the Taylor rule policy rate Rt . The growth rate of the im-

15We have generated results on a shorter post-1984 sample. Omitting the volatile 1979–1983
period from the analysis does not substantially change our results, beyond the loss of information
that one would expect with a shorter sample. These results are available in a separate appendix
(Hansen, Lunde, and Nason (2011)).
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plicit gross domestic product (GDP) deflator is our measure of inflation, πt .
The cyclical component of the Hodrick and Prescott (1997) filter is applied to
real GDP to obtain estimates of the output gap, yt . We also employ two real
activity variables to fill out the model space and to act as alternatives to the out-
put gap. These real activity variables are the Baxter and King (1999) filtered
unemployment rate gap, urt , and the Nason and Smith (2008) measure of real
unit labor costs, rulct . We compute the Baxter–King urt using the maximum
likelihood–Kalman filter methods of Harvey and Trimbur (2003).

The model space consists of 25 specifications. The model space is built by
setting ρ to zero or estimating it (pπ = 1 or 2� py = 1 or 2) and equating yt
with the output gap, or replacing it with either the unemployment rate gap or
real unit labor costs. We add to these 24 (= 2 × 2 × 3 × 2) regressions a pure
AR(1) model of the effective federal funds rate.

TABLE VII

MCS FOR TAYLOR RULES: 1979:Q1–2006:Q4a

Model Specification Q(Zj � θ̂j ) k̂� KLIC AIC� BIC�

Rt−1 93.15 13.74 106.89 (0.30)∗∗ 120.63 (0.47)∗∗ 157.99 (0.63)∗∗

πt−1 yt−1 284.82 11.44 296.25 (0.00) 307.69 (0.00) 338.79 (0.00)
πt−j , j=1�2 yt−j , j=1�2 258.95 14.66 273.61 (0.00) 288.28 (0.01) 328.14 (0.01)
πt−1 urt−1 289.65 10.20 299.84 (0.00) 310.04 (0.00) 337.75 (0.00)
πt−j , j=1�2 urt−j , j=1�2 268.90 12.82 281.72 (0.00) 294.53 (0.00) 329.37 (0.01)
πt−1 rulct−1 289.99 9.89 299.88 (0.00) 309.77 (0.00) 336.67 (0.01)
πt−j , j=1�2 rulct−j , j=1�2 266.07 12.12 278.19 (0.00) 290.31 (0.01) 323.26 (0.01)
yt−1 urt−1 387.45 17.04 404.49 (0.00) 421.54 (0.00) 467.86 (0.00)
yt−j , j=1�2 urt−j , j=1�2 385.86 23.42 409.28 (0.00) 432.69 (0.00) 496.35 (0.00)
yt−1 rulct−1 386.47 14.92 401.39 (0.00) 416.32 (0.00) 456.89 (0.00)
yt−j , j=1�2 rulct−j , j=1�2 385.43 19.44 404.87 (0.00) 424.31 (0.00) 477.16 (0.00)
urt−1 rulct−1 386.21 15.41 401.62 (0.00) 417.02 (0.00) 458.90 (0.00)
urt−j , j=1�2 rulct−j , j=1�2 384.82 19.86 404.68 (0.00) 424.54 (0.00) 478.52 (0.00)

Rt−1 πt−1 yt−1 68.57 17.71 86.28 (0.86)∗∗ 103.98 (1.00)∗∗ 152.12 (0.64)∗∗

Rt−1 πt−j , j=1�2 yt−j , j=1�2 62.11 22.11 84.22 (1.00)∗∗ 106.32 (0.93)∗∗ 166.43 (0.41)∗∗

Rt−1 πt−1 urt−1 77.57 16.32 93.89 (0.72)∗∗ 110.22 (0.89)∗∗ 154.60 (0.64)∗∗

Rt−1 πt−j , j=1�2 urt−j , j=1�2 73.27 18.79 92.07 (0.80)∗∗ 110.86 (0.89)∗∗ 161.95 (0.57)∗∗

Rt−1 πt−1 rulct−1 72.80 16.06 88.86 (0.86)∗∗ 104.92 (0.93)∗∗ 148.58 (1.00)∗∗

Rt−1 πt−j , j=1�2 rulct−j , j=1�2 69.21 19.26 88.47 (0.86)∗∗ 107.73 (0.92)∗∗ 160.09 (0.58)∗∗

Rt−1 yt−1 urt−1 86.16 19.16 105.33 (0.33)∗∗ 124.49 (0.38)∗∗ 176.59 (0.16)∗

Rt−1 yt−j , j=1�2 urt−j , j=1�2 85.51 24.32 109.83 (0.28)∗∗ 134.16 (0.18)∗ 200.28 (0.02)
Rt−1 yt−1 rulct−1 89.42 18.92 108.35 (0.29)∗∗ 127.27 (0.31)∗∗ 178.72 (0.15)∗

Rt−1 yt−j , j=1�2 rulct−j , j=1�2 88.11 22.42 110.53 (0.28)∗∗ 132.94 (0.20)∗ 193.88 (0.03)
Rt−1 urt−1 rulct−1 87.42 18.07 105.49 (0.33)∗∗ 123.55 (0.38)∗∗ 172.66 (0.21)∗

Rt−1 urt−j , j=1�2 rulct−j , j=1�2 85.93 21.32 107.25 (0.30)∗∗ 128.56 (0.28)∗∗ 186.51 (0.06)

aWe report the maximized log-likelihood function (multiplied by −2), the effective degress of freedom, and the
three criteria KLIC, AIC� , and BIC� along with the corresponding MCS p-values. The regression models in M̂∗

90%
and M̂∗

75% are identified by one and two asterisks, respectively. See the text and Table VI for variable mnemonics
and definitions.
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TABLE VIII

REGRESSION MODELS IN M̂∗
90%-KLICa

γ0 ρ γπ�1 γπ�2 γy�1 γy�2 γur�1 γur�2 γrulc�1 γrulc�2

5.29 0.96
(2.50) (30.1)

0.12 0.84 1.87 1.20
(0.13) (17.0) (7.01) (2.17)

0.00 0.80 0.77 1.14 1.50 −0.39
(0.00) (12.1) (2.58) (4.76) (1.25) (0.33)

0.82 0.86 1.60 1.58
(0.67) (16.8) (4.85) (0.25)

0.64 0.83 0.68 0.97 5.90 −6.56
(0.56) (12.9) (1.77) (2.85) (0.68) (1.16)

0.37 0.87 1.76 −0.81
(0.30) (17.0) (5.38) (1.56)

0.39 0.84 0.76 0.99 −0.18 −0.55
(0.35) (12.9) (2.12) (3.55) (0.23) (0.68)

5.63 0.97 4.89 45.9
(2.20) (37.3) (1.05) (0.79)

5.56 0.97 6.42 −1.71 60.7 −22.9
(2.12) (32.3) (0.58) (0.19) (0.66) (0.42)

5.33 0.97 1.04 −2.47
(2.22) (35.5) (0.32) (0.79)

5.42 0.97 8.37 −8.05 2.52 −5.43
(2.22) (32.6) (0.64) (0.56) (0.75) (0.96)

5.35 0.97 30.9 −3.62
(2.02) (37.8) (0.63) (1.04)

5.43 0.97 52.5 −25.6 −1.18 −2.74
(2.10) (34.2) (0.64) (0.54) (0.30) (0.85)

aParameter estimates with t-statistics (in absolute values) in parentheses. The shaded area identifies the models in
M̂∗

75%-BIC� .

We present results of applying the MCS and likelihood-based criteria to the
choice of the best Taylor rule regression (5) and AR(1) regressions in Ta-
bles VII and VIII. Table VII reports Q(Zj� θ̂j) (the log-likelihood function
multiplied by −2), the bootstrap estimate of the effective degrees of free-
dom, k̂�, and the realizations of the three empirical criteria, KLIC, AIC�,
and BIC�. The numbers surrounded by parentheses in columns headed KLIC,
AIC�, and BIC� are the MCS p-values, and an asterisk identifies the specifi-
cations that enter M̂∗

90%. Table VIII lists estimates of the regression models
that are in M̂∗

90% along with their corresponding t-statistics in parentheses.
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The t-statistics are based on robust standard errors following Newey and West
(1987).

Table VII shows that the MCS procedure selects 10–13 of the 25 possible
regressions depending on the information criteria. The lagged nominal rate
Rt−1 is the one regressor common to the regressions that enter M̂∗

90% for the
KLIC, AIC�, and BIC�. Besides the AR(1), M̂∗

90% consists of the six Taylor rule
specifications that nest the AR(1). Under the KLIC and AIC�, the Taylor rule
regressions include all one or two lag combinations of πt , yt , urt , and rulct .
The BIC produces a smaller M̂∗

90% because it ejects the two lag Taylor rule
specifications that exclude lagged πt . Thus, the Taylor rule regression–MCS
example finds that the BIC tends to settle on more parsimonious models. This
is to be expected, given its larger penalty on model complexity.

The AR(1) falls into M̂∗
90% under the KLIC, AIC�, and BIC�. Although the

first line of Table VII shows that the AR(1) has the largest Q(Zj� θ̂j) of the
regressions covered by M̂∗

90%, the MCS recruits the AR(1) because it has a
relatively small estimate of the effective degrees of freedom, k̂�� It is important
to keep in mind that estimates of the effective degrees of freedom are larger
than the number of free parameters in each of the models. This reflects the
fact that the Gaussian model is misspecified. For example, the conventional
AIC penalty (that doubles the number of free parameters) is misleading in the
context of misspecified models; see Takeuchi (1976), Sin and White (1996), and
Hong and Preston (2008).

It is somewhat disappointing that the MCS procedure yields as many as 13
models in M̂∗

90%. The reason is that the data lack the information to resolve
precisely which Taylor rule specification is best in terms of Kullback–Leibler
discrepancy. The large set of models is also an outcome of the strict require-
ments that characterize the MCS. The MCS procedure is designed to control
the familywise error rate (FWE), which is the probability of making one or
more false rejections. We will be able to trim M̂∗ further if we relax the con-
trol of the FWE, but that will affect the interpretation of M̂∗

1−α. For instance,
if we control the probability of making k or more false rejections, k-FWE (see,
e.g., Romano, Shaikh, and Wolf (2008)), additional models can be eliminated.
The drawback of k-FWE and other alternative controls is that the MCS looses
its key property, which is to contain the best models with probability 1 − α�

Table VIII provides information about the regressions in M̂∗
90%-KLIC. The

shaded area identifies the models in M̂∗
75%-BIC�� First, note that the estimated

Taylor rules always satisfy the Taylor principle (i.e., γ̂π�1 > 1 or γ̂π�1 + γ̂π�2 > 1).
The coefficients associated with real activity variables have insignificant t-
statistics in most cases. Only the first lag of the output gap produces a positive
coefficient with a t-ratio above 2 in the first Taylor rule regression listed in Ta-
ble VIII. Moreover, the statistically insignificant coefficients for the unemploy-
ment rate gap and real unit labor costs variables often have counterintuitive
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signs. Finally, the estimates of ρ are between 0.83 and 0.87 in the Taylor rule
regressions that include a lag of πt , which suggests interest rate smoothing.16

The fact that the MCS cannot settle on a single specification is not a sur-
prising result. Monetary policymakers almost surely rely on a more complex
information set than can be summarized by a simple model. Furthermore, any
real activity variable is an imperfect measure of the underlying state of the
economy, and there are important and unresolved issues regarding the mea-
surement of gap and marginal cost variables that translate into uncertainty
about the proper definitions of the real activity variables.

7. SUMMARY AND CONCLUDING REMARKS

This paper introduces the model confidence set (MCS) procedure, relates it
to other approaches of model selection and multiple comparisons, and estab-
lishes the asymptotic theory of the MCS. The MCS is constructed from a hy-
pothesis test, δM� and an elimination rule, eM�We defined coherency between
test and elimination rule, and stressed the importance of this concept for the
finite sample properties of the MCS. We also outlined simple and convenient
bootstrap methods for the implementation of the MCS procedure. The paper
employs Monte Carlo experiments to study the MCS procedure that reveal it
has good small sample properties.

It is important to understand the principle of the MCS procedure in applica-
tions. The MCS is constructed such that inference about the “best” follows the
conventional meaning of the word “significance.” Although the MCS will con-
tain only the best model(s) asymptotically, it may contain several poor models
in finite samples. A key feature of the MCS procedure is that a model is dis-
carded only if it is found to be significantly inferior to another model. Models
remain in the MCS until proven inferior, which has the implication that not all
models in the MCS may be judged good models.17

An important advantage of the MCS, compared to other selection proce-
dures, is that the MCS acknowledges the limits to the informational content
of the data. Rather than selecting a single model without regard to degree of
information, the MCS procedure yields a set of models that summarizes key
sample information.

We applied the MCS procedure to the inflation forecasting problem of Stock
and Watson (1999). Results show that the MCS procedure provides a powerful
tool for evaluating competing inflation forecasts. We emphasize that the infor-
mation content of the data matters for the inferences that can be drawn. The

16We have also estimated Taylor rule regressions with moving average (MA) errors, as an al-
ternative to using Rt−1 as a regressor. The empirical fit of models with MA errors is, in all cases,
inferior to the Taylor rule regressions that include Rt−1�

17The proportion of models in M̂∗
1−α that are members of M∗ can be related to the false

discovery rate and the q-value theory of Storey (2002). See McCracken and Sapp (2005) for an
application that compares forecasting models. See also Romano, Shaikh, and Wolf (2008).
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great inflation–disinflation subsample of 1970:M1–1983:M12 has movements in
inflation and macrovariables that allow the MCS procedure to make relatively
sharp choices across the relevant models. The information content of the less
persistent, less volatile 1984:M1–1996:M9 subsample is limited in comparison
because the MCS procedure lets in almost any model that Stock and Watson
considered. A key exception is the no-change (month) forecast that uses last
month’s inflation rate as a predictor of future inflation. This no-change fore-
cast never resides in the MCS in either the earlier or the later periods. A likely
explanation is that month-to-month inflation is a noisy measure of core infla-
tion. This view is supported by the fact that a second no-change (year) fore-
cast, which employs a year-over-year inflation rate as the forecast, is a better
forecast. This result enables us to reconcile the empirical results in Stock and
Watson (1999) with those of Atkeson and Ohanian (2001). Nonetheless, the
question of what constitutes the best inflation forecasting model for the last
35 years of U.S. data remains unanswered because the data provide insuffi-
cient information to distinguish between good and bad models.

This paper also constructs a MCS for Taylor rule regressions based on three
likelihood criteria. Such interest rate rules are often used to evaluate the suc-
cess of monetary policy, but this is not our intent for the MCS. Instead, we
study the MCS that selects the best fitting Taylor rule regressions under either
a quasi-likelihood criterion, the AIC, or the BIC using the effective degrees of
freedom. The competing Taylor rule regressions consist of different combina-
tions of lags of inflation, lags of three different real activity variables, and the
lagged federal funds rate. Besides these Taylor rule regressions, the MCS must
also contend with a first-order autoregression of the federal funds rate. The
regressions are estimated on a 1979:Q1–2006:Q4 sample of U.S. data. Under
the three likelihood criteria, the MCS settles on Taylor rule regressions that
satisfy the Taylor principle, include all three competing real activity variables,
and add the lagged federal funds rate. Furthermore, we find that the first-order
autoregression also enters the MCS. Thus, the U.S. data lack the information
to resolve precisely which Taylor rule specification best describes the data.

Given the large number of forecasting problems economists face at central
banks and other parts of government, in financial markets, and other settings,
the MCS procedure faces a rich set of problems to study. Furthermore, the
MCS has a wide variety of potential uses beyond forecast comparisons and
regression models. We leave this work for future research.
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