Journal of Economic Literature 2008, 46:1, 3-56
http:www.aeaweb.orglarticles.phpPdoi=10.1257/jel 46.1.3

Economic F orecasting

GRAHAM ELLIOTT AND ALLAN TIMMERMANN™

Forecasts guide decisions in all areas of economics and finance and their value can
only be understood in relation to, and in the context of, such decisions. We discuss
the central role of the loss function in helping determine the forecaster’s objectives.
Decision theory provides a framework for both the construction and evaluation of
forecasts. This framework allows an understanding of the challenges that arise from
the explosion in the sheer volume of predictor variables under consideration and the
forecaster’s ability to entertain an endless array of forecasting models and time-vary-
ing specifications, none of which may coincide with the “true” model. We show this
along with reviewing methods for comparing the forecasting performance of pairs
of models or evaluating the ability of the best of many models to beat a benchmark

specification.

1. Introduction

Forecasting problems are ubiquitous
in all areas of economics and finance
where agents’ decisions depend on the
uncertain future value of one or more vari-
ables of interest. When a household decides
how much labor to supply or how much to
save for a rainy day, this presumes an abil-
ity to forecast a stream of future wages and
returns on savings. Similarly, firms’ choice
of when to invest, how much to invest, and
how to finance it (the capital structure deci-
sion) depends on their forecasts of future
cash flows from potential investments, future
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stock prices, and interest rates. Indeed, all
present value calculations, and hence the vast
majority of questions in asset pricing, have
embedded in them forecasts of future cash
flows generated by uncertain payoff streams.
In public finance, decisions on whether to
go ahead with large infrastructure projects,
such as the construction of a new bridge or
a tunnel, require projecting traffic flows and
income streams over the project’s lifetime,
which may well be several decades.

Recent research has seen a virtual revolu-
tion in how economists compute, apply, and
evaluate forecasts. This research has occurred
as a result of extensive developments in infor-
mation technology that have opened access
to thousands of new potential predictor vari-
ables (including tick-by-tick trading data,
disaggregate survey forecasts, and real-time
macroeconomic data) and a wealth of new
techniques that facilitate search over and
estimation of the parameters of increasingly
complicated forecasting models. Questions
such as which particular predictor variables
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to include, which functional form to use for
the forecasting model, and how to weight
old versus more recent data have become an
essential part of forecast construction and
evaluation.

Economic forecasting is unique in that
forecasters are forced to “show their hand”
in real time as they generate their forecasts.
Future outcomes of most predicted variables
are observed within a reasonable period of
time, so a direct sense of how well a forecast-
ing model performed can be gained. If fore-
casting performance is poor, this will become
clear to the forecaster once data on realiza-
tions of the predicted variable is revealed.
This real time feedback may in turn lead to
a change in the forecasting model itself, thus
posing unique challenges to the process of
evaluating how fast the forecaster is learning
over time. This is in stark contrast to many
econometric problems. For example, evalua-
tion of an estimate of the effect of schooling
on wages may take years. In many economic
problems, we do not obtain an objective con-
firmation of how good the original estimate
is since we do not have reference data for
evaluating the economic prediction.

Often the result of the feedback from fore-
casts has been disheartening, both to econo-
metricians trying to utilize data as efficiently
as possible and to economists whose theories
result in predictions that appear unable to
explain as much of the variation in the data
as they had hoped. To take one example, a
seemingly simple task such as estimating the
weights on different models in least squares
forecast combination regressions is commonly
outperformed on real data by using a simple
equal-weighted average of forecasts (Robert T.
Clemen 1989). An infamous result of Richard
A. Meese and Kenneth Rogoff (1983) shows
that despite a great deal of theoretical work
on exchange rates—and even with the benefit
of using future data suggested by theory as
relevant—the random walk “no change” pre-
diction cannot be beaten. This result has to a
great extent held up for exchange rate fore-
casts (Lutz Kilian 1999).

While the performance of a forecast-
ing model often can be observed fairly
quickly, only limited economic conclusions
can be drawn from the model’s historical
track record. Forecasting models are best
viewed as greatly simplified approximations
of a far more complicated reality and need
not reflect causal relations between eco-
nomic variables. Indeed, simple mechanical
forecasting schemes—such as the random
walk—are often found to perform well
empirically although they do not provide
new economic insights into the underlying
variable (Michael P. Clements and David F.
Hendry 2002). Conversely, models aimed at
uncovering true unconditional relationships
in the data need not be well suited for fore-
casting purposes.

In a unified framework, this paper provides
an understanding of the properties, construc-
tion, and evaluation of economic forecasts.
Our objective is to help explain differences
among the many approaches used by various
researchers and understand the breadth of
results reported in the empirical forecasting
literature.

Our coverage emphasizes the importance
of integrating economic forecasts (including
model specification, variable selection, and
parameter estimation) in a decision theo-
retical framework. This is, in our view, the
defining characteristic of economic forecasts.
From this perspective, forecasts do not have
any intrinsic value and are only useful in so
far as they help improve economic decisions.
What constitutes a good forecast depends on
how costly various prediction errors are to
the forecaster and hence reflects both the
forecaster’s preferences and the manner in
which forecasts are mapped into economic
decisions. Economic forecasting is not an
exercise in modeling the data disjoint from
the purpose of the forecast provision. Sec-
tion 2 illustrates these points initially through
two examples from economics and finance.

We next provide a formal statement of
the forecasting problem. Section 3 reviews
both classical and Bayesian approaches to
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forecasting and introduces the individual
components of the economic forecasting
problem such as the forecaster’s prediction
model, the underlying information set as well
as the forecaster’s loss function. Although
often only treated implicitly, the loss func-
tion is essential to all forecasting problems
and so we devote section 4 to a deeper dis-
cussion of various types of loss functions
and the restrictions and assumptions they
embody.

Using the decision theoretic framework set
out in section 3, sections 5—7 review several
issues that arise in the practical construction
of economic forecasts. Each of these topics
has been active areas of research in recent
years. An overarching problem in economic
forecasting is the myriad of data that a fore-
caster could potentially employ. Estimating
models with a large number of parameters
relative to the sample size undermines one of
the central methods of econometrics-——ordi-
nary least squares (OLS) justified through
properties such as asymptotic efficiency of
the parameter estimates—and opens the
possibility that other estimation techniques
are better suited to the task of constructing
forecasts. In concert with differences over
loss functions, this provides a partial expla-
nation of the myriad of estimation methods
seen in practice.

Section 5 addresses the choice of func-
tional form of the forecasting model. Lack of
guidance from economic theory is often an
issue and so the functional form is commonly
chosen on grounds such as empirical “fit” or
an ability to capture certain episodes in the
historical data sample. We review several
methods aimed at approximating unknown
functional forms in a parsimonious, yet flex-
ible manner—a task made essential by the
short samples available in most forecasting
applications.

A related problem is how the forecasting
model and the underlying data evolve over
time. When forecasting models are viewed
as simple approximations to a complex and
evolving reality that changes due to shifts in

legislation, institutions, and technology—or
even wars and natural catastrophes—it is to
be expected that the “true” but unknown data
generating process changes over time. In the
forecasting literature, this has been captured
through various approaches that deal with
model and parameter instability. Since all
estimation techniques essentially average over
past data to obtain a forecasting model, this
raises the problem of exactly how to choose
the data sample and how to weight “old” ver-
sus “new” data. Other approaches attempt to
directly model breaks in the model param-
eters in order to increase the effective data
sample. These are covered in section 6.

An important part of the analysis of eco-
nomic forecasts is to assess how good they
are. Until recently, forecasts were largely
evaluated without the use of standard errors
that account for parameter estimation error
and model specification search. It is well
understood that data mining programs that
search over many models tend to overfit and
hence inflate estimates of forecasting perfor-
mance by using the same data for estimation
and evaluation purposes. However, little or
no account is typically made for such model
search that precede the analysis. Standard
practice for dealing with data mining has been
to hold back some data and check whether
the forecasting model still performed well
in future out-of-sample periods. Again, often
average losses are compared without any
regard to pretesting biases. Recent work has
resulted in methods that account for sampling
error in various forecasting situations. These
are reviewed in section 7.

Economic theory rarely identifies a single
forecasting model that works well in practice
and leaves open many degrees of freedom in
forecast construction. The resulting plethora
of economic forecasting models has given
rise to procedures for forecast comparisons
that can handle situations with a very large
set of models. An alternative to evaluating
particular models and attempting to select
a single dominant model is to average over
various forecasting methods. Both forecast
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comparison and forecast combination are
reviewed in section 8. Section 9 provides an
empirical analysis of forecasts of inflation and
stock returns. Finally, section 10 concludes.

2. Forecasts and Economic Decisions:
Two Examples

We start with an illustration of how eco-
nomic forecasts are embedded in the eco-
nomic decision process using two examples
from macroeconomics and finance.

2.1 Central Bank Forecasts

Consider the forecasting problem encoun-
tered by a central bank whose main role is
to set interest rates and whose objectives are
defined over inflation and economic activity
as measured, e.g., by output growth and the
unemployment rate. Because future values of
output growth, unemployment, and inflation
are uncertain, in practice the bank’s interest
rate decisions depend on its forecast of these
variables as well as its understanding of how
they will be affected by current and future
interest rates. In the analysis by Lars E. O.
Svensson (1997), the central bank’s inflation
targeting implies targeting inflation fore-
casts and so the forecast effectively acts as an
intermediate target.

As part of formulating a forecasting model,
the central bank must decide which variables
are helpful in predicting future economic
activity and inflation. Forecasts of output
growth and inflation could be linked via the
Phillips curve. Monetary theories of inflation
may suggest one set of variables, while the
theory of the term structure of interest rates
may suggest others. Variables such as new
housing starts, automobile sales, new credit
lines, monetary growth, personal bankrupt-
cies, capacity utilization, unemployment
rates, etc. must also be assessed. Even after
determining which predictor variables to
include in the forecasting model, questions
such as how to measure a particular variable
or which dynamic lag structure to use must
also be addressed.

When more than one forecasting model is
available, which model to use—or whether
to use a combination of forecasts from sepa-
rate models—also becomes an issue. Many
central banks make use of what Adrian
Pagan (2003) refers to as a diverse “suite
of models.” Indeed, according to Pagan, at
some stage the Bank of England made use of
thirty-two different models (although not all
of these were used in forecasting), ranging
from VARs, time-varying component models
to factor models. Similar evidence on the use
of multiple models by other central banks is
reported by Christopher A. Sims (2002).

Because central banks’ quantitative mod-
els serve the dual purposes of being used in
policy analysis and forecasting, a trade-off is
likely to exist between the models’ theoreti-
cal and empirical coherence (Pagan 2003).
For example, theory may impose constraints
on the behavior of equilibrium error correc-
tion mechanisms such as the gradual disap-
pearance of the output gap. The existence of
such a trade-off means that the central bank
may choose not to maximize the pure statis-
tical “fit” of the forecasting model when this
is deemed to compromise the model’s theo-
retical coherence.

Closely related to this point, a key char-
acteristic of forecasts produced by central
banks is that they are often conditional fore-
casts computed for a prespecified path of
future interest rates. Such conditional fore-
casts are usually computed in the context of
a structural model for the economy. Since
current and future interest rates are affected
by the central bank’s decisions, the central
bank’s forecasting problem cannot be sepa-
rated from its decisions regarding current
and future interest rates.

Central bankers come with certain subjec-
tive views about how the economy operates
that they may wish to impose on their fore-
casting model—a theme that naturally leads
to Bayesian forecasting methods or other
methods that can trade off theoretical and
empirical coherence. Should the central bank
use a simple vector autoregression (VAR)
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fitted to historical data or maybe as a way to
capture expectations as was done at least at
some point by the FRB/US model used at
the Board (F. Brayton and P. Tinsley 1996)
and thus use a model tailored to fit histori-
cal features of the dataP Should it use a more
theoretically coherent dynamic stochastic
general equilibrium (DSGE) model? Or,
should it use some combination of the two?
If the central bank adjusts forecasts from a
formal model using judgmental information,
an additional issue arises, namely how much
weight to assign to the data versus the judg-
mental forecast. Implicitly or explicitly, such
weights will reflect the bank’s prior beliefs.
Model instability or “breaks” are likely to be
empirically relevant for central bankers trying
to forecast inflation. In fact, inflation appears
to be among the least stable macroeconomic
variables exactly because it depends on mon-
etary policy regimes, macroeconomic shocks,
and other factors. James H. Stock and Mark
W. Watson (1999b) report evidence of insta-
bility in the parameters of the Phillips curve.
Quite frequently forecasters find them-
selves in situations that differ in important
regards from the historical sample used to
estimate their forecasting models. Pagan
(2003) refers to the difficulties and uncer-
tainties the Bank of England faced in their
forecasts following the events of Septem-
ber 11, 2001. Indeed, an important part of
maintaining a good forecasting model is to
monitor and evaluate its performance both
historically and in real time. Because past
forecast errors have often been found to have
predictive power over future errors, moni-
toring for serial correlation in forecast errors
potentially offers a simple way to improve
upon a forecast. More generally, if the process
generating the predicted variable is subject
to change, it is conceivable that a forecasting
model that performed well historically may
have failed to do so in the more recent past.

2.2 Portfolio Allocation Decisions

As a second example, consider an investor’s
portfolio allocation decisions. Under mean—

variance preferences, these will depend on
the investor’s forecasts of a set of assets’ mean
returns as well as their variances and covari-
ances. Under more general preferences,
higher order moments such as skew and kur-
tosis and possibly the full return distribution
may also matter to the investor. In either case,
the investor must be able to produce quanti-
tative forecasts and trade off portfolios with
different probability distributions through a
loss function. The investor must also decide
how to incorporate predictability into his
actions. How predictability maps into port-
folio allocations will depend on the form of
the prediction signal-—i.e., is the sign of asset
returns predictable or only their magnitude?
Even if conditional means and variances
of asset returns are believed to be constant
and hence essentially unpredictable, their
estimates can still be surrounded by consid-
erable uncertainty. As a consequence, how
the moments are estimated can in practice
have a large effect on the portfolio weights.
Due to estimation error, often the raw esti-
mates are shrunk toward their values implied
by a simple benchmark model such as the
capital asset pricing model (Olivier Ledoit
and Michael Wolf 2003). Alternatively, the
investor’s choice variables—the portfolio
weights—can be restricted through short
sale restrictions and maximum holding limits
(Ravi Jagannathan and Tongshu Ma 2003).
If the mean and variance of returns are
allowed to depend on time-varying state
variables, the question immediately arises
which state variables to select among inter-
est rates (levels and spreads), macroeconomic
activity variables, technical variables such as
price momentum or reversals, valuation mea-
sures such as the price—earnings or book-to-
market ratios or the dividend yield etec. Asset
pricing theory provides little guidance to the
exact identity of the relevant state variables;
this raises several questions such as how to
avoid overfitting the forecasting model-—a
risk always encountered when multiple pre-
diction models are considered—and how to
assess the forecasting models’ performance
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against a benchmark strategy such as simply
holding the market portfolio.

Another problem that is more unique to
forecasting models for financial returns is that
any predictability patterns that do not capture
time-varying risk premia must, if markets are
efficient, be nonstationary because their dis-
covery should lead to their self-destruction
once investors act to take advantage of such
predictability. For example, there is evidence
suggesting that popular models for predict-
ing stock returns based on the dividend yield
ceased to be successful at some point dur-
ing the 1990s, perhaps because of changes in
firms’ dividend payout and share repurchase
practices or perhaps because investors incor-
porated earlier evidence of predictability.
Only if a model’s forecasting performance is
tracked carefully through time can this sort
of evidence be uncovered.

These examples indicate the complexity
of many of the issues involved in economic
forecasting. To further understand these
points, we next provide a formal statement of
the objectives underlying the calculation of
actual forecasts.

3. A Formal Statement of the
Forecasting Problem

Forecasting can be broadly viewed as the
process involved in providing information
on future values of one or more variables of
interest. Toward this end, the variables of
interest must be defined and the information
set containing known data that will be con-
sidered to construct the forecast must also
be determined. The latter can be problem-
atic in practice since we often have very large
amounts of information that could be used as
inputs to the forecasting model.

Other elements are important to the pro-
cess of deriving a forecast, some of which are
often ignored to some extent even though
implicitly they still play a role.

The first element is the loss function. No
forecast is going to always be correct, so a
specification of how costly different mistakes

are is needed to guide the procedure. This
helps to avoid—or at least lower the prob-
ability of—worst case scenarios.

The second element is the family of fore-
casting models to be considered. This guides
the selection of possible methods used for
forecast construction. Models may be para-
metric, semiparametric or nonparametric. A
parametric model is a model which is fully
specified up to a finite dimensional unknown
vector. A nonparametric model can be consid-
ered as a model with an infinite dimensional
set of unknown parameters. Semi-parametric
models fit in the middle. Since little is often
known about the form of the “true” forecast-
ing model, ideally one would specify the fore-
casting model nonparametrically. However,
this ignores the short data samples and the
large dimension of the set of potential pre-
dictor variables in most empirical forecasting
problems. In practice, a flexible parametric
forecasting model is often the best one can
hope to achieve.

A third element concerns which type of
information to report for the outcome of inter-
est. We could report a single number (point
estimate), a range estimate, or perhaps an
estimate of the full probability distribution of
all possible values. Most of the theory of fre-
quentist forecasting has been directed toward
point forecasting. A more recent literature
has examined interval forecasts or forecasts of
the conditional distribution of the variable of
interest rather than a summary statistic. From
a Bayesian perspective, similar issues arise,
although it is natural in this approach to pro-
vide the full predictive distribution.

3.1 Notation

Throughout the analysis, we let Y be the
random variable that generates the value to
be forecast. To begin with, we restrict atten-
tion to point forecasts, f, which are functions
of the available data at the time the forecast
is made. Hence, if we collect all relevant
information at the time of the forecast into
the outcome z of the random variable Z,
then the forecast is f(z). Discovering which
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variables are informative from a forecast-
ing standpoint is important in practice. We
examine this in greater depth later on but
for now simply think of this information as
being incorporated into some random vari-
able that generates our data. Exactly how
z maps into the forecast f(z) depends on a
set of unknown parameters, 6, that typically
have to be estimated from data. We empha-
size this by writing f(z,6).

The loss function is a function £(f,Y,Z)
that maps the data, Z, outcome, Y, and fore-
cast, f, to the real number line, i.e., for any set
of values for these random variables the loss
function returns a single number. The loss
function describes in relative terms how bad
any forecast might be given the outcome and
possibly other observed data that accounts
for any state dependence in the loss. The loss
function and its properties are examined in
greater detail in section 4.

3.2 Optimal Point Forecasts

The forecaster’s objective is to use data—
outcomes of the random variable Z—to pre-
dict the value of the random variable Y. Let
T be the date where the forecast is computed
and let h be the forecast horizon. Then Z is
defined on the information set Fr, while the
outcome is defined on Fryy,. Z comprises a
sequence {Z,}/.; that typically includes cur-
rent and past values of the variable to be
forecast, as well as other variables, X, so often
{Z}L, = {¥,,X,},. The outcome, Y, may be a
vector or could be univariate.

The forecaster’s objective can be reduced
to finding a decision rule f(z) that will be
used to choose a value for the outcome of
Y. The forecast is the decision rule. For any
decision rule, there is an attached “risk,”

(1) R(6.f)= Ey,[L(f(2.0).Y.Z)].

Here the expectation is over the data Z and
the outcome Y holding the forecasting rule f
and the unknown parameters, 0, fixed (which
is why the risk is a function of 6 and the par-
ticular rule chosen, f). That this is a function

of 6 will become clear below. A sensible rule
has low risk and minimizes expected loss or
equivalently maximizes expected utility.!

Assuming the existence of a density for
both Y given Z and for Z (denoted py(y|z,6)
and py(z]6), respectively), we can write the
risk as

® RO
~[[ tfe.6) .2 mtul.0)ptei6) dyet

It is this risk that forecasting methods—
methods for choosing f(z,6)—attempt to
control and minimize.

Forecasts are generally viewed as “poor”
if they are far from the observed realiza-
tion of the outcome variable. However, as
is clear from (2), point forecasts aim to esti-
mate not the realization of the outcome but
rather a function of its distribution. The
inner integral in the risk function (2) is
EVL(f(2,0).Y,Z)|Z], which removes Y from
the expression leaving the loss function relat-
ing the forecast to 6 and the realization of
the data z. For example, in the case of mean
squared loss, this is the variance of Y given
Z plus the squared difference between the
forecast and the mean of ¥ given Z. Both the
conditional mean and variance of Y are func-
tions of 6 and z.

As noted in section 2.1, we are often inter-
ested in conditional forecasts, i.e., forecasts
of Y conditional on a specific path taken by
another random variable, W. In the above
analysis and in what follows, the results
can be extended to this case by replacing
py(y|z,0) and pz(z|0) with the distributions
conditional on the outcome of W being set to
w, i.e., py(y|z,w,0)and p,(z|w, ). While this
extension may seem trivial conceptually, it

! This representation of the problem limits further
choices of the loss function and requires assumptions on
the underlying random variables to ensure that the risk
exists.
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can be difficult to implement in practice. For
example, consider a VAR in interest rates and
inflation, where we want to predict inflation
one period ahead conditional on the value of
interest rates one period ahead. The density
of future inflation given future interest rates
as well as current and past values of both
variables is relatively simple to write down or
estimate and is the density of a rotated VAR.
However, the density of past values of both
variables conditional on future interest rates
presents some difficulties in practice (see,
e.g., Daniel F. Waggoner and Tao Zha 1999
for a Bayesian example).

3.3 Classical Approach

The classical approach to forecasting
focuses on evaluating the inner integral
JL(f(2,6),y.2)py(y|2,0) dy. This expecta-
tion is taken with respect to the outcome vari-
able holding both the data used to construct
the forecast, z, and the parameters, 6, fixed.
For a given conditional density for Y (i.e., a
model for Y conditional on Z = z,py(y|2,8)),
a set of parameters, 6, and a given loss func-
tion, £, we can minimize this directly for a
rule f(z,86).

If we are able to differentiate under the
integral, we get the forecaster’s first order
condition

O G| LU0tz 0)dy
y
= E[L/(f(Z.6),Y,2)|Z = 2,6]
=0,

where L' (evaluated using the data) is
often called the generalized forecast error.
Assuming squared loss in the difference
between the forecast and outcome, we have

@ | Le0.2p, 40 dy
y

=E[Y — f(Z.6)|Z = 2,6~

This is minimized by choosing f(z,8) =
E[Y|Z = z,0], i.e., the conditional mean as
a function of the data, Z, the forecasting
model, and its parameters, 6.

In practice, the parameters 8 are almost
always unknown and so the second step in
the classical approach involves selecting a
plug—m estimator for 6. The resulting esti-
mator 6(z) is a function of the data z and
hence the forecasting rule f(z,8(z)) is only a
function of the observable data.

For example under squared loss and z

= {y,x,}i~;, when the conditional mean
of Yr4 is 8'xy we might use OLS esti-
mates from a regression of y,,, on x, over
the available sample as the plug-ln estima-
tor for 0. The forecast is then f(z,6(z)) =
(Er Ki-1Ye)' (Et 2%{-1%,-1) 'xr. Alternative
plug-in estimators are discussed in detail
below.

In choosing between plug-in estimators,
one approach is to examine the risk func-
tions for the various methods, R(6, f'). These
are functions of both the method f and the
parameters 6. Typically no risk function
dominates uniformly over all 6, ie., some
are better for some values of 8 but work less
well for other values. The classical forecaster
could then choose a method that minimizes
worst case risk or could alternatively con-
sider a weighting function over 6, choosing
the best method for that particular weight-
ing. Denoting the weighting function by
7(6), one would choose the method that
minimizes fR (6.f)m(6)d6, i.e., the risk aver-
aged over all models that are thought to be
important.

3.4 Bayesian Approach

The Bayesian approach starts with the
idea of risk averaged over all possible models
by defining Bayes risk as

(5) r(mf)= LR(G,f)'n'(B)dB.

If the forecast f(z,6) minimizes Bayes risk, it
is a Bayes decision rule. Notice the similarity

This content downloaded from 129 67 116 124 on Sun, 4 May 2014 13:40:42 PM
All use subject to JISTOR Terms and Conditions




Elliott and Timmermann: Economic Forecasting 11

to choosing the plug-in method that mini-
mizes average risk over relevant models in
the classical approach.

To construct a Bayes decision rule (ie.,
a forecast) we require a weighting or prior,
m(#), over the parameters of the model
that tells us which parameter values are
likely and which are not. We also require
models for the random variables underly-
ing the data, namely py(y|z,0) and p,(z|6),
which allow calculation of the posterior
m(0]z) = pz(2]0)7(0)/m(z), where m(z) =
fpz(z |8)7 () df. Bayesian forecasts are then
chosen conditional on observing Z = z , using
the posterior.

To see intuitively why this works in the
sense of delivering a forecast that minimizes
Bayes risk, consider expected loss condi-
tional on Z = z. A Bayesian approach would
be to minimize this for any Z = z, yielding
a rule f(z,0). Since this rule minimizes the
conditional expected loss, it also minimizes
the unconditional expected loss, i.e., it mini-
mizes Bayes risk and is hence a Bayesian
decision rule.?

3.5 Relating the Methods

The complete class theorem tells us that if
the classical method does not correspond to
a Bayesian procedure for some prior, then it
is inadmissible. Under the same problem set-
ting (i.e., for identical loss function and den-
sities), one could therefore find a Bayesian
method with equal or smaller risk than
the classical procedure for all possible val-
ues of 6. Conversely, if there is equivalence
between the two methods, then the classical
approach cannot be beaten. Admissibility is
only interesting for weights 7(8) relevant to
the forecasting problem, but will of course
be preferred given such weights.

The first problem that can arise in the clas-
sical setting is that the “plug in” method of
constructing f(z,6) using the estimate 6(z)

2 John Geweke (2005) provides an extensive treatment
of Bayesian methods.

is ad hoc. Often forecasters choose estima-
tors that yield nice properties of the param-
eters themselves. For example, estimators
that are consistent, asymptotically normal,
and asymptotically efficient for 6 may be
employed. However, because the goal of
forecasting is not to estimate 6, but to con-
struct the forecast, f(z,6), such methods may
not yield good forecasting rules even for rea-
sonable weighting functions 7 (6).

Some practical considerations cloud the
picture. In practice, differences between the
risks of optimal and ad hoc methods need not
be large enough to justify differences in com-
putational costs. Moreover, such comparisons
require that the model be correctly specified
which is against both the spirit and practice
of modern forecasting. Still, the Bayesian
approach offers a construction method that is
guaranteed to be admissible for the specified
model. Even if the true model is not neces-
sarily the one used to construct the forecasts,
provided that the forecasting model is close
to the true model we are assured to use a
method that works well for this possible true
model.

Tt follows from this discussion that it is dif-
ficult to find optimal solutions even for very
simple forecasting problems. Furthermore,
even for simple models such as linear
regression models OLS may not be the best
approach (this is discussed at length in sec-
tion 5.1). Hence for various combinations of
distributions of the data and values of the
parameters of the model there is leeway
for alternative methods to dominate. This
lack of a single dominant approach explains
much of the interest in different forecasting
approaches seen in the last two decades.

3.6 Density Forecasts

An alternative to the provision of a point
forecast is to provide an estimate of the pre-
dictive density py(y|z), usually termed the
density forecast. Knowledge of this density is
sufficient for finding a solution to minimizing
Ey[L(f(2,0),Y,Z)|Z] over decision rules, i.e.,
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some function of the density forecast, that
minimizes risk

= arg min | £UG.0) (1) dy
flz.8) y

Closed form solutions are not always avail-
able, so numerical integration over the den-
sity forecasts is often required to evaluate the
risk.

Forecasters with different loss functions
will generally construct different optimal
forecasts even though the density for the
data is the same for each of them. For exam-
ple, suppose that the cost of a forecast error,
e=y — fis(l — a)|ly — f| fory < fand
aly — f] fory = f. Then Roger W. Koenker
and Gilbert Bassett (1978) show that (in
the absence of z) the optimal forecast is f
= F (@) where F is the cumulative distri-
bution function of a continuous outcome
variable Y and F 7! is the so-called quan-
tile function. The higher the relative cost of
positive forecast errors (higher @), the larger
the optimal forecast and hence the smaller
the probability of observing costly positive
forecast errors.

Two forecasters with different loss func-
tions in this family (different values of )
will want different quantiles of the distri-
bution, so an agency that merely reports a
single number could never give them both
the optimal forecast. It would be sufficient
to provide the entire distribution (density
forecast) because this has all the quantile
information and hence works for any piece-
wise linear loss function. Of course, under
MSE loss, all forecasters will agree that
only the mean of the predictive density is
required.

Under the classical approach, a plug-in esti-
mate of 8 is generally used to construct the
predictive density. The Bayesian equivalent
to this approach is to provide the predictive
density by removing 6 through integration
over the prior distribution 7 (6) rather than

through estimation. The Bayesian chooses f(z)
to minimize

(1) r(mf)

= [([{ 20

4

y.2)py(y |2, )dy}

X pr(ylzﬁ)w(mz)dH} dy) dz

- [m ([ sevsmiyten ay) e

Z

Now [py(y]z,0)m(0|z) d8 = py(y|z) is the
predictive density obtained by integrating
over 6 using 7 (6|z) as weights. Conditioning
on information known to the forecaster, z,
the optimal forecast minimizes the brack-
eted integral.

4. Loss Functions

Short of the special (and uninteresting)
case with perfect foresight, it will not be pos-
sible to find a forecasting method that always
sets f(z,0) equal to the outcome y. A formal
method of trading off potential forecast errors
of different signs and magnitudes is therefore
required. This is the role of the loss function
which describes in relative terms how costly
any forecast is given the outcome and pos-
sibly other observed data. In mathematical
terms, the loss function £{f(Z,6),Y,Z) maps
the data, outcome, and forecast to the real
number line, i.e., for any set of values of these
random variables the loss function returns a
single number.
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Forecasters thus must pay attention to how
errors will affect their results, which means
constructing a mathematical representa-
tion of potential losses. A natural founda-
tion for a loss function is a utility function
that involves both the outcome and the fore-
cast. For a given indirect utility function
U(f(Z,0),Y,Z), we can set the loss L(f,Y,Z)
= —U({.Y,Z) in order to see how one might
elicit the loss function (Clive W. J. Granger
and Mark ]. Machina 2006; Spyros Skouras
2001).

4.1 Determinants of the Loss Function

Economic insights about the forecasting
problem should be used to guide the choice
of loss function in any given situation. In
particular, the choice of loss should address
issues such as (i) the relative cost of over- and
underpredicting the outcome variable, ie.,
the issue of symmetric versus asymmetric
loss; (ii) how economic decisions are influ-
enced by the forecast, which may involve
strategic considerations; and (iii) which vari-
ables affect the forecaster’s loss, i.e., forecast
error alone or perhaps the level of the pre-
dicted variable matters as well.

4.1.1 Asymmetric Loss

On the first point, symmetry versus asym-
metric loss, most empirical work in fore-
casting assumes mean squared error (MSE)
loss, which of course implies symmetric loss.
Apart from the fact that using MSE loss rep-
resents “conventional practice,” this choice is
likely to reflect difficulties in putting num-
bers on the relative cost of over- and under-
predictions. Construction of a loss function
requires a deep understanding of the fore-
caster’s objectives and this may not always be
easily accomplished.

Still, the implicit choice of MSE loss by
the majority of studies in the forecasting
literature seems difficult to justify on eco-
nomic grounds. As noted by Granger and
Paul Newbold (1986, p. 125), ... an assump-
tion of symmetry about the conditional mean
... is likely to be an easy one to accept ... an

assumption of symmetry for the cost func-
tion is much less acceptable.

Papers that consider the properties of opti-
mal forecasts under asymmetric loss from
a theoretical perspective include Granger
(1969, 1999), Hal R. Varian (1974), Arnold
Zellner (1986), Andrew A. Weiss (1996), Peter
F. Christoffersen and Francis X. Diebold
(1997), Roy Batchelor and David A. Peel
(1998), Granger and M. Hashem Pesaran
(2000), Pesaran and Skouras (2002), and
Andrew J. Patton and Allan Timmermann
(2007a).

Many economic considerations can help in
deriving the loss function and determining
the extent of any asymmetry. Consider a firm
involved in forecasting the sales of a new
product. Overpredicting sales leads to inven-
tory and insurance costs and ties up capital.
It may also give rise to discounts needed to
sell the remaining surplus. Such costs are
mostly known or can at least be estimated
with a fair degree of precision. Contrast this
with the cost of underpredicting sales which
leads to stock-out costs, loss of goodwill and
reputation, and lost current and future sales.
Such costs are less tangible and can be dif-
ficult to quantify. Nonetheless, this must be
attempted in order to construct forecasts
that properly trade off the costs of over- and
underpredictions.

For money managers, asymmetric loss
may be linked to loss aversion or concerns
related to liquidity, bankruptcy, or regula-
tory constraints (Jose A. Lopez and Christian
A. Walter 2001). Under the Basel II accord,
banks are required to forecast their Value at
Risk, which is a measure of how much they
expect to lose with a certain probability, such
as 1 percent. Capital provisions are affected
by this forecast: overpredicting the Value
at Risk ties up more capital than necessary,
while underpredicting it could lead to regu-
latory penalties and the need for increased
future capital provisions.

Empirical applications of asymmetric loss
include exchange rate forecasting (Takatoshi
Ito 1990; Kenneth D. West, Hali J. Edison,
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and Dongchul Cho 1993), Budget forecasts
(Michael Artis and Massimiliano Marcellino
2001), and the Federal Reserve’s Greenbook
forecasts (Carlos Carmona Capistran 2006).

4.1.2 Use of Forecasts

Turning to the second point, i.e., the use of
the forecast, interesting issues in construct-
ing the loss function arise when the forecast
is itself best viewed as a signal in a strategic
game that explicitly accounts for the forecast
provider’s incentives. The papers by Tilman
Ehrbeck and Robert Waldmann (1996),
Marco Ottaviani and Peter Norman Sorensen
(2006), David Scharfstein and Jeremy C. Stein
(1990), and B. Trueman (1994) suggest more
complicated loss functions grounded on game
theoretical models. Forecasters are assumed
to differ by their ability to forecast. The chief
objective of the forecaster is to influence cli-
ents’ assessment of their ability. Such objec-
tives are common for business analysts or
analysts employed by financial services firms
such as investment banks or brokerages whose
fees are directly linked to clients’ assessment
of analysts’ forecasting ability.

An interesting example comes from finan-
cial analysts’ earnings forecasts, which are
commonly found to be upward biased (e.g.,
Harrison Hong and Jeffrey D. Kubik 2003
and Terence Lim 2001). By reporting a rosier
(i.e., upwards biased) picture of a firm’s earn-
ings prospects, analysts may get favored by
the firm’s management and get access to more
precise and timely information. Too strong a
bias will compromise the precision of the ana-
lysts’ forecast and will be detrimental to the
position of the analysts in the regular rankings
that are important to their career prospects,
particularly for buy-side analysts. Ultimately,
forecasts must trade off bias against preci-
sion. In general, we would not expect the cost
of over- and underpredicting earnings to be
identical and so biases are likely to persist.

4.1.3 State Variables

Turning to the final question, namely which
variables should enter into the forecaster’s

loss function, it is conventional practice to
assume that the economic loss only depends
on the forecast error, ¢ = Y — f. However,
this is far too restrictive an assumption in
many situations. Patton and Timmermann
(2007b) find that it is difficult to understand
the Fed’s so-called Green Book forecasts of
output growth if the loss is restricted to only
depend on the forecast error. Rationalizing
the Fed’s forecasts requires not only that
overpredictions of output growth are costlier
than underpredictions, but that overpredic-
tions are particularly costly during periods
of low economic growth. This finding makes
sense if the cost of an overly tight monetary
policy is particularly high during periods
with low economic growth where it may
cause or extend a recession.? This is thus an
example where L(f,Y,Z) cannot be reduced
to LY — f).

4.2 Common Loss Functions
4.2.1 General Properties

Loss functions satisfy a set of common
properties. Since the perfect forecast, f(z,0)
=y, is the best possible outcome, loss func-
tions achieve a minimum at this point. Thus
loss is typically bounded from below at the
point where the forecast equals the out-
come. In practice, loss functions are usually
normalized so L(y,y,z) = 0 for all y and z.
For this to be a unique minimum, we have
L(f(z,0),y,z)>0forall f#y.

Restrictions on the form of the loss func-
tion are also needed to make sense of the
ideas of minimizing risk, in particular we
require that the expected loss exists. The
existence of expected loss depends both
on the loss function and on the conditional

3 Central banks commonly state a desire to keep infla-
tion within a band of 0 to 2 percent per annum. Inflation
within this band might be regarded as successful out-
comes, whereas defiation or inflation above 2 percent are
viewed as failures. Again this is indicative of a nonstan-
dard loss function.
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distribution of the outcome variable. Recall
that expected loss is

(8) Ey[L(f(2,0).Y,z]

= fﬁ(f(zﬂ),y»z)py(ylz,@)dy-

Hence issues with the existence of expected
loss revolve around how large the loss
becomes for tail behavior of the predicted
variable.

Symmetry of the loss function is the con-
straint that, for all d,

(9) Ly —dy,z)= L(y + d,y,z).

Most popular loss functions in economic
applications are symmetric.

4.2.2 Specific Loss Functions

By far the most commonly employed loss
function is MSE loss,

(10) L(f(Z,6),Y,2) = (Y — f(Z,6))%

This is a particularly tractable loss function
since there are no unknown parameters and
the optimal forecast is simply the conditional
meanof Y: f(Z,6)= E[Y|Z,6]. Hence under
MSE loss the classical “plug in” approach to
forecasting simply involves estimating the
conditional mean of Y. This relates naturally
to regression analysis and the greater part
of econometric theory. Under the Bayesian
approach, the optimal forecast is the mean of
the predictive density, f(z) = [yPy(y|z) dy.

Mean absolute error (MAE) loss is also
very common:

A1) L(f(Z.6).Y.2) = |Y = f(Z,6)|.

For all continuous distributions py(y|z,6),
the optimal forecast is the conditional
median of Y.

These two loss functions are nested in the
general family of loss functions considered

by Graham Elliott, Ivana Komunjer, and
Timmermann (2005)

(12) L(f(Z,6).,Y.Z;p,e)
= [a+(1 ~2a)-I(Y — f(Z.6)<0)]
XY - f(Z.8)P,

where I(-) is the indicator function. For p =
1, this gives the lin-lin (piece-wise linear)
loss function, which nests MAE loss when «
= 0.5. For p = 2, the asymmetric quadratic
loss function, which nests MSE loss when
a = 0.5, is obtained. Optimal forecasts
from the lin—lin loss function are conditional
quantiles, while those from the asymmet-
ric quadratic loss function are expectiles
(Whitney K. Newey and James L. Powell
1987).

Varian (1974), Zellner (1986), and Christof-
fersen and Diebold (1997) studied linex loss,

(13 L(f(Z,6).Y.Z) = exp(b(Y — f(Z.,6)))
—b(Y —fZ.6) -1,

where b > 0 is a parameter that controls
the degree of asymmetry. If b > 0, large
underpredictions (f < y) are costlier than
overpredictions of the same magnitude, with
the relative cost increasing as the magnitude
of the forecast error rises. Conversely, for b
< 0, large overpredictions are costlier than
equally large underpredictions.

Direction-of-change based loss is another
class that has generated considerable interest
in recent work. The simplest of these takes
the form

(14) L(f(Z.6).Y,Z)

0 if sign (Y) = sign(f)

1 otherwise

Signloss functionsare popularin finance since
they are closely related to market timing in
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financial markets and also are linked to vola-
tility forecasting (Christoffersen and Diebold
2006). To see this, we modify the objective
function so that it reflects the magnitude of
the outcome variable. For example, consider
the decisions of a “market timer” whose util-
ity is linear in the payoff, U(y,8(z)) = &y,
where y is the return on the market portfo-
lio (possibly in excess of a risk-free rate) and
the action rule, 6(z), is to invest one unit
in the market portfolio if this has a positive
expected return and otherwise be short one
unit, i.e.,

(15) 1 iff>0
&= .
-1 iff=0

Payoffs from this simple trading rule can be
shown to be

(16)  U(y,8(z)) = (2sign(f) — Dy,

and so depend on both the signs of y and f as
well as the magnitude of y. Notice that this
objective does not adhere to our definition
of a loss function. Intuitively this is because
large forecast errors for forecasts with the
correct sign lead to smaller loss than small
forecast errors for forecasts with the wrong
sign.4

4.3 Backing Out the Loss Function

So far we have been discussing how to
compute forecasts that minimize expected
loss. We next address a different, but related,
problem namely how to determine the loss
function from a sequence of observed fore-
casts. Attempts to “reverse engineer” the loss
function apply to situations where it is dif-
ficult to specify a priori the exact form of the
loss function. The idea is to approximate the

4 In related work, Elliott and Robert P. Lieli {2006)
derive the loss function from first principles for binary
decision and outcome variables. This setup does not admit
commonly applied loss functions for any possible utility
function.

unknown loss using a flexible family of loss
functions such as (12) proposed by Elliott,
Komunjer, and Timmermann (2005).

While flexibility is important, parsimony
is an equally important concern since it is
rare to encounter cases where the number
of forecasts amounts to more than a few
hundred observations, at least if attention
is restricted to the behavior of individual
forecasters. Often the situation is even more
limited than this. For data sources such as
the Survey of Professional Forecasters or
the Livingston surveys, individual forecast-
ers with more than a few dozen predictions
are fairly uncommon (Elliott, Komunjer, and
Timmermann 2006).

Within the context of a given family of loss
functions, the unknown parameters of the
loss function can be estimated from the fore-
caster’s first order condition (3). For example,
for a given value of p, a is the single param-
eter that controls the degree of asymmetry
among the loss functions in (12). When p =
2, a/(1 — @) measures the relative cost of
positive and negative forecast errors of the
same magnitude. For example, a value of «
=04 suggests that positive errors are two-
thirds as costly as negative errors of the same
magnitude.

The estimate of « thus provides economic
information about the degree of asymmetry
required to justify the observed sequence
of forecasts. Sometimes such estimates can
be rejected on economic grounds. Suppose,
for example, that an estimate « = 0.1 is
required to justify rationality of the observed
forecasts. This suggests that it is almost ten
times costlier to underpredict than to over-
predict the variable of interest. This may be
deemed implausible on economic grounds
and so asymmetric loss is unlikely to be the
explanation for the observed behavior of the
forecast error.

How the forecaster maps predictions into
actions may also be helpful in explaining
properties of observed forecasts. Gordon
Leitch and J. Ernest Tanner (1991) stud-
ied forecasts of T-bill futures contracts and
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found that professional forecasters reported
predictions with higher mean squared error
than those from simple time-series models.
This is puzzling since the time-series models
presumably incorporate far less information
than the professional forecasts. When mea-
sured by their ability to correctly forecast the
direction of future interest rate movements—
a metric related to the forecasters’ ability to
make money—the professional forecasts did
better than the time-series models. A natu-
ral conclusion to draw from this is that the
professional forecasters’ objectives are poorly
approximated by the MSE loss function and
are closer to a directional or “sign” loss func-
tion. This would make sense if the investor’s
decision rule is to go long if an asset’s payoff
is predicted to be positive and otherwise go
short.®

5. Estimation of Forecasting Models

Constructing a forecast for a particular
problem requires (i) choosing the variables
in z that we intend to employ as inputs in the
forecasting model; (ii) taking a stand on the
model or set of models for the conditional
distribution py(y|z); (iii) specifying how the
forecasting model tracks the predicted vari-
able through time, accounting for possible
instabilities. The Bayesian approach further
requires eliciting priors on the models and
their parameters and the classical approach
requires an estimator for the unknown ele-
ments of 6. The third point is new but will be
discussed in more detail in section 6. Here it
suffices to say that model instability affects
how much weight is put on past as opposed
to more recent data in estimating 6.

While economic theory often suggests
candidate variables for inclusion in z, rarely
is theory so precise as to pinpoint directly
which variables should be included or how
they should be measured. Economic theory is

5 Kilian and Simone Manganelli (2006) provide an
interesting application to a central bankers forecasts
under nonstandard preferences.

often better at excluding variables from con-
sideration and limiting the search over which
variables to include in the forecasting model.

Moreover, economic theory rarely speci-
fies the distribution or functional form of
the model relating y to z. In most forecast-
ing situations, there is therefore considerable
uncertainty over the functional form of the
model. Finally, the stability through time of
the functional form may be questionable.
Economies continually evolve, regulations
and technology change, suggesting a need
to allow the functional form or the param-
eters of the forecasting model to change over
time.

Each of these issues highlights a theme in
recent work on economic forecasting which
we review below. First, however, we review
the workhorse in the forecasting literature,
namely the linear forecasting model and its
extension to vector autoregressions {VARs).
Challenges faced in using VARs for forecast-
ing foreshadow issues that arise for the gen-
eral problem.

5.1 The Linear Forecasting Model

VARSs, originally proposed by Sims (1980),
constitute a prominent class of forecasting
models. Prior to their introduction, larger
structural models were the norm in macro-
economic forecasting. While these forecast-
ing models are still employed by central banks
and other institutions, the theoretical points
of Sims (1980) along with the empirical suc-
cess of VARs (Robert B. Litterman 1986) has
led many forecasters to employ them.

Optimal forecasts are synonymous with
linear regression models under MSE loss
and a linear specification for the conditional
mean. VARs are multivariate extensions of
the autoregressive model so commonly used
in forecasting and take the form

k
(17) Z = By + EB_]’zt—j + g,
=1

so0 8 = {Bo,B1,-...B}. In as far as possible,

the autoregressive order, k, is chosen so that
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g, is serially uncorrelated. When z, = (y,,x/)’
the first equation of the system is the fore-
casting equation.

Least squares is the standard plug-in
method for estimating the conditional mean
from a linear model. Since OLS estimates
are consistent and asymptotically efficient
for 6 when the number of regressors is fixed
or grows slowly enough as the sample size
increases, they are a reasonable candidate
for a plug-in estimator. There are limitations
to using this result to justify the use of OLS,
however. Because we can write MSE loss as
the variance of the forecast error plus the
squared bias, the additional loss from using
a biased estimator could well be offset by
reductions in the variance term. Moreover,
since the focus of providing good forecasts
is not on the individual estimates for each
parameter but a function of these param-
eters interacted with the data (i.e., f(z,9)),
other estimation approaches could lead to
better forecasting performance. Finally, we
might not want to rely on asymptotic opti-
mality properties for the OLS estimates of
the parameters. In practice, the small sample
distributions may differ greatly from their
asymptotic counterparts, making compari-
sons of estimators based on these asymptotic
distributions misleading. Taken together,
these points have led to a number of other
estimation approaches.

Bayesian methods have been suggested
as alternatives to OLS in the construction of
forecasts from VAR models. Under the addi-
tional assumption that &, is normally distrib-
uted, the likelihood is fully specified and has
a well known form. Combined with a set of
priors, one can then construct the posteri-
ors and the desired forecasts. For example,
the normal prior for the first equation of the
VAR results in a closed form solution for the
posterior distribution for the parameters S
of this equation (In terms of equation (17),
B is a vector formed by stacking the col-
umns of By,B1...,Bx). To see this, let Z be
a matrix whose rows contain the time series
observations of the predictor variables with

columns representing the individual regres-
sors and let y be a vector comprising the
time series of the predicted variable. In the
linear regression model with independently
and identically distributed residuals (mean
zero and variance o2l with o known) and
prior B ~ N(B°,Q), the posterior distribu-
tion for the regression parameters is normal
with mean (¢ 2Z'7Z + QH Yo Z'y +
Q718%) and variance (¢ 2Z'Z + Q™)' The
plug-in forecast simply uses the mean of the
posterior, which takes the form of a shrink-
age estimator. Setting {) = o’k 11, the esti-
mator becomes (Z'Z + kI)'Z'y, which is in
the form of a Ridge estimator. Under MSE
loss, normally distributed B and any general
prior distribution 7 (8), it can be shown that
the Bayes rule forecast in a linear regression
takes the form of a correction to the OLS
estimator.

To employ these methods in practice
requires specifying the prior (and typi-
cally the results are extended beyond the
known variance case). Litterman (1986) and
Thomas Doan, Litterman, and Sims (1984)
suggested Minnesota priors on the param-
eters of a VAR which more heavily weight
the parameter configuration toward a model
where variables follow individual random
walks. More distant lags are shrunk toward
zero more heavily. This type of prior can be
helpful in obtaining better forecasts of mac-
roeconomic outcomes. John C. Robertson
and Ellis W. Tallman (1999) examine
the forecasting performance of flat prior
VARs (i.e., the usual OLS estimates) versus
Bayesian methods based on more informa-
tive priors. They find that extensions to the
Litterman priors revolving around long run
properties provides forecasting gains for a
number of macroeconomic variables (GDP
growth, unemployment, Fed funds rate, and
CPI inflation). K. Rao Kadiyala and Sune
Karlsson (1993, 1997) examine more exten-
sive priors than the Litterman approach
(allowing for dependence between the equa-
tions) and find examples of improvements
over the Minnesota prior.
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A promising recent literature uses DSGE
models to constrain VARs in a Bayesian set-
ting. In this vein, Marco Del Negro et al.
(2007) cast DSGE models as (reduced-form)
VARs that include an error correction term.
Theoretical restrictions from firms® and
households’ optimizing behavior subject to
their intertemporal budget constraints, along
with assumptions about government expen-
ditures imply a set of cross-equation restric-
tions on the parameters of the VAR. Del
Negro et al. (2007) relate these constraints
to the priors on the model parameters; ignor-
ing the theory corresponds to diffuse priors
while informative priors pull the parameters
towards the theoretical constraints. In a
simulation study, these authors find evidence
that, for a range of macroeconomic variables,
the DSGE-based VAR produces better out-
of-sample forecasting performance than the
standard unconstrained VAR.

5.1.1 Shrinkage Methods

A variety of estimation and variable selec-
tion methods have been suggested as plug-
in estimators to attain a better trade-off
between the bias and variance components
of the forecast MSE. Most of the alternative
plug-in estimators are modifications of the
OLS estimator, 85, and fall in the gen-

8

eral class of shrinkage estimators, B3, of the
form

(18) st = (1 - 'Yi)BiOLS + 'YiBi
0<y, <1l,i=1,...,k,

where B is the shrinkage target. The shrink-
age weight, vy,, generally depends on the data
(W. James and Charles~ Stein 1961). It is com-
mon practice to set 3; = 0, in which case
the OLS estimators are shrunk toward zero.
The expected gain from this approach under
MSE is to reduce the variance in the bias-
variance trade-off that arises from the plug-
in estimator for the regression coefficients.
For empirical evidence on shrinkage meth-
ods, see Zellner and Chansik Hong (1989).

Estimators differ in how they specity the
shrinkage weights vy, and shrinkage target B,.
These include bagging and subset selection
methods (explained in detail in section 5.2.1
below), as well as Stein regression and many
Bayes and empirical Bayes methods. Other
examples of shrinkage methods that have
been less employed for forecasting include
ridge regression (which is a special case of
(18)), as well as the lasso (Robert Tibshirani
1996) and the (non negative) garrote (Leo
Breiman 1995). The latter two methods are
somewhat more complicated in estimation
and are essentially penalized least squares
estimation methods. For the lasso the data
are first normalized (see Alan Miller 2002
for a textbook treatment) and then the sum
of squared errors from the regression is
minimized subject to the constraint that the
sum of the absolute value of the regression
coefficients is less than a chosen value. For
the garrote, first least squares estimates from
a regression of y,,, on x, are obtained, then
values ¢, are chosen to minimize

-1

2
E(ym - Ecz‘éiOLsxit> )

t=1]

subject to the constraints that each ¢; = 0 and
that their sum falls below a chosen value.

5.1.2 Estimation with Non-Standard
Loss Functions

It is common to use standard least-squares
estimation techniques for model param-
eters without reference to the loss function.
An example is using linear regression and
examining if the forecasts capture turning
points in the data. Despite such practice,
recent studies have suggested that forecast-
ing performance can often be significantly
improved by using the same loss function in
the estimation and evaluation stages. This
has been found both in simulation experi-
ments (Elliott and Timmermann 2004) and
in empirical studies (Christoffersen and Kris
Jacobs 2004).
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To understand such gains, note that, for
loss functions other than MSE, optimal fore-
casts generally require use of the loss func-
tion either directly in estimation or through
the specification of the model that is esti-
mated. For example, in the case of lin-lin
loss, the optimal forecast is a conditional
quantile and so quantile methods can be
employed to estimate the parameters of the
forecasting model. When this is specified up
to a set of unknown parameters—i.e., the
function f(.) of the forecasting model, f(z,6),
is known but 6 is not—then the loss function
can be used to estimate the unknown param-
eters through M estimation, i.e.,

-1
(19) 6= arg m1n (T-1 12[: (f(2,0),Y41,2,)-
=1

When the loss function is differentiable,
extremum estimators based on the first
order moment conditions can also be used.
Approximate methods have been suggested
by Weiss (1996). In the context of forecast
combination, Elliott and Timmermann
(2004) propose methods of moments estima-
tors and approximate methods for a variety
of loss functions including lin-lin and asym-
metric quadratic loss.

5.2 Estimation with Many Variables

The inability of economic theory to pre-
cisely define which variables should be
included in a forecasting model has become
an important issue since thousands of poten-
tially relevant variables are readily available
from governments and other organizations.
The virtual explosion in the number of
potential predictor variables is exacerbated
by the fact that the dynamic structure of
the forecasting model is typically unknown.
Adding an extra variable therefore increases
the model dimension not only by a sin-
gle parameter but by many parameters to
account for the dynamic effects of this vari-
able on the outcome. At the same time, the
length of the available data is often relatively
short because the frequency of time series
observations and the period over which data

have been constructed combine to limit the
sample size. Model instability (which will be
discussed below) may further limit the useful
length of the data.

Short samples, whether due to limited data
availability or model instabilities, along with
large sets of predictor variables mean that
forecasters always face a trade-off in terms
of how complicated the model can be versus
how well its parameters can be estimated.
Methods that place constraints on the num-
ber of parameters may produce better fore-
casts even if the population model for the
data does not share these constraints. For
example, small and very parsimonious mod-
els have been found to work well in many
empirical studies. Reductions in loss result-
ing from adding more variables are often
more than offset by the resulting increase in
parameter estimation error. For MSE loss,
additional variables reduce bias, but estima-
tion error increases the variance, leading to a
bias-variance trade-off. Methods other than
omitting relevant variables and using OLS
are available to exploit this trade-off. This
has led to the proposal of a wide range of
estimation techniques in the forecasting lit-
erature that we next turn to.

5.2.1 Subset Selection Methods

Different forecasting methods amount to
different weighting functions on the under-
lying regressors (Stock and Watson 2005).
Methods that put full weight on all regressors
tend to suffer from imprecisely estimated
parameters. At the opposite extreme are
purely autoregressive methods that ignore
information in other variables and focus
solely on a variable’s own history.

A natural approach in the middle of these
extremes is to only use a subset of the avail-
able predictor variables for forecasting.
Inclusion of additional variables in the regres-
sion model increases the variance of the
forecast, although if their true coefficients
are nonzero then this also reduces the bias.
Removing variables with coefficients that are
small enough (so the resulting bias is small)
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to avoid this additional increase in variance
may yield better performing forecasts. Of
course, if the coefficient on the omitted vari-
able were truly zero, then there is no bias and
the variable should always be excluded.

Subset regression methods set 3; = 0 in
(18), while y; becomes an indicator function
based on the adopted rule for variable inclu-
sion or exclusion. Various methods for choos-
ing the regressor subset are in use. When
there is a natural ordering to the regressors
(e.g., in vector autoregressions) penalized
likelihood methods such as the Akaike infor-
mation criterion (AIC) or the Bayesian infor-
mation criterion (BIC) have been employed.
Except for cases with very small sample
sizes the BIC applies a heavier penalty term
than the AIC and so this method includes a
smaller subset of regressors than AIC. Such
selection methods are less common without
a natural ordering because the set of mod-
els to search over easily becomes very large
without this ordering. For example, with 30
potential variables, there are 23% or more
than one billion different models that have
to be considered.

Atsushi Inoue and Kilian (2006) discuss
conditions under which a variety of tools for
model selection—e.g., ranking by recursive
MSE, rolling MSE, or model selection by
the AIC or BIC—will identify the model
with the lowest true out of sample MSE
among a finite set of forecasting models.
They find that selection by AIC and ranking
by recursive MSE yield inconsistent results
and have a positive probability of choosing a
model that does not have the best forecast-
ing performance while the SIC is consistent
for nested models. Of course, it should be
borne in mind that consistency is not the
most important criterion to satisfy here and
how a method handles bias—variance trade-
offs may be more important to forecasting
performance.

An alternative approach is to evaluate each
variable on its own or in smaller groups—a
method advocated by, e.g., Hendry and
Hans-Martin Krolzig (2004). This step-wise

procedure employs ¢-tests to remove individ-
ual variables with statistically insignificant
coefficient estimates. While computationally
highly attractive, this approach gives rise to
problems of its own: insignificant estimates
can arise not only because the true param-
eters are small but also because of large sam-
pling error. Moreover, if one reestimates the
model after removal of some parameters and
again examines statistical significance, the
method becomes path dependent. This mat-
ters because classical pretests need not result
in consistent estimates of the model. Finally,
the “all or nothing” approach of either using
the OLS estimate or omitting the regressor
may be too restrictive (i.e., restricting y, at
ZEero or one).

Methods that attempt to exploit the bias-
variance trade-off without the “all or noth-
ing” approach have thus been suggested. The
estimation method closest to pretesting is
bagging (bootstrap averaging) proposed by
Breiman (1996). In this method, the forecast
model is bootstrapped, reestimated using
tests for significance to omit variables, and
the forecast from the bootstrapped model is
computed. A final forecast is then computed
as the average of the forecast over the boot-
strapped models (see Inoue and Kilian (forth-
coming) for a more complete description of
the method). Since variables are unlikely
to be omitted for all bootstrap replications,
the estimator can be viewed as a smoothed
version of the “all or nothing” approach.
Bagging still sets 8, = 0 but vy, is now equal
to the average over this indicator function
across the bootstrap replications. In this way
bagging changes from a hard threshold (zero
or one) to a soft one (some number between
these values).

5.2.2 Factor Models

An alternative to excluding variables from
a large dimensional set of predictors is to
extract common features from the data and
then use these as the basis for the forecast-
ing model. Indeed, the dominant classical
approach for dealing with large dimensional
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data is to extract a set of common factors of
much lower dimensionality than the original
variables to summarize an otherwise over-
whelming amount of information. Suppose Z
contains N economic variables whose com-
mon dynamics can be represented through
the factors

(20) Z, = ALy + e,

where ¢, is a vector of idiosyncratic shocks,
J, is a vector of common factors, and A(L)
is a matrix of lag polynomials representing
dynamic effects. For low dimensional sys-
tems (small N), dynamic factor models can
be estimated through the Kalman filter.
When N is large, Stock and Watson (2002)
propose a principal components approach to
obtain the common factors as the solution to
a simple least squares problem. An alterna-
tive approach proposed by Mario Forni et
al. (2000, 2002) is to extract principal com-
ponents from the frequency domain using
spectral methods.

While the construction of a set of common
factors resolves the question of how to aggre-
gate an otherwise far too large dimensional
state vector, use of these techniques in fore-
casting also raises new issues. There is a risk
that the factor extraction serves as a “black
box” approach void of any economic interpre-
tation. This risk arises in situations where the
factors are not clearly identifiable with under-
lying blocks of economic variables, although
in many situations such blocks can be used
to good avail for interpretation purposes
(Sydney C. Ludvigson and Serena Ng 2005,
2007). The aim is to ensure that the first few
factors can be interpreted in a way that links
them to a particular subset of variables.

In an empirical analysis, Stock and Watson
(2005) find that methods that include the first
few (and most significant) principal compo-
nents in addition to own-variable autoregres-
sive dynamics generally work best and that
a few principal components are responsible
for most of the improvement in forecasting
performance.

5.3 Choice of Functional Form:
Nonlinear Models

There is little reason to expect that the
economy yields linear relationships between
the data and the predicted variable. Indeed,
empirical tests for various forms of nonlin-
earity often reject linear benchmark models
(Timo Terdsvirta 2006). For example, impor-
tant nonlinearities have been identified in
the behavior of asset returns, particularly
in the large literature on volatility model-
ing and forecasting. Hence it makes sense to
explore (if not necessarily employ) nonlinear
models as a way to improve the forecasting
performance of linear models. Typically the
literature on nonlinear forecasting assumes
MSE loss so the focus remains on estimat-
ing or approximating the conditional mean of
the predicted variable.

Most nonlinear models in common use
take the form

(21) Y1 = 012, + g(zt,é’z) + &4

Assuming that E[g,,|z,] = 0, this nests the
linear model when g(.) = 0.

Extending the set of forecasting models
under consideration to nonlinear specifica-
tions substantially expands the model set. Let
the set of models, M, represent the combi-
nations of parameters and functional forms
for the models under consideration. When
the true model M, € M, the model is said
to be correctly specified, otherwise it is mis-
specified. A misspecified model may yield
forecasts that are difficult to beat, even if the
coefficients are not meaningful (Clements
and Hendry 1998). For example, a linear fore-
casting model estimated by OLS results in the
linear model that minimizes Kullback Leibler
distance between the estimated “approxi-
mate” model and the unknown nonlinear
model. That said, however, when forecasters
have to “sell” their forecasts to decisionmak-
ers, the misspecified model may be difficult
to put a story to.

The forecaster’s problem is to choose the
best available model M € M. Because this
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involves a search over functional forms, to be
able to actually perform this search the fore-
caster needs to restrict the problem further.
As with the specification of the variables to
be included in the regression model, eco-
nomic theory is often not particularly precise
on the exact form of the nonlinearity to be
expected.

Tests for the functional form g(.) are com-
plicated because 8, or a subset of this vector
is not identified under the null hypothesis
of linearity. As a result, standard methods
such as the generalized likelihood ratio test
lose optimality properties and are no longer
approximated asymptotically by a chi-squared
distribution. A large literature has arisen to
deal with these issues (see Terasvirta 2006).

The danger of using a misspecified fore-
casting model is a real problem given the lack
of theoretical underpinning of the choice
of M. Moreover, often M is a very small
subset of the possible model specifications.
Furthermore, for many of the tests of the null
of linearity for these models, rejection does
not necessarily imply that a particular non-
linear model chosen is implied. Hence it is
important to understand the estimation and
forecasting properties of these models under
misspecification. Such misspecification and
the approximation properties of nonlinear
models may explain why they sometimes
generate extreme forecasts.

The literature has pursued two broad
themes: (i) the formalization of specific
nonlinear models that generalize the linear
model in an intuitive way; or (i) the use of
more global approximation procedures that
seek to approximate the unknown nonlinear
function. Which approach should be adopted
depends on how much is known about the
type of nonlinearity to be expected in a given
situation. We next examine each approach in
turn.

5.3.1 Local Approximations

One branch of the literature considers non-
linearities that are essentially ad hoc mod-
els designed to be more flexible than linear

models which arise as special cases. The set of
models M is typically relatively small, nest-
ing a linear specification, and fully defined
up to a set of unknown parameters. Much
of this work has been to extend autoregres-
sive models and has its roots in the histori-
cal domination of autoregressive integrated
moving average forecasting models (George
E. P. Box and Gwilym M. Jenkins 1970) of
the form

(22) ol (L)Aym =n(L)& 41

Here ¢ (L) and 7n(L) are lag polynomials
while Ay, = y,, — y, takes first differ-
ences and g,, are serially uncorrelated
innovations (white noise). Examples include
the family of smooth transition autoregres-
sive (STAR) models, which typically set z, =
(Y1»Ys—1---,Ys—p) and differ in the exact form
for g(.) as specified in (21), e.g. the exponen-
tial STAR model sets elements of g(.) equal
to 65,2,(1 — exp(—6392,)) whereas the logis-
tic STAR (LSTAR) model sets g(.) equal
to 63,z,(1 + exp(—639z,))~*, commonly with
restrictions on @y,6,,. Similar nonlinear
models can be used with specifications for z,
other than lagged dependent terms in situa-
tions where a candidate variable explaining
the nature of the nonlinearity (e.g., finan-
cial crises as measured by default premia) is
available.

Threshold and regime switching regres-
sions set g(.) equal to 83,2,1(s, < 6;) for
some state variable, s,, where I(.) is the indi-
cator function. Smooth threshold models
have been employed empirically with some
success to forecast real exchange rates (Lucio
Sarno and Mark P. Taylor 2002), industrial
production and a host of other macroeco-
nomic series (Terédsvirta, Dick Van Dijk, and
Marcelo C. Medeiros 2005).

When the state is unobserved, it is com-
mon to model it through a regime switching
process (James D. Hamilton 1989). The lit-
erature predominantly uses fully parameter-
ized Gaussian mixture models with weights
on the individual states that are determined
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from the updated state probabilities. We
cover these models in more detail in section
6.2 on breaks.

The large literature on autoregressive con-
ditional heteroskedasticity (ARCH) in asset
returns (reviewed in the context of forecast-
ing by Torben G. Andersen et al. 2006) is
another example of nonlinear dynamics that
could be important to portfolio managers
concerned with predicting returns and man-
aging the risk of their assets. These models
imply that the conditional variance of asset
returns is persistent and hence partially pre-
dictable, particularly at short horizons. Such
predictability of the conditional variance can
be captured by extending (21) to

E[e%ﬂ 1z,) = h(e,ey,...,80).

Nonlinear forecasting models can adapt
more quickly to changes in the underlying
time-series dynamics and avoid smoothing
the data as much as linear models. This same
feature means that nonlinear models can
also be highly sensitive to the sort of outli-
ers found in many economic and financial
time series and may be more prone to over-
fitting than linear models. Furthermore, the
parameters capturing nonlinear dynamics
are often associated with a few episodes such
as the change in the dynamics of U.S. inter-
est rates during the “monetarist experiment”
from 1979 to 1982. As a consequence, these
parameters can be very imprecisely estimated
for the typical sample sizes available to mac-
roeconomic forecasters and so these models
often produce quite poor out-of-sample MSE
performance.® On the other hand, nonlinear
forecasting models may perform quite well
in certain states (e.g., recessions or periods of
financial crises) and so can be used either in

5 Indeed, some simulation studies find that even when
the nonlinear model is correctly specified, it often pro-
duces less precise forecasts than a simple misspecified
linear approximation due to the greater uncertainty about
the nonlinear model’s parameters (Zacharias Psaradakis
and Fabio Spagnolo 2005).

conjunction with other models that generate
more smooth forecast (see section 8.4 on
combination) or for nonconvex loss functions
such as the sign function (14) that put smaller
weight on outliers.

5.3.2 Flexible Approximations

Another approach to forecasting with non-
linear models has been to acknowledge the
uncertainty over the functional form, g(.),
and attempt to construct a flexible approxima-
tion by considering a very large set of models
to include in M. To make the search over
models operational, rather than search
over all of M, this approach searches over
an approximating set M of the form

J
(23) Y = 01z, + Egj(z-uf)j) t e
=2

Often the simplification g;(z,,6,) = §;(z,)8;
is employed to make the forecasting rnodei
linear in the parameters (or at least more so,
since additional parameters can be hidden
inside g(.)). The idea is to choose the func-
tions g(.) carefully enough and the number
of them, J, large enough to approximate a
wide variety of possible nonlinear functions,
see e.g., Norman R. Swanson and Halbert
White (1995).

There are a large number of theoretically
well motivated choices for the basis func-
tions g;(z.,6,). Most popular in the eco-
nomic forecasting literature are artiﬁcial
neural network models, where g;(z,,6
0;1(1 + exp(—z6,))~" and various metilods
are employed for choosing or estimating 6,
Other basis functions include Fourier series,
polynomials, piecewise polynomials and
splines. Methods such as wavelets, ridgelets,
and the Gallant (1981) flexible fourier form
also belong to this set. Both theoretically
and in practice, different methods work well
against different classes of functions.

Practical problems arise for these meth-
ods in terms of estimation and forecasting.
First, unless 3(.) is fully specified, estimation
requires nonlinear optimization. Variations
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have arisen in attempts to find simple meth-
ods to specify the functional form, so as to
leave the remaining estimation linear in the
parameters and hence estimable by OLS.
This is standard for example in the applica-
tion of neural net models.

Second, the order | must be chosen. Since
an infinite number of possible terms could be
included and the in-sample fit is improved by
choosing J as large as possible, overfitting is
likely unless the number of included terms is
somehow restricted. Overfitted models tend
to produce very good results for the data used
to estimate the models, but very poor fore-
casts on fresh (out-of-sample) data. To deal
with these issues, methods such as informa-
tion criteria and cross validation are used to
select among this class of models. Overfitting
remains the Achilles heel of these methods,
however.

Finally, as with parametric nonlinear
models, the risk of generating relatively
extreme forecasts remains when forecasting
from sample points where the data is rela-
tively sparse. Many practitioners use “insan-
ity” filters, replacing these forecasts with a
smoothed value when the forecast is too far
from the outcome or its mean. Even so, the
track record of these models in forecasting
has been mixed. Nonlinearities do seem to
be present in many macroeconomic series,
but the data samples for these variables tend
to be relatively short, thus hampering the
precise estimation of nonlinear forecasting
models.

For financial returns, the signal-to-noise
ratio—i.e., the fraction of predictable varia-
tion in asset returns—tends to be very low.
Often this means that the observed nonlin-
earities are poorly identified, imprecisely
estimated and so the risk of overfitting is
very high. As a result, the deterioration in
out-of-sample forecasting performance is
likely to be very high when compared against
the predictive performance during the train-
ing sample used to estimate the parameters
of the model (see, e.g., Jeffrey Racine 2001).
Consequently there is little evidence that

such forecasting models dominate simple lin-
ear specifications, at least under MSE loss.

Overall, the difficulties that arise when
forecasting with nonlinear models revolve
around the question whether a fitted non-
linear model provides a good approximation
to the true nonlinear model. In the case of
the ad-hoc specifications, rejection of a lin-
ear model in favor of a particular nonlinear
specification does not necessarily indicate
that the latter will produce good forecasts.
Rejections of typical tests for nonlinearity
tend to indicate a range of possible models
rather than a particular model. In the case
of model approximation, model specifica-
tion search tends to result in models that
overfit the data, again causing problems for
forecasting.

5.4 Multiperiod Forecasts

In many forecasting situations, the fore-
cast horizon, A, is longer than the frequency
used in collecting data and estimating the
forecasting model. For example, a central
bank may be interested not only in forecast-
ing short-run inflation but also in inflation
over the medium and Jong run. In these situ-
ations, the forecaster encounters a multipe-
riod forecasting problem.

Computing multiperiod forecasts is sim-
ple if the predictors are weakly exogenous
but issues arise in practice. To illustrate this
point, when forecasting from a univariate
first-order autoregressive model y, = ¢y,
+ &, forward iteration gives

h-1
(24) Yy — ({bhfjt + 2¢i8t+h~i~
=0

Assuming that E[e,;|y,] = 0 for j > 1 and
that both the model and its parameters are
known, the optimal forecast under MSE loss
is simply ¢"y,.

When the parameters are unknown, how-
ever, the problem becomes far more compli-
cated. A simple solution would be to use the
plug-in OLS estimate, (f)hyt. However, thiAs is
clearly only a solution of convenience: ¢ is
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generally not unbiased and thus, ¢" will not
be unbiased for ¢" either. Even if ¢ were
unbiased, in general <13h would not inherit
this property.

An obvious alternative to iterating forward
on a single-period model is to tailor the fore-
casting model directly to the forecast horizon.
This is more in spirit with viewing forecast-
ing models as misspecified simplifications of
the underlying data generating process and
entails a model of the form

(25) yt+h = g(zb@) + Eiih-

The chief problem is now the overlap in the
forecast errors that will generally exhibit
behavior similar to that of a moving average
process of order h — 1. For example, if h = 2,
the forecast errors will be serially correlated
according to an MA(1) process even if the
true forecasting model is used and its param-
eters are known. Such serial dependence can
be handled through a number of procedures
that account for autocorrelation in the fore-
cast errors.

Which approach is best—the direct or
the iterated—is an empirical matter since
it involves trading off estimation efficiency
against robustness to model misspecification.
It is also not clear how iterating multiple peri-
ods ahead on a misspecified model will affect
the quality of the forecast. For example, the
initial value of the conditioning information
(z,) could well matter in this situation. Even
when the models are correctly specified,
there is a trade-off between the cumulative
effect on the forecast of using plug-in param-
eter estimates (which is avoided in the direct
approach), versus the greater efficiency of the
iterated approach that comes from estimat-
ing the forecasting model on data measured
at a higher frequency.

Marcellino, Stock, and Watson (2006)
address these points empirically using a data
set of 170 U.S. monthly macroeconomic time
series. They find that the iterated approach
generates the lowest MSE values, particu-
larly if long lags of the variables are included

in the forecasting models and if the forecast
horizon is long. This suggests that reduc-
ing parameter estimation error can be more
important than concerns related to model
misspecification, an issue that cannot be
decided ex ante on theoretical grounds alone
(Frank Schorfheide 2005).

Special problems may arise when fore-
casting multiple steps ahead with nonlinear
models, where numerical methods are typi-
cally required due to the nonlinear form.
This problem stems directly from taking the
ad hoc model to be the true model, which
is or course a doubtful assumption. To illus-
trate this, suppose that

(26) Yev1 = g(yt§9) + &40

Iterating forward to the two-period horizon,
we have

(27) Yo = g(g(yt;O) + £,41) T Erea.

Hence the function g (presumed to be non-
linear) needs to be invoked as many times as
the length of the forecast horizon. Moreover,
the entire distribution of &€ becomes crucial
even under MSE loss where interest is lim-
ited to forecasting the conditional mean. For
example, if g is quadratic, the variance of &
matters to forecasting the conditional mean
two or more periods ahead.

6. Model Instability

Economic institutions, tax rules, and polit-
ical regimes change over time and the econ-
omy evolves in response to technological and
macroeconomic shocks such as the oil price
changes in the 1970s. One of the stylized
facts of empirical macroeconomics is the
“Great Moderation,” i.e., the lower volatility
of many macroeconomic series after the mid-
1980s. Events such as these make it plausible
that the underlying data generating process
changes over time. In many forecasting situ-
ations, economic theory is silent on the exact
form of these instabilities and instead offers
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general guidelines that can help determining
the source (and possibly timing) of instabili-
ties such as changes in monetary policy (due,
e.g., toa change in the Federal Reserve chair-
man) or changes in economic institutions.

In the construction of the forecasting
problem in section 3, the specification of
the likelihood for the data py(y|z) did not
require that the relationship between the
data remains stable over time or that the
underlying data itself is stable through time,
although a model for the process that gener-
ates instability is required. A difficulty that
arises in the presence of changes in the data
generating process is the existence of a mul-
titude of models that can capture potential
instabilities. Unit root models are popular,
although the root could be near one rather
than exactly equal to one. Fractionally inte-
grated models allow similar behavior at low
frequencies. Breaks in regression parameters
can also mimic this type of behavior. Beyond
this we could allow the root to be stochastic
and near one.

Model instability introduces at least three
problems for forecasters. First, it compli-
cates specification of the likelihood for the
data. From a Bayesian perspective, this can
make it more difficult (at least analytically)
to determine a closed form forecasting rule,
depending on the form of the nonstation-
arity. Second, since the parameterization
of the nonstationarity results in a larger
dimension of 8, estimation is also affected.
Finally, nonstationary data makes averag-
ing over the past to obtain plug-in estimates
more difficult. In classical estimation, this
can be a large problem. Further complica-
tions arise through nonstandard properties
of the estimators that frequently arise in
these models.

6.1 Breaks in Model Parameters

The existence of nonconstant parameters
in many of the data series that economists
have an interest in forecasting is well docu-
mented. Stock and Watson (1996) considered
the stability of a large set of macroeconomic

and financial variables and found evidence
of model instability for the majority of these.
Clements and Hendry (2006) also stress
instability as a key determinant of forecast-
ing performance.

Most work on forecasting models with
unstable parameters has considered linear
specifications of the form

28) Y,u = (Bz - B)le + Yo + Upy1,

where the coefficients B8, on Z,, are changing
over time while the remaining coefficients
are constant.

The first problem that arises in the con-
struction of a forecasting model of this type
is that there are many ways in which B, can
be nonconstant. We could parameterize 8, as
a stochastic process (either mean reverting or
not) or as a step function that changes at ran-
dom times by random amounts. Examples of
such models include the popular unobserved
components model (where Y,,; = B, + 1,4,
and B, follows a random walk process) and
extensions of this to the entire vector 8, (as in
the models of Mike West and Jeff Harrison
1997).

If the variation in B, is not permanent in
the sense that it can be characterized by a
mean reverting process, the linear specifica-
tion that omits the breaks in 3, is essentially
a heteroskedastic model and least squares
estimation of the parameters will not be too
misleading (White 2001).

When the breaks are permanent, the
coefficients of the linear model lose mean-
ing and become similar to sample averages
of a random walk, changing with time and
not related directly to any parameter of the
model. In either case, knowing the true
model will enable better forecasts.

Forecasters must decide whether or not
to (a) use only part of the data available,
assuming that the retained data is suffi-
ciently stationary that it will provide a good
approximation to a model with constant coef-
ficients, or (b) attempt to model the breaking
process.
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To illustrate these approaches, suppose
B, is constant apart from a single break of
unknown size § at an unknown date 7,
3 BZy + ¥Zy + up t<T
(29) }H'l - .
(.B + S)th +vly tu, t=T

An example of the first approach would be
to try and estimate % and base the estimates
of the forecasting model solely on data after
the break. Alternatively, a forecaster might
consider constructing estimates for both Athe
break date # and the size of the break 6 in
order to construct a forecast from the full
data incorporating the break into the model
(and possibly attempt to forecast future
breaks). This would be an example of the
second approach.

Unfortunately, while tests for noncon-
stant parameters are quite good at detecting
breaking behavior of this nature, they are
not capable of distinguishing the particular
type of nonstationarity beyond the distinc-
tion of “permanent” deviations versus the
mean reverting deviations mentioned above.
Nearly all popular tests have no power
against temporary deviations of 8, from its
mean. Conversely, nearly all tests have simi-
lar power against a host of possible processes
for B, when it does depart permanently
from any value. This is true for models with
few breaks, many breaks, or breaks every
period.”

The implication for forecasting is that
once one has found evidence of breaks in the
parameters of some variables, there is still
a great deal of uncertainty as to the nature
of the breaking process. Because it will be
difficult to pin down the appropriate model,
parameterizing and estimating the breaking
process will generally be quite difficult.

7 Stock and Watson (1998) show that tests for a single
break have power against random walk breaks. Elliott and
Ulrich K. Muller (2006) consider a wide class of break-
ing processes and show that optimal tests for each of the
breaking processes have equivalent asymptotic power
against all of the other breaking processes in a wide class.

Even if it were known that the forecasting
model has a single break point, estimates of
the break date are often not particularly use-
ful in practice. Tests for a break will often
reject stability even though the break size
is too small to permit precise estimation of
exactly when the break occurred. One can
still proceed with the first approach and try
to estimate the window of data to use for
the forecast. However, some account for the
uncertainty surrounding the timing of the
break is likely to be an important part of a
successful forecasting strategy in the pres-
ence of breaks.

For the alternative of estimating the full
model, including both the break date and
the size of the break, Elliott (2005) shows
that estimation of the break size and its
location results in very poor forecasts rela-
tive to knowing these parameters. Instead, a
method of averaging over all possible break
dates with weights that depend on sample
estimates of the probability that each date is
the true break date is suggested, with sub-
stantjal gains over least squares estimates of
these two parameters. In an empirical appli-
cation to exchange rate forecasting, Barbara
Rossi (2006) found evidence of widespread
instabilities and showed that Elliott’s (2005)
method works well in practice for forecasting
a range of currencies.

Similarly, Pesaran and Timmermann
(2005b, 2007) find that the estimation win-
dow matters significantly to the out-of-sample
forecasting performance of simple time-series
models in the presence of breaks. Given the
considerable uncertainty surrounding the
time and the size of the break, they consider
approaches that average forecasts generated
under different estimation windows. They
also derive analytical results for the normal
model under MSE loss and demonstrate that
the gains in forecast accuracy from using pre-
break data increases when breaks are small
and occur late in the sample.

When there is more than one break, things
become even more difficult. Jushan Bai (1997)
and Bai and Pierre Perron (1998) suggest an
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approach to determine the number of breaks
through repeated tests on the data. This
approach has been applied to forecast stock
returns by Bradley S. Paye and Timmermann
(2006) and David E. Rapach and Mark E.
Wohar (2006). Their results suggest the pres-
ence of multiple breaks in standard forecast-
ing models for stock returns and reveal wide
variation in the extent of predictability in
stock returns across break segments. Paye and
Timmermann (2006) also find that the break
dates are difficult to pin down, vary greatly
across different model specifications, and do
not seein to be common across international
raarkets. This makes the task of forecasting
stock returns particularly difficult since the
question of “how much historical data to use”
and how to weight new versus old data is
both very important in practice and difficult
to come up with a satisfactory solution to.

Structural breaks in parameters can also
cause a forecasting model’s performance
to deviate significantly and erratically from
the outcome expected on the basis of its in-
sample fit. Rossi and Raffaella Giacomini
(2006) refer to these situations as model
breakdowns and develop a method to empir-
ically detect them.

The two most common types of instability
found in macroeconomic and financial data
are breaks in the model parameters and unit
root or long memory behavior of the data.
We next discuss each of these.

6.2 Modeling the Break Process

The presence of historical breaks in a
time-series model requires that the possi-
bility of future breaks be considered. This
means that the process generating breaks
must itself be modeled. In this regard, the
forecasting problem is unique compared
with the problem of detecting and dating
past breaks. Approaches that do not model
the break process itself and treat breaks as
deterministic (such as Bai and Perron 1998)
are not directly applicable to forecasting.

This is not a problem for the time-varying
parameter specifications which directly posit

a model for how the parameters evolve in
future periods. A popular approach is to
parameterize $3, as a random walk and use
the Kalman Filter to estimate the path for
B, and produce a forecast (Andrew Harvey
2006 covers the classical approach while
West and Harrison 1997 cover the Bayesian
approach).

The simplest example arises when Z, = 1,
B, is a random walk and both the innovations
to B, and Y, are normally distributed, so the
forecast of Y., is B7. Then
(30) Be = Bt + (Y, — Bimy),
where ¢, depends on the variances of the
two error terms. For a given choice of initial
value, this recursion can be used to generate
forecasts in real time. In the limit, ¢, can be
approximated by a constant, which for a given
value of ¢ yields the exponentially weighted
average (IMA(1,1)) model

n - -
(31) Bt (1 . d)t Z t 5

This approach is equivalent to the discounted
least squares model which puts a decreasing
weight on data further back in time. These
methods can readily be extended to the
general model with time-varying predictor
variables.

Examples of empirical application of these
models are plentiful and include tracking of
the skills of mutual fund managers (Harry
Mamaysky, Matthew Spiegel, and Hong
Zhang 2007) and prediction of variables,
such as GDP growth, inflation, and electric-
ity demand (Harvey and Siem Jan Koopman
1993).8

Another example is the recurring stochas-
tic breaks models embodied in the Markov
switching approach of Hamilton (1989). This
assumes that changes to the parameters of the

8 Risk Metrics use this method to track conditional
volatility in financial markets and typically sets ¢ close to
one.
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model are driven by a latent state variable, S,
that follows a first-order Markov chain. For
example, the linear forecasting model could
be modified as follows:

(32) Yer1 = By 2 T Oy Bl

where the dynamics in the state variable
takes the form

(33) Pr(StH :j|st = 1) = Pij»
i,j= 1,....k

Provided that no state is absorbing, this
model gives rise to recurring shifts in the
parameters. Standard practice seems to be
not to conduct much testing to identify the
number of regimes, k, and many papers sim-
ply assume the presence of two states.

Again these models have been applied
extensively in empirical analysis. Rene Garcia
and Perron (1996) and Andrew Ang and
Geert Bekaert (2002) use regime-switch-
ing models to capture the dynamics in U.S.
interest rates, while Gabriel Perez-Quiros
and Timmermann (2000) use these models to
predict stock returns. Some papers find evi-
dence that letting the state transition prob-
abilities depend on forward-looking variables
such as the leading indicator helps improve
forecasting performance.

Perhaps surprisingly, relatively little work
has been undertaking on merging the linear
dynamic factor VARs with multivariate non-
linear specifications such as Markov switch-
ing models as proposed by Diebold and
Glenn D. Rudebusch (1996). Some empirical
findings have indicated the potential of this
type of model (see, e.g., Marcelle Chauvet
1998 for an application to factor modeling
and Massimo Guidolin and Timmermann
(2006, forthcoming) in the context of mul-
tivariate regime switching models applied to
forecast stock and bond returns and inter-
est rates). Moreover, Markov Chain Monte
Carlo methods which are useful for estimat-
ing these models are now widely available

(Chang-Jin Kim and Charles R. Nelson 1999),
so the application of these types of models
to real time forecasting is less of a challenge
than previously.

By accounting for model uncertainty,
standard Bayesian methods are directly
applicable for estimating the parameters
of forecasting models even when these are
time-varying., Furthermore, since the pro-
cedure is conditional on Z the fact that risk
averages across sample information is incor-
porated through the prior, i.e., by the weight-
ing of the relevant parameters.

As an example of a Bayesian analysis,
Pesaran, Davide Pettenuzzo, and Timmer-
mann (2006) propose a hidden Markov chain
approach to forecast time series subject to
multiple structural breaks. They assume a
hierarchical prior setting in which breaks are
viewed as shifts in an underlying Bernoulli
process. The parameters of each regime are
realizations of draws from a stationary meta
distribution. Information about this distribu-
tion gets updated recursively through time
as new breaks occur. This approach provides
a way to forecast the frequency and size of
future breaks. Their empirical findings for
U.S. interest rates suggest that accounting
for breaks in out-of-sample forecasts can be
important, particularly at long forecast hori-
zons.® Gary M. Koop and Simon M. Potter
(forthcoming) also develop Bayesian meth-
ods for forecasting under breaks.

6.3 Unit Roots

Granger (1966) found that many mac-
roeconomic data have a spectral peak near
frequency zero and Nelson and Charles L.
Plosser (1982) followed this up by showing
that it was difficult to reject the presence
of unit roots in many macroeconomic and
financial data.

9 Further complicating the picture is the fact that it
may be difficult to separate the effects of seasonalities,
nonlinearities and structural change. For a careful analy-
sis of some of these issues, see Van Dijk, Birgit Strikholm,
and Terisvirta (2003), and Philip Hans Franses and Van
Dijk (2005).
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From the classical perspective, most of
the literature has revolved around whether
or not to impose unit roots. In the univari-
ate model, this amounts to choosing between
a model in levels or differences. In multi-
variate models, the problem of choosing lev-
els or differences also raises the possibility
that error correction terms can be included.
When each individual series has a unit root
but some of them are common, we know
from the Granger representation theorem
(Robert F. Engle and Granger 1987) that the
full system can be represented as an error
correction model.1°

Imposing unit roots reduces risk when
the true parameter is sufficiently close to
this value but increases risk for more distant
alternatives, with the effect dependent on the
forecast horizon. Sample size is also impor-
tant since estimates become more precise
with more data swinging the balance in favor
of less constrained estimation methods.

The most prominent alternative to OLS
estimation is the pretest estimator which
sets the estimate equal to one if the pretest
fails to reject a unit root (since this is the null
being tested) and otherwise selects the OLS
estimate. Diebold and Kilian (2000) examine
this method, which increases the gain from
always imposing a unit root at the cost of
doing worse on average than the OLS esti-
mator when the coefficient is further away
from a unit root.

Intuition is more complicated in multi-
variate models because of the higher dimen-
sionality of the problem which results in a
much broader set of trade-offs for the effect
of parameter estimation on risk. Transitory
dynamics can also affect both the magnitude
and in some cases the sign of the results.
Hence general results—whether analytical or
through simulation—are difficult to arrive at.

The issue of unit roots or near nonsta-
tionarity also arises for t}}e common linear
forecasting model ¢, = By + Bjz,-; when

10 See Boriss Siliverstovs, Tom Engsted, and Niels
Haldrup (2004) for a related analysis.

the regressor, z,_), has a trend of unknown
form. There are many examples of such mod-
els being applied. Forecasts of stock returns
by highly persistent variables such as the
dividend—price ratio or earnings—price ratio
fit this situation, as does inflation forecast-
ing using interest rate levels, or forecasting
changes in exchange rates with the forward
premium. While methods have been pro-
posed for hypothesis testing in these models,
there is not much evaluation of the effect on
forecasting.

As in the unit root case, when the inno-
vations to the regressor are correlated with
the residuals of the forecasting equation, risk
becomes a nonconstant function of the nui-
sance parameters describing the form of the
persistence in the data such as the degree of
persistence of z and the covariance between
innovations to y and z. While most theo-
retical work has focused on testing 8, = 0,
little attention has been paid to designing
good forecasting procedures or examining
the trade-offs between possible forecasting
methods.

7. Forecast Evaluation

As noted in the introduction, one of the
major differences between standard econo-
metric problems and the forecasting problem
is that the researcher receives feedback on
how well their forecast actually performed.
Thus, when a central bank forecasts next-year
output growth or inflation, the following year
it is able to see how far off the forecasts were.
Evaluating forecasting procedures in light of
this new information generates a dynamic
process through which a number of impor-
tant issues arise.

Forecast evaluation usually comprises two
separate, but related, tasks, namely (i) pro-
viding summary statistics for measuring the
precision of past forecasts and (ii) testing opti-
mality properties of the forecasts by means
of a variety of diagnostics. The latter involves
checking whether the conditions implied by an
optimal forecast hold in a particular sample.
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If the loss function is known up to a finite set
of unknown parameters, this is a straightfor-
ward process. From the forecaster’s first order
condition (3) the generalized forecast errors,
L'(fy,z) or L' for short, should themselves
be unpredictable, i.e., follow a martingale dif-
ference sequence given all current informa-
tion used to construct the forecasts.

The nature of this orthogonality condition
will of course depend both on the shape of
the forecaster’s loss function and on the pre-
sumed data generating process underlying
future values of Y used to calculate the con-
ditional expectation E+[L'|Z]. For example,
under MSE loss the optimal forecast is, as we
have seen, the conditional expectation of Y
given all current information, Z, and the gen-
eralized forecast error is simply proportional
to the forecast error. Forecast errors should
therefore have zero mean, be serially uncor-
related and be unpredictable given all current
information. These properties are particular
to the MSE loss function and need not hold
in general (Patton and Timmermann 2007a).

7.1 Forecast Precision

A variety of performance measures can be
reported. It is common practice to use hold-
out (out-of-sample) observations to obtain a
measure of risk. The idea is to split the avail-
able sample into two pieces, a regression set
of R observations and a subsequent predic-
tion set of P observations. For each of the
P observations in the hold-out set, we can
employ the forecast procedure as if we were
actually in the position of forecasting out of
sample, constructing a sample of forecasts
f(z) fort = R + 1,...,R + P. Since this is
not actually done in real time, it is sometimes
referred to as simulated or pseudo real time
forecasting,

Three different updating schemes are com-
monly used to simulate real time forecasts:
Recursive forecasts where all data up to time
t are used in the construction of each fore-
cast and the data expands as t increases; roll-
ing forecasts which use only the most recent
fixed interval of the past data so that the

length of the data window remains the same
as t increases; and fixed forecasts where only
data up to R is used for the entire future.!!

The sample analog of the risk for either
procedure is simply the average loss, P!
PO L(f(2,,0).Y;+1,%,). Such measures
are routinely computed in Monte Carlo stud-
ies and in studies using real data. Real data
sets the densities of both Y and Z to their
empirically observed densities, and hence is
generally viewed as more interesting.

Given the arbitrariness of the scale in most
loss functions, the raw average loss number
is difficult to interpret. However under MSE
and MAE loss, the number can be directly
interpreted. For MAE the loss function is in
the scale of the units of the outcome vari-
able, and hence a clear picture of the loss is
immediate. For MSE, as with variances more
generally, the square root of the outcome is
reported so that it is in units of the outcome
variable {root MSE or RMSE).

Forecast performance measures are esti-
mates of the expected loss and hence are
surrounded by sampling variability. West
(1996) derives asymptotic representations for
the sampling distribution of the average loss
under quite general assumptions on the data,
loss function, and forecasting method. He also
provides asymptotic normal limiting results
when forecasts are constructed recursively,
using one of the aforementioned estimation
windows. Under a number of technical condi-
tions,'? the average risk functions are consis-
tent and asymptotically normally distributed
with a covariance matrix that depends on the

L Fixed forecasts enable the theoretical simplification
that the parameter estimates are based solely on data out-
side the period over which the data are averaged, though it
would seem unlikely that this method is used in practice.
The other two methods have the additional complication
of the parameters being functions of the data in the fore-
casting period. Valentina Corradi and Swanson (2007)
discuss the impact of estimation methods on the construc-
tion of critical values for predictive inference.

12 The loss functions must be twice differentiable, esti-
mators for § must be asymptotically linear, as well as mix-
ing and moment assumptions on various functions of the
data.
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randomness of the out-of-sample observa-
tions and has additional terms reflecting the
variation that arises through the forecasts’
dependence on estimated parameters.

The results of West (1996) show that it is
appropriate only in special cases to use the
standard asymptotic variance covariance
matrix that ignores randomness in the esti-
mated parameters of the forecasting model.
One situation is when the same loss function
is employed for estimating the parameters 6
and evaluating the forecast provided that the
data is covariance stationary.!® In this case,
orthogonalities between the out of sample
errors and the estimated model deliver the
asymptotic equivalence. The most interesting
case is the linear forecasting model used to
minimize MSE loss for which standard errors
can be computed as usual from the sequence
of realized losses. Alternatively, if the esti-
mation sample is large relative to the sample
over which the forecasts are evaluated, then
the additional variation due to estimating 6
will be small since parameter estimates will
be close to their true values and hence esti-
mation is negligible asymptotically.

Some issues limit direct application of
these results, however. When the hold-out
sample either remains a fixed or a negligible
proportion of the full sample, the coefficients
of the forecasting models converge to their
pseudo-true values. If two or more of the
models are asymptotically equivalent (for
example, if one nests another), then asymp-
totically the forecasts will be perfect corre-
lated and the asymptotic approximation to
the covariance matrix of the risks during the
hold out sample is singular.

When choosing the measure in which to
report forecasting results, it should be borne
in mind that a forecast that may be good
according to one measure (MSE), may not be
good in terms of another measure, e.g., cor-
rectly predicted signs. To see this, consider

13 The latter condition may not hold when using real-
time data, see Todd E. Clark and Michael W. McCracken
(2007).

the following simple example from Steve
Satchell and Timmermann (1995):

y=f+e,

where y is the outcome, f is the forecast,
and ¢ is the forecast error which has stan-
dard deviation o. If f and € are independent,
the probability of predicting the sign of y is
a decreasing function of the mean squared
prediction error, o?. Conversely, if f and &
are dependent, in general no such relation-
ship between the mean squared prediction
error and the probability of predicting the
sign of y will hold. To see this, consider the
2 X 2 case

g&f -1 1
—0, Pu Pn2
O, P Pn

where o; > o3, > 1. Notice that
Pr(sign(f) = sign(y)) = pu + pas
MSE(e) = 0'%(7—’11 + Plz) + U%(Pm + Pzz)-

Now choose 0 < § < Py such that

P =pu + 2A
Pre=pi2— A
Por =pa — A
P22 = Po2

under these new probabilities we have
Pr(sign(f) = sign(y)) = py + pae + 24
MSE(g) = oi(p;, + p1a + A)
+ 08(par + paz — A).
We have thus increased the probability of

correctly predicting the sign yet simulta-
neously increased the MSE. The general
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message from this simple example is that
forecasting models with low MSE need not
also be the ones with a high proportion of
correctly predicted signs which is what may
be most important in some applications.

7.2 Efficiency Tests

The hold-out sample can also be employed
to approximate the first order condition
through its sample equivalent

R+P

(34) P Y L(f(26),yes1,2) = 0.

t=R+1

Moreover, realizations of L£'(f(z,,6),y,+1.2,)
should also be uncorrelated with any infor-
mation available at time ¢. Hence it is com-
mon to test the condition that

R+P

(35> Pvl 2 ‘C,(f(zt’9)>yt+l’zt)vt = O>

t=R+1

where v, is any function of {z,}.-;. Such a
test can be conducted by regressing £’ on
v, and testing that the OLS coefficients are
zero. A particular function of v, that is often
employed is the forecast itself, which is a
function of z, and hence is a possible choice
for v,

Under MSE loss, L'(f(2,,0),1,+1,2:) % Y4
— f(z,,0) = e,4, and thus is proportional to
the forecast error. Hence (34) simply tests
if the forecast errors have zero mean, and
(35) tests that forecast errors are uncorre-
lated with any information available at the
time that the forecast is made. For these rea-
sons, (34) is known as an unbiasedness test
and (35) is known as an orthogonality test.
The most popular form of these tests is the
Mincer—Zarnowitz (1969) regression

(36) Yer1 = Be + Bf(2,0) + ),

where u,, is an error satisfying E[u,,|z,] =

0. Unbiasedness can now be tested through

the joint constraint that 8, = 0 and 8 = 1.
Tests such as (34) and (35) examine whether

or not the information in z, has been used

efficiently in the construction of the forecast.
This is an important issue because a rejection
of the test would suggest that improved fore-
casts are possible given the available data.
It is also important from the perspective of
testing rationality when the forecasts f(z,,0)
are constructed by agents that are expected
to be acting rationally and z, is data that
would have been available to those agents
when they constructed their forecasts.

To examine these tests from an economet-
ric perspective, recall that f(z,, #)—and pos-
sibly also the instrument v,—is constructed
using parameter estimates based on data
up to time t. When evaluating the sampling
distribution for the regression estimates in
the unbiasedness or orthogonality tests (34)
and (35), we must therefore consider the
sampling variability that arises through the
fact that the variables in the regression are
constructed. West and McCracken (1998)
provide results for these regressions covering
a number of methods for constructing the
forecasts and v,. Under assumptions simi-
lar to those in West (1996), they show that
the coefficients in the regression tests are
asymptotically normal, although the variance
covariance matrix may need to be adjusted
to allow for the additional variation arising
from sampling variation in the underlying
parameter estimates.

An additional practical concern involves
the specification of v, as a function of z,. Often
there are numerous candidate variables in
z,. This, combined with the possibility that
we could use any functional form of z, as an
instrument, means that the list of candidates
is practically unlimited. Any test of orthogo-
nality has power only in the direction of the
included instrument, v,. For example, in
forecasting inflation with v, set to past inter-
est rates, the test would be capable of pick-
ing up any additional explanatory power in
interest rates but not for other variables. The
same is true for getting the functional form
correct. Avoiding the first problem—pick-
ing the wrong z, to include—is difficult. For
the second problem, Corradi and Swanson
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(2002) suggest a nonparametric method for
estimating a general function of the included
elements of z,.

For loss functions other than mean squared
loss, £'(.) is no longer equivalent to the fore-
cast errors. Hence it is possible that forecast
errors are not mean zero and that past infor-
mation may well be correlated with forecast
errors even when the forecast is constructed
optimally. Indeed, itis clear from (34) and (35)
that the tests rely on the use of the correct
loss function. Michael P. Keane and David E.
Runkle (1990) write “If forecasters have dif-
ferential costs of over- and underprediction, it
could be rational for them to produce biased
forecasts. If we were to find that forecasts are
biased, it could still be claimed that forecasters
were rational if it could be shown that they had
such differential costs” (p. 719).

Rationality tests may thus reject, not
because the forecaster is using informa-
tion inefficiently but because the loss func-
tion has not been correctly specified. This
is an important issue since the loss func-
tion is generally unknown even though it is
invariably assumed to be of the MSE type.
Elliott, Komunjer, and Timmermann (2005)
examine a class of asymmetric quadratic loss
functions

@B7) Lenpa)
= [a + (1 — 2a)- I(e.s; < 0)]lesnl,

where a (0 < a < 1) is the asymmetry
parameter. This loss function reduces to
MSE when a = 0.5. Regressing forecast
errors on v, (as would be appropriate for
MSE loss) results in coefficients on v, that
converge to the true coefficient plus an extra
term (1 — 2a)E[v,0{] 'E[v,|es,|]. If v, con-
tains a constant term (which is usually the
case), then E[v,|e,,,|] is always nonzero and
orthogonality tests based on MSE loss will
reject asymptotically as a result of using a
misspecified loss function.

14 See Bryan Campbell and Eric Ghysels (1995) for an
interesting nonparametric evaluation of forecasts.

In general, future values of L£'(.) should
not themselves be predictable given any
variables in the forecaster’s current infor-
mation set. A joint test of forecast efficiency
(rationality) can thus readily be conducted
within the context of a given family of loss
functions which yields £(.) as a function of a
finite set of unknown parameters. If the test
is rejected, either the forecaster did not use
information efficiently or the family of loss
functions was incorrectly specified.

In situations where the loss function is not
known up to a small set of shape parameters,
it is possible to use tests that trade off assump-
tions about the underlying data generating
process against much weaker assumptions on
the loss function (such as homogeneity prop-
erties). Patton and Timmermann (2007hb)
show that when loss is only required to be
a homogenous function of the forecast error,
while the data generating process can have
dynamics in the first and second conditional
moments (thus covering a large range of non-
linear-in-mean specifications, ARCH mod-
els, etc.), a simple quantile regression test
can be used to test forecast optimality.

When several forecasts at multiple hori-
zons are simultaneously available (as in the
case with many survey forecasts), this offers
significant advantages in terms of construct-
ing tests for forecast efficiency that do not
depend on knowing which information was
available to the forecaster. Assuming that the
forecaster makes efficient use of all historical
information, under MSE loss and a stationary
data generating process we have that MSE,,
> MSE,_, where h;, > hg are long and short
forecast horizons respectively.’> To see this,
suppose the bias is zero at all horizons and
that the variance of the optimal two-period
forecast is smaller than that of the optimal
one-period forecast. In this case, the vari-
ance of last period’s two-step-ahead forecast

15 For other loss functions, Patton and Timmermann
(2007a) prove that the expected loss at the longer horizons
must be greater than or equal to the expected loss at short
horizons.
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must be smaller than the variance of the cur-
rent one-period forecast, contradicting the
assumption that the current one-period fore-
cast was optimal in the first place. Hence,
under appropriate stationarity assumptions,
expected loss must be nondecreasing in the
length of the forecast horizon.

7.3 Survey and Real Time Forecasts

Survey data provide an ideal way to test
whether economic forecasters use informa-
tion efficiently. In this regard, the empirical
evidence has been mixed. Bryan W. Brown
and Shlomo Maital (1981) studied average
forecasts of U.S. GNP and rejected unbi-
asedness and efficiency in six-month growth
predictions. Victor Zarnowitz (1985) found
only weak evidence against efficiency for the
average forecast of U.S. growth but stronger
evidence against efficiency for individual
forecasters. Batchelor and Pami Dua (1991)
report little evidence that forecast errors
were correlated with their own past values.
In contrast, Anthony Davies and Kajal Lahiri
(1995) found evidence that forecast efficiency
was rejected for up to half of the survey par-
ticipants in their panel analysis.

Survey data on inflation expectations is
another area where efficiency tests have
been conducted. Stephen Figlewski and Paul
Wachtel (1981) analyze expectations of indi-
vidual respondents and frequently reject fore-
cast rationality under squared loss. Frederic
S. Mishkin (1981) also rejects rationality of
survey forecasts of inflation. Zarnowitz (1985)
finds evidence of systematic forecast errors
for U.S. inflation and rejects unbiasedness
for more than half of the survey participants.
Pesaran and Martin Weale (2006) provide an
extensive review of the literature on survey
data in forecasting.

The real-time nature of economic forecast-
ing affects all stages of the forecasting pro-
cess: models must be formulated, selected,
and estimated in real time. Evidence of
model break-down or misspecification must
also be examined in real time. It is not clear,
for example, what one can conclude from

full-sample evidence of forecast inefficiency.
Unless the inefficiency was detectable at an
earlier stage of the sample using information
that was available historically, it cannot be
established that the forecaster acted irratio-
nally. For example, under MSE loss, the fore-
cast errors should be mean-zero conditional
only on the available information (including
the forecasting model) at the point the fore-
cast was formulated and not conditional on
full-sample information.!6

Real-time considerations even pertain to
the data vintage that was available at a given
point in time and could have been used to
formulate and evaluate a forecasting model.
Dean Croushore (2006) and Croushore and
Tom Stark (2003) make it clear that key mac-
roeconomic data such as GDP growth are
subject to important revisions, partly due
to regular updates from preliminary to sec-
ondary and later data releases, partly due to
changes in the methodology used to measure
a particular variable. These revisions can
lead not only to changes in the estimated
parameters but can also affect the dynamic
lag structure or functional form of the fore-
casting model and hence change conclusions
regarding predictive relationships (Jeffery D.
Amato and Swanson 2001). Data revisions
are even more important for composite series
such as the index of leading indicators whose
composition may change due to past fail-
ures in forecasting (Diebold and Rudebusch
1991).

These points emphasize that it is impor-
tant to use the original data vintages when
simulating the real-time out-of-sample fore-
casting process and evaluating the precision
of the resulting forecasts.

7.4 Evaluation of Density Forecasts

Forecasting is one case where “one size fits
all” does not hold. Forecast users have dif-
ferent loss functions and therefore require
different optimal point forecasts. It may

16 See further discussion in Pesaran and Timmermann

(2005a).
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therefore be better to provide forecast densi-
ties instead of point forecasts. Many agencies
now provide such information. For example,
the Bank of England reports the “river of
blood” forecast that shows their forecast of
likely inflation outcomes by various shades
of red. Similarly, the European Forecasting
Network reports density forecasts for a range
of macroeconomic variables. With such a
density forecast in hand, decisionmakers
with different loss functions will be able to
separately solve for their optimal decision.

Two potential problems arise in comparing
density forecasts to point forecasts. First, it
is more difficult to estimate the whole den-
sity than to provide a single point forecast.
Second, different estimation methods will be
better for certain features of the density, and
the loss function has information that is use-
ful in suggesting which features of the den-
sity are important and which are not.

For the first of these, consider that for any
lin-lin loss function the best estimator esti-
mates the quantile of interest and not the
entire density. Any density estimator (see,
e.g., Anthony S. Tay and Kenneth F. Wallis
2000) may well trade off precision at the
required quantile against precision over the
entire density. Hence sample information in
the density estimator may not be as good as
that of the quantile estimator. Not all estima-
tors are created equal.

For the second case, consider a binary
outcome. The density for a binary outcome
is equivalent to an estimate of a probabil-
ity of the positive outcome, which in turn is
simply a parameter estimate. Hence for this
special case parameter estimation and den-
sity estimation are equivalent. In the case
of a misspecified parametric density, Elliott
and Lieli (2006) show that estimation that
takes the loss function into account can pro-
vide a better estimate of the probability of
a positive outcome for those loss functions.
The estimator depends on the loss function.
However each case yields a different esti-
mate of the density. This is generally true for
parametric estimation. Because parametric

density estimation is the estimation of the
parameters of the density, and different loss
functions suggest ditferent estimation tech-
niques for the parameters, estimating the
density without paying attention to the loss
function and ultimate use of the forecast
density involves estimation trade-offs (either
implicit or explicit) that favor some users at
the expense of others.

Although density forecasts are still not
commonly reported, a literature has emerged
on how such forecasts should be evaluated.
A basic tool used to this end is the so-called
probability integral transform. This is simply
the inverse of the cumulative density func-
tion, F7, implied by a particular paramet-
ric forecasting model. When applied to the
actual realization of the predicted variable
(y), F'(y) should be drawn from a uniform
distribution and be independently and iden-
tically distributed over time. This argument
ignores the effect of using estimated param-
eters of course, but this type of test has
regained popularity following the study by
Diebold, Todd A. Gunther, and Tay (1998).
Corradi and Swanson (2006a, 2006b) cover
these methods and provide a comprehensive
summary of current tests in this area.

Bayesian methods provide the predictive
density fy(y|z) = [f(y|z,0)m(0|z) dh. When
the outcome is realized, it can be compared
to the density the model suggests it should
be a draw from. A natural statistic to com-
pute is the p-value of this outcome, y, ie.
P(y < Y?)where Y? is the random variable
with density fy(y). If this p-value is extreme,
it might bring the quality of the forecasting
model into question. This evaluation method
is used by, for example, Pesaran, Pettenuzzo,
and Timmermann (2006) to assess the qual-
ity of forecasts of interest rates from various
models.

Despite issues with estimation, there is
one major advantage of the provision of a
density forecast, especially when the deci-
sion maker and the forecaster are different.
Density forecasts convey the uncertainty in
the decision-making environment, in perhaps
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a better way than expressions such as MSE
do to decisionmakers. For an interesting
example, see Charles H. Whiteman (1996)
who recounts his experience with providing
density forecasts to Iowa state officials.

8. Comparing and Combining Forecasts

Decisionmakers often have access to more
than one forecast. When faced with multiple
forecasts, two very different strategies are
possible: to seek out the best single forecast-
ing model or to attempt to combine forecasts
generated across all or a subset of models.
The first approach requires being able to
formally compare the forecasting perfor-
mance across several models, while the latter
requires a method for estimating the weights
on the models used in the combination. We
cover both issues in this section.

One distinction that has not been impor-
tant so far but becomes crucial in the con-
text of forecast comparisons is the difference
between forecasting models and forecast-
ing methods. The former refer to a class
of particular (parametric) specifications.
Forecasting methods are a broader concept
and comprise rules used to select a particu-
lar forecasting model at a given point in time
as well as the approach used to estimate the
forecasting model’s parameters—e.g., rolling
versus expanding windows.

8.1 Forecast Comparisons

Since there is typically considerable uncer-
tainty over the forecasting model, often we
observe a wide array of forecasts attempting
to predict the same sequence of outcomes.
This has led to a literature on comparing
the performance of different forecasting
approaches. The idea is to compare the risk
of two or more forecasts in order to choose
the one that is best. For forecasting proce-
dures f'(z,0), i = 1,...,n, this means trying
to determine which of the risks R(f%(z,9),8)
is smallest.

As with the evaluation of a single forecast,
we can examine in-sample and out-of-sample

performance. A hold-out sample can be used
to construct an estimate of average risk, but
with n different forecasting procedures this
now becomes an n X 1 vector of averages.
These are then compared. Often the ordering
of estimates of risk is examined, as well as the
forecasting ability of general classes of mod-
els compared to some benchmark model.

A large number of papers aim to show
that one particular forecasting model (e.g., a
nonlinear specification) outperforms another
benchmark model. However, it is difficult
to extract any general rules from empiri-
cal studies in this literature since the best
approach generally depends on the type of
variable under consideration (i.e., nominal
versus real data, data with a small or large
persistent component), the data frequency
and even the sample period.

More interesting from a general perspec-
tive are attempts to rank forecasting proce-
dures over a wider range of data sets and see
which ones perform well on average. Such
an exercise is presented in Stock and Watson
(1999a), who examine linear autoregressive
models (with different subset selection meth-
ods such as AIC and BIC) along with com-
monly employed nonlinear models such as
neural networks and LSTAR models across
a large number of U.S. macroeconomic data
series. Stock and Watson found empirically
that LSTAR models on average were outper-
formed by neural network models, which in
turn were outperformed (except at the one
month horizon) by autoregressions.

Horse races between competing fore-
casting models abound in the empirical lit-
erature. Because of the presence of strong
common components in many forecasts
(often representing autoregressive dynamics
in the predicted variable) and short, overlap-
ping samples, forecasts produced by differ-
ent models are often sufficiently close that
it is not possible to distinguish between the
models with much statistical precision (see,
e.g., Timmermann 2007 for a comparison of
the IMF’s forecasts to private sector consen-
sus forecasts).
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From a practical point of view, three issues
should determine which of the many avail-
able methods for forecast comparison to use,
namely (i) the nature of the null hypoth-
esis, i.e., a null that two (or more) models
have identical risk when evaluated at their
(pseudo-true) parameter values versus the
null of equal predictive accuracy of the fore-
casting methods after averaging out ran-
dom variations in parameter estimates; (i)
accounting for estimation uncertainty versus
ignoring it; and (iii) whether the forecasting
models are nested or not.

On the first point, most comparisons test
the null hypothesis that all forecasting meth-
ods are equally precise in the sense that they
have identical risk:

(38)  H,:R(fYz,0).6))

= - = R(f"(z,0,),6,),

where 6,,...,6, are the pseudo-true param-
eters under models 1,...n. This is the null
hypothesis that West (1996) and many sub-
sequent studies consider. This is akin to
viewing forecasting performance as a speci-
fication test for the underlying models.

In contrast, Giacomini and White (2006)
consider the comparison of forecasting
methods that comprise not only the predic-
tion model but also the estimation method
and length of the estimation sample. The null
they study is quite different from that in (38).
Their null hypothesis is concerned with test-
ing that the accuracy of all models is iden-
tical. This involves taking expectations over
Y, Z, and the parameter estimates 6,,....6,,
which are random variables.

The Giacomini-White analysis shifts the
focus away from comparisons based on aver-
age performance towards the conditional
expectation of differences in performance
across forecasting methods. One advantage
of this approach is that it directly accounts
for the effect of parameter uncertainty
by expressing the null in terms of esti-
mated parameters and estimation windows.

Provided that estimation uncertainty does
not vanish asymptotically, nested models
can thus be compared under this approach.
In practice, this means that the Giacomini-
White approach is most relevant to the com-
parison of forecasting models estimated
using rolling windows.

Turning to the second point, in an impor-
tant paper that spurred many of the subse-
quent studies in the literature, Diebold and
Roberto S. Mariano (1995) suggest using the
standard ¢-statistic for testing equivalence in
forecasting performance for pairwise model
comparisons (n = 2) by taking the differ-
ence of the estimated losses and testing if
the resulting time series has zero mean. For
scaling, they suggest a robust estimator of
the variance and suggest comparing this ¢-
statistic to the standard normal distribution.
Special cases of the West (1996) results are
able to justify use of standard variance esti-
mators for the Diebold and Mariano test.!”
Their approach does not, however, account
for parameter estimation errors.

West (1996) is the first paper to account
for the effect of parameter estimation error
on forecast comparisons when forecasts are
updated recursively through time. Clark and
West (2004) provide an interesting illustra-
tion of how important parameter estimation
can be in the comparison of a benchmark
model with few or none parameters (e.g.,
the prevailing mean) versus a more heavily
parameterized alternative model that may
include time-varying predictor variables.
Even when the larger model is true, because
it involves estimation of more parameters
and hence is more subject to parameter esti-
mation error, we would expect this model
to perform worse in finite samples than the
simpler (biased) model, unless the predictive
power of the extra regressor(s) is sufficiently
large. Clark and West propose a test that

7 The most prominent special case is when the
expected value of the derivative of the loss function with
respect to § is zero evaluated at the true 6.
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accounts for this problem by correcting for
parameter estimation error.

Turning to the third and final point, a limi-
tation of the methods developed in Diebold
and Mariano (1995) and West (1996) is that
they only apply when the forecasting mod-
els are non-nested. Clark and McCracken
(2001) extend this work and develop tests for
comparing nested models in the presence
of parameter estimation uncertainty. This
is the case most commonly faced by empiri-
cal researchers and thus is an important step
forward in this area.

Whether the nested or non-nested case
app]ies to a given forecast comparison can
be surprisingly difficult to determine. In
practice it is often forecasting methods as
opposed to forecasting models that are being
compared, whereas most theory is developed
for comparing forecasting models. A given
forecasting method, when applied recursively
through time, may select different forecast-
ing models at different points in time. This
means that the models selected by two dif-
ferent forecasting methods sometimes could
be nested while at other times could be non-
nested. To our knowledge, no test exists at
the present time that handles this complica-
tion, making forecast comparisons a tricky
exercise in practice.

8.2 Comparing Large Sets of Models

If a model has good forecasting perfor-
mance but is selected as the “best” model
from a much larger set of candidate models,
this could simply be due to random chance
or luck, rather than skill, as one might say if
the “model” was a fund manager. After all,
we would expect five out of one hundred ran-
domly selected forecasting models to reject
the null of no predictability if the size of our
test is five percent. The practice of not choos-
ing the forecasting model ex ante (based, say,
on theoretical arguments), and only choosing
the model after inspecting the test results for
a large set of models is referred to as data
snooping. It need not be a problem if the
model’s performance can be tested on a fresh

sample as is true in many disciplines outside
economics and finance. However, the mod-
el’s forecasting performance on the original
test sample will, by construction, be inflated
and cannot be taken at face value.

When alarge set of models needs to be com-
pared (n > 2), the “data snooping” method of
White (2000) can be employed. This method
compares a set of risk estimates generated by
a range of individual forecasts to the risk of a
benchmark model. The null hypothesis is that
the best of the forecasting methods is no bet-
ter than the benchmark model

in (R(f'(x).6) — R(f"(z).6,) = 0,

n

(39) Hy:

i=1

where R(f*(z),8,) is the benchmark perfor-
mance. The alternative hypothesis is that the
best of the forecast methods outperforms the
benchmark, i.e. that it has lower risk:

in R(f'(2).0) — R(f"(2).8,)) < 0.

n

(40) H,:

=1

,,,,,

Since the distribution of the risk differentials
is asymptotically normal under the assump-
tions of the method (based on the results of
West 1996), this amounts to constructing a
test for the maximum of a set of joint normals
with unknown covariance matrix. White
solves this problem by employing a boot-
strap procedure to the estimates of risk. This
bypasses the need to compute the unknown
variance covariance matrix and directly esti-
mates the p-value for the test.

Peter Reinhard Hansen (2005) shows that
when poor models are added to the set of
candidate models, such that the benchmark
is better than other models, the test pro-
posed by White (2000) becomes increasingly
conservative. He proposes a null distribution
that accounts for the possibility that under-
performing models may not be as good as the
benchmark. Effectively this means that the
null distribution becomes sample dependent
and that the addition of a large number of
underperforming models will not affect the
asymptotic distribution of the test statistic.
Finally, Hansen shows that basing the test on
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normalized measures such as the student-t
statistic can be very important in practice.

Controlling for data snooping can be
important empirically. In the context of fore-
casting models for daily stock market returns
based on technical trading rules, Ryan
Sullivan, Timmermann, and White (1999)
find that data snooping can account for what
otherwise appears to be strong evidence of
return predictability.

8.3 Forecast Encompassing

Yock Y. Chong and Hendry (1986) intro-
duced the idea of forecast encompassing,
which can be applied when choosing between
forecasting models. Under MSE loss, the idea
is similar to the orthogonality regressions
(35) although the additional information v, is
no longer a subset of z, but instead consists
of forecasts or forecast errors from other
forecasting methods. The idea is simple: If
other forecasts have information relevant for
the predicted variable that is not contained
in the original forecast, then such forecasts
will enter the orthogonality regression with
a nonzero weight. This would mean that the
original forecast did not include all relevant
information. Conversely, if orthogonality
holds, then the first forecast is said to encom-
pass the other forecasts because it incorpo-
rates all the relevant information that the
other forecasts have.

Christina D. Romer and David H. Romer
(2000) provide an interesting comparison of
the Federal Reserve Green Book inflation
forecasts with private sector forecasts using
encompassing regressions. Assuming MSE
loss, they find evidence that the Fed infla-
tion forecasts encompass the private sector
forecasts. This conclusion is questioned by
Capistran (2006) who finds evidence of sig-
nificant biases of opposite sign in the Fed’s
forecasts during the pre- and post-Volker
periods. Averaged over the full sample, the
bias is small, but this conceals evidence of
a tendency to underpredict inflation in the
pre-Volker sample followed by subsequent
overpredictions.

To test if a particular forecast (null model)
encompasses a set of alternative forecasts, a
regression of the forecast error from the null
model on the difference between the other
forecast errors and that of the null model (¢})
can be undertaken using a t- or an F- test (see,
e.g., Clements and Hendry 1998, p. 265)

(41) e; = By + Bl(e} - e;‘)
ot Balel — ) e

Alternative forms of this test have been
suggested by David 1. Harvey, Stephen ]J.
Leybourne, and Newbold (1998) and Clark
and McCracken (2001) when two forecasts
are being compared. To handle the prob-
lem that forecast errors depend on the esti-
mated parameter, 6, the results of West and
McCracken (1998) can be used. When the
models are nested, the singularity of the joint
distribution of the forecast errors is again a
problem. Clark and McCracken (2001) show
that in these cases the asymptotic distribu-
tion of a rescaled statistic can be approxi-
mated with a function of Brownian motions
and hence the distribution is nonstandard in
this case.

8.4 In-Sample versus Out-of-Sample
Forecast Comparison

The emphasis in the forecast comparison
literature has been on out-of-sample compar-
isons and the goal has been to select the best
forecasting model for a given loss function.
However this problem can be recast to ask
“which model is better?” This is a problem
that has been closely examined in economet-
rics. For at least some model comparisons,
tests conducted on the entire sample rather
than on an artificially extracted hold-out
sample might therefore be more appropriate
and powerful (Inoue and Kilian 2004).

Which strategy to adopt for sample selec-
tion very much depends on the purpose of
the analysis. If interest lies in testing impli-
cations of economic theories related to the
presence of predictability in population, it is
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best and most powerful to use the full sample.
In contrast, if interest lies in testing for the
presence of real time predictability under the
conditions facing actual forecasters in finite
samples, then the use of a hold-out sample
may make sense. In the latter case, the bias-
variance trade-off may benefit small, mis-
specified models even though these models
do not have good population properties.

Under MSE loss, the problem of compar-
ing forecast models reduces to the question
of which forecast procedure is closest to the
conditional expectation. This can be tested
in the full sample without problems of nest-
ing of the models so long as the data are suf-
ficiently stationary and not too dependent,
although such tests are of course subject to
the earlier mentioned caveats.!®

The desire to test out-of-sample forecasting
performance is closely related to the uncer-
tainty about the underlying data generating
process and also a concern for the effect of
any pretesting that might have occurred in
constructing the forecasting models. Inoue
and Kilian (2004) have questioned the prac-
tice of using a hold-out sample altogether
arguing that it does not protect against data
mining because the information available in
“pseudo real time” experiments is the same
as that available to someone with access to

the full sample.
8.5 Forecast Combinations

Forecast comparisons are not meant as tools
for selecting forecasting models, unless of
course a decision rule based on the outcome of
such tests is specified in advance. For example,
if the null that two models have equal predic-
tive accuracy is not rejected, a natural follow-
up question is whether to use the forecasts
from the first model, the second model or per-
haps both. Even if one model seems to be bet-
ter than another, it is not clear that it is optimal
to ignore the forecasts from the weaker model

18 Such assumptions are of course also required in the
tests proposed by West (1996) and for results built on this

paper.

altogether. The literature on forecast combina-
tions attempts to address such issues.

Despite the many attempts to choose a sin-
gle forecasting model, empirically it seems
that combining forecasts from multiple mod-
els often outperforms forecasts from a single
model. Clemen (1989) reviews the literature
and finds that combinations outperform indi-
vidual models in a wide range of forecasting
problems. Spyros Makridakis and Michele
Hibon (2000) find similar results involving
the forecasting of 3003 data series. For U.S.
macroeconomic series, Stock and Watson
(1999a) find that combining the forecasts
from several methods on average performed
better than simply relying on forecasts from
individual models such as neural networks,
LSTAR or autoregressions. Marcellino (2004)
reports similar results for European data.

An argument often used to justify forecast
combinations is that they diversify against
model uncertainty. Forecasting models are
best viewed as simple approximations to a
more complicated, and constantly evolving,
reality. We would therefore expect them to be
misspecified in many regards—for example,
they may exclude important information that
is not easily modeled or they may not adjust
sufficiently fast to evidence of model break-
down. Some models may adapt very quickly to
a change in the behavior of the predicted vari-
able, while others adapt more slowly. To some
extent forecast combination therefore pro-
vides insurance against “breaks” or other non-
stationarities that may occur in the future.

Because it is not known a priori how and
whether the world will change in the future,
a sensible strategy is to combine the forecasts
from two or more approaches. A key issue is
to what extent different forecasts diversify
against modeling risk—which depends on
the correlation in forecast errors across mod-
els—and how much weight to assign to the
various forecasts.

A direct answer to the question of how
to obtain a set of combination weights is
provided by J. M. Bates and Granger (1969)
who suggest simply regressing the predicted
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variable y on the individual forecasts f;(z,6)
along with a constant

(42) y =B+ iﬁiﬁ(z,e) + &
i=1

When the individual forecasts are believed
to be unbiased, it is common to omit the
intercept term and restrict the slope coef-
ficients to sum to one in which case they
can be interpreted as forecast combination
weights. This approach assumes MSE loss
but has been generalized to other loss func-
tions and method of moment type estimators
(Elliott and Timmermann 2004).

A comparison of the combination approach
to encompassing explains why combining
may be expected to be a more reasonable
approach than selecting a single forecast,
unless of course the true model is known to
be included in the set of models under con-
sideration and can be identified in practice.
A single forecast only gets selected when the
combination puts full weight on one of the
forecasting methods while the rest are given
zero weights. This is precisely the case where
the forecast with a weight of one encom-
passes the other forecasts. However, this is
a special case of the general concept of fore-
cast combination, and so might be expected
to be less commonly supported empirically
than more evenly distributed weights.

In practice, although empirical evidence
suggests that forecast combinations tend to
outperform forecasts from a single model,
strategies designed to obtain optimal com-
bination weights are often outperformed
by simple measures such as averaging the
raw forecasts (i.e., giving all forecasts equal
weights) or a trimmed set of these. If the
models use roughly the same data sources
and empirical techniques so differences in
the performance across forecasting models
are too small to be easily rejected by the data,
they will tend to have similar error variances
and covariances. In this situation, giving each
forecast identical weights can be relatively
efficient. Franz C. Palm and Zellner (1992)

suggest other reasons—e.g., instability of the
covariance between forecast errors or esti-
mation error in the combination weights.

Which combination methodology is best
may well depend on the state of the econ-
omy because the speed with which different
forecasts incorporate shifts in the economy
could vary. For example, when the economy
isrunning ata normal pace, time-series mod-
els may provide the most accurate forecast
because they make efficient use of histori-
cal information. However, these models may
be slower at capturing or predicting turning
points—such as the emergence of a reces-
sion—compared with seasoned professional
forecasters with access to a much larger infor-
mation set. This idea is consistent with find-
ings reported in Elliott and Timmermann
(2005) who use a regime switching approach
to track variations in the forecasting perfor-
mance of time-series and survey forecasts of
six key macroeconomic variables and form a
combined forecast.

Bayesian approaches to forecast combina-
tion are becoming increasingly popular in
empirical studies. Bayesian Model Averaging
has been proposed by, inter alia, Edward E.
Leamer (1978) and Adrian E. Raftery, David
Madigan, and Jennifer A. Hoeting (1997).
Under this approach, the predictive density
can be computed by averaging over a set of
models, M;,i = 1,...,n:

43) pylylz) = ;P(Mi[z)m(ylMi,Z)-

Here p (M;|z) is the posterior probability of
model M; obtained from the model priors
(M), the priors for the unknown param-
eters of each model, 7(6;{M;), and the like-
lihood of the models under consideration.
py(y|M,,z) is the predictive density of y
under the ith model, M,, given z obtained
after uncertainty about the parameters 6,
has been integrated out using the posterior.
Unlike the weights used in the classical least-
squares combination literature, these weights
do not account for correlations between
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forecasts and the weights are always confined
to the zero-unity interval. Palm and Zellner
(1992) develop a general Bayesian framework
for combinations where individual forecasts
can be biased and the covariance matrix of
the forecast errors may be unknown. More
details are provided in Timmermann (2006)
and Geweke and Whiteman (20086).

9.  Empirical Application

To illustrate many of the issues discussed
above, we consider the predictability of U.S.
inflation and stock returns. For inflation, we
use log first differences of the CPI while stock
returns are captured by the value-weighted
portfolio of U.S. stocks tracked by the Center
for Research in Security Prices. Both series
are measured at the monthly frequency and
the sample period is 1959:1-2003:12. To
initialize our parameter estimates, we use
data from 1959:1 to 1969:12. We then gen-
erate out-of-sample forecasts from 1970:01
to 2003:12. Parameter estimates are either
updated recursively, expanding the estima-
tion window by one observation each month,
or by means of a ten-year rolling window.
Only data up to the previous month is there-
fore used to estimate the model parameters
and generate forecasts for the current month.
This is commonly referred to as a pseudo out-
of-sample forecasting exercise.

We consider twelve forecasting approaches.
The first is an autoregressive (AR) model

k
(44) Y1 = Bo T EBjytﬂq' + €4,
j=1

where k is selected to minimize the BIC with
a maximum of 18 lags and &4, here and in
subsequent models is regarded as white noise.
The second model is a factor augmented AR
model, using up to five common factors:

k
(45) Yer1 = Bo T EB]%Hq‘
ji=1

g
+ E')’_;‘l/fjnf + &4,
j=1

where ¢, is the jth factor and k and g are
again sefected to minimize the BIC (with k
= 18 and g = 5). Factors are obtained using
the principal components approach of Stock
and Watson (2002) to a cross-section of 131
macroeconomic time series which begin in
1960. The factors are extracted in (simulated)
real time using either a recursive or a rolling
ten-year estimation window.

The third and fourth models are Bayesian
VARs (BVARs) fitted to the variable of inter-
est (inflation or stock returns) and the five
factors:

k
(46)  z4 =By + EB]%Hj + &1
j=1

Here z, = (y,¥1,....¥5)" and we include
the most recent six months lags, ie. k =
6. Following Litterman, own-lag terms at
lag j have a prior variance of O.O4/j2, while
off-diagonal lags have a prior variance of
0.0004/]'2. Both a random walk prior and
a white noise prior are considered. Under
the random walk prior, the autoregressive
parameters are shrunk toward unity, while
under the white noise prior they are shrunk
toward zero. Clearly the random walk prior
is reasonable for the inflation example while
the white noise prior is more reasonable for
stock returns. We report both for each exam-
ple to show the effect of the differences in
prior choice.

Turning to the nonlinear specifications,
we consider two logistic STAR models of the
form

(47) Y1 = 0m, + d,0ym, + €41,

where

U (Ly,)'

/(1 + exp(vo T Y1Yye—3))

/(1 + exp (vo + '}’l(yt - y:-a)))

t

We refer to these as STAR]1 and STAR2,
respectively.
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As more flexible nonlinear alternatives, we
consider a single layer neural net model

(48) Y1 = oom, + Egig(Bi,nt) + &
i=

with two hidden units (n = 2) as well as a
two-layer neural net model

(49) Yir1 = Oin; + Eﬂig(zﬁjg(ajnt))
i=1 =1
+ &y

with two hidden units in the first layer (n; =
2) and one hidden layer in the second layer
(ng = 1). For both neural net models, g is the
logistic function and 7, = (Ly,y,1.Y.—s).
Estimation uses search methods since «;
enters nonlinearly. ‘

We also consider more traditional time-
series forecasting methods such as expo-
nential smoothing where the forecast f, is
generated by the recursion

(50) fim=eafi (1 — o)y,

subject to the initial condition that f; = y;,
and double exponential smoothing

(51) ft+1 = a(ft + /\t—l) + (1 - a)yt
A= B(ftﬂ —ft) + (1= B,

where f| = 0,f; = ygand A, = (y, — y,). Here
a and a and B, respectively, are determined
so as to minimize the sum of squared fore-
cast errors in real time.!®

We finally consider a forecast combina-
tion approach that simply uses the equal-
weighted average in addition to a very
different approach that, at each point in
time, selects the forecasting model with the
best track record up to the present time and
then uses this to generate a forecast for the
following period.

19 For a comprehensive treatment of exponential
smoothing methods, see Hyndman et al. (2008).

In all cases, we apply the following “insan-
ity filter” that constrains outlier forecasts:
If the predicted change in the underlying
variable is greater than any of the historical
changes up to a given point in time, the fore-
cast is replaced with a “no change” forecast.

Results in the form of out-of-sample,
annualized root mean squared forecast
errors (computed by multiplying the monthly
RMSE values by the square root of 12) are
presented in table 1. First consider the results
under recursive parameter estimation. For
inflation, the best model is the average fore-
cast followed by exponential smoothing, the
previous best model, the simple and factor-
augmented AR models and the two-layer
neural net model. Slightly worse forecasts
are generated by the one-layer neural net and
the BVARs, while the STAR models generate
somewhat worse performances.

Overall, these results indicate that there is
not much to differentiate between a cluster
of the best forecasting models. This point is
reinforced by the plots of predicted values
from three of the models shown in figure 1.
Inflation forecasts from seemingly very dif-
ferent approaches are quite similar and dom-
inated by a persistent common component.

Turning to the stock returns and focusing
again on the results under recursive estima-
tion, table 1 shows that the best overall perfor-
mance is delivered by the combined forecast
and the simple and factor-augmented AR
models. Once again the BVAR models per-
form rather poorly as do the STAR models
and single layer neural nets. For stock returns
that are not dominated by a strongly persis-
tent component, there is more to differenti-
ate between the time-series of forecasts as
shown in figure 2. Overall, however, while a
few approaches perform quite poorly it is dif-
ficult to distinguish with statistical precision
between the forecasting performance among
a cluster of reasonable forecasting models.

Forecast precision tends to deteriorate sig-
nificantly for the BVAR and double exponen-
tial smoothing forecasts under the ten-year
rolling estimation window. This happens both
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TABLE 2
P-VALUES FOR PAIRWISE TEST OF IDENTICAL OUT-OF-SAMPLE MEAN SQUARED ERRORS UNDER THE
GIACOMINI-WHITE (2006) TEST
Model two
Factor BVAR BVAR Exp. Double exp. One layer Two layer
Model one AR -RW -WN  Smoothing Smoothing STAR_1 STAR_2 NN NN Average  Best
Inflation
Autoregressive (AR) 0.028  0.000 0.000 0.813 0.012 0.155 0.075 0.142 0943 0.162 0.542
Factor-augmented AR 0.005 0.001 0.124 0.324 0.806 0.674 0.569 0.133 0.002 0.328
BVAR-random walk prior 0.226 0.000 0.027 0.003 0.008 0.047 0.001 0.000 0.001
BVAR-white noise prior 0.000 0.013 0.001 0.003 0.021 0.000 0.000 0.000
Exponential smoothing 0.000 0.125 0.084 0128 0766 0347 0.364
Double exp. simoothing 0.224 0659 0913 0.015 0.000 0.020
STAR 1 0507 0496 0.115 0.003 0.427
STAR 2 0.807 0.079 0.010 0.220
One layer neural net 0.132  0.049 0.242
Two layer neural net 0.167 0.588
Combined forecast (average) 0.076
Stock returns
Autoregressive (AR) 0937 0.000 0.000 0.073 0.000 0.010 0.001 0.009 0060 0.150 0.177
Factor-augmented AR 0.000 0.000 0.050 0.000 0.004 0.000 0004 0047 0.054 0155
BVAR-random walk prior 0.009 0.000 0.065 0.001 0.000 0.000 0007 0.000 0.000
BVAR-white noise prior 0.000 0.528 0.048 0022 0.034 0100 0.000 0.002
Exponential smoothing 0.000 0.0I5 0.005 0.024 0120 0.063 0.509
Double exp. smoothing 0.059 0.072 0.038 0.185 0.000 0.000
STAR 1 0.928 0.901 0968 0.009 0.008
STAR 2 0982 0922 0.005 0.038
One layer neural net 0.904 0.007 0.017
Two layer neural net 0.098 0.176
Combined forecast (average) 0.528

the AR model or the factor-augmented AR
model 2 All forecasts were generated using
a recursive estimation window. Results from
this analysis are presented in table 3. For
inflation the average value of the lin-lin loss
function under the simple AR model is gen-
erally significantly below the values produced
under the factor-augmented AR specifica-
tion. This holds irrespective of which quan-
tile is being considered. In contrast, for stock
returns the two models produce almost iden-
tical out-of-sample forecasting performance.

20 These forecasts were generated using quantile
regression, see Koenker and Bassett (1978). This already
presents a nonlinear optimization problem so we only con-
sider linear quantile specifications in our analysis.

These empirical results support many of
the themes of our theoretical analysis. First,
forecasts from seemingly very different
approaches (e.g., linear versus nonlinear mod-
els) often produce very similar results—wit-
ness the similar RMSE performance of the
neural nets and the autoregressive models.
In part, these similarities arise because we
truncate the forecasts from the nonlinear
models when these are too far away from
the historical sample data.?! In other cases,

2l When extreme forecasts are not truncated, the
RMSE for the stock return forecasts rises to 50 and 32
under the one- and two-layer neural net models, respec-
tively. These values are three times and twice as large as
the values reported in table 1.
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TABLE 3
FORECASTING PERFORMANCE UNDER LIN-LIN LOSS,
FORECAST MODELS ESTIMATED BY QUANTILE REGRESSION

Model Quantile Inflation Stock return
Autoregressive 0.35 0.27 572
Factor-augmented AR 0.35 0.34 5.71
Autoregressive 0.5 0.30 6.09
Factor-augmented AR 0.5 0.40 6.07
Autoregressive 0.65 0.29 564
Factor-augmented AR 0.65 0.42 5.68

nonlinear models can generate poor fore-
casts due to their sensitivity to outliers and
their imprecisely estimated parameters. This
last point is illustrated through the perfor-
mance of the STAR models which generally
was quite poor.

Secondly, it is difficult to outperform
simple approaches such as a parsimonious
autoregressive model. Simple forecasting
approaches tend to generate relatively smooth
and stable forecasts without being subject to
too much parameter estimation error.

Third, and as an extension of the previous
point, it appears that in many cases there
are only marginal gains (in terms of out-of-
sample RMSE performance) over and above
projection on past values of the series them-
selves from considering the additional infor-
mation that can be extracted from large data
sets. For persistent variables such as infla-
tion, a linear autoregressive component is
clearly the single most important predictive
component, while for stock returns it is diffi-
cult to come up with predictor variables with
significant predictive value.

Fourth, our results support the finding
that forecast combination offers an attrac-
tive approach for many economic and finan-
cial variables. The average forecast produced
the best or second-best performance among
all approaches for both inflation and stock
returns. Thus, while forecast combina-
tion does not always generate the single best

performance, it usually beats most alterna-
tives unless some extremely poor models
have been left in the mix of models that get
combined.

Fifth, the loss function clearly matters in
practice. We saw that, under MSE loss, the
purely autoregressive and factor-augmented
autoregressive models produced essentially
indistinguishable forecasting performance.
In contrast, under lin-lin loss, the simple
autoregressive forecasts were better for the
inflation series, although they were nearly
identical in the case of the stock returns.

Finally, model instability and/or sensitiv-
ity of forecasting performance to the sample
period is clearly an issue. Table 1 compares
the MSE performance under a recursive esti-
mation approach which uses an expanding
estimation window against that of a rolling
ten-year window that can better accommo-
date shifts in the underlying data generating
process. In many cases, the choice of estima-
tion window makes a sizeable difference. If
estimation error was the predominant effect,
we would expect the ten-year rolling fore-
casts uniformly to be worse than the forecasts
based on the expanding estimation window.
This is exactly what we find for stock returns
where there is no evidence that shortening
the estimation window leads to improve-
ments in any of the models. For inflation,
however, we see that for half of the models
the out-of-sample forecasting performance
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either improves or stays the same as a result
of going from the expanding to the rolling
estimation window. Indeed, in the case of
the first STAR model, the latter approach
produced substantially better forecasts.

10. Conclusion

The menu of forecasting methodolo-
gies available to the applied economist has
expanded vastly over the last few decades.
No single approach is currently dominant and
choice of forecasting method is often dictated
by the situation at hand such as the forecast
user’s particular needs, data availability, and
expertise in experimenting with different
classes of models and estimation methods.
Economic forecasts are often only one piece of
information used in conjunction with a deci-
sionmaker’s prior beliefs and other sources
of information. Moreover, such forecasts are
often used as a way to assign different weights
on various possible scenarios. Purely statisti-
cal approaches based on complicated “black
box” approaches have with few exceptions so
far failed to generate much attention among
economists and are not used to the extent one
might otherwise have expected.

Although the situation is still evolving,
recent research in the forecasting literature
has supported some broad conclusions:

e Careful attention to the forecaster’s
objectives is important not only in the
forecast evaluation stage but also in the
estimation and model selection stages.
For example, if the forecaster’s loss func-
tion suggests that overpredictions are
more costly than underpredictions (or
vice versa) and a particular quantile of
the forecast distribution best summarizes
the economic objectives of the forecast-
ing exercise, then quantile rather than
least squares estimation should be used;
Models of economic and financial time
series are often found to be unstable
through time and so forecasting mod-
els are best viewed as approximations or
tracking devices. As a consequence, one

should not expect that the same forecast-
ing model will continue to dominate in
different historical samples;

Choice of the sample period used to esti-
mate the parameters of the forecasting
model is therefore important. Using the
longest possible data sample or a simple
rolling window is not necessarily the
best approach if more precise informa-
tion about the cause of model instabil-
ity is available (e.g., institutional shifts,
changes in tax policy or legislation, large
technology or supply shocks). Since the
nature and form of model instability may
often not be very clear, more research
is required to design robust forecast-
ing approaches that detect and incor-
porate model instability in a variety of
situations;

Forecast combination has often been
found to offer an attractive alternative
to the approach of seeking to identify
a single best forecasting model. In part
this stems from the fact that combination
allows forecasters to hedge against model
uncertainty and shifts in models’ (rela-
tive) forecasting performance;
Overfitting is an overriding concern in
forecasting because of the short time
series often encountered and the diffi-
culty in getting independent data sam-
ples that can be used to cross-validate
the forecasting models. This problem
is exacerbated for financial time series
where the signal-to-noise ratio tends to
be very low. Parameter estimation error
also is the likely reason why including
additional economic variables in a fore-
casting model, which may seem justified
ex ante, often fails to lead to the expected
improvement in terms of out-of-sample
forecasting performance;

It is often difficult to distinguish with
much statistical precision between the
forecasts generated by seemingly very
different forecasting methods. When
large differences in forecasting perfor-
mance occur, this often has to do with
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the tendency of nonlinear forecasting
models to generate outliers in the fore-
cast error distribution due to their sen-
sitivity to the particular sample used for
parameter estimation. How such outliers
are dealt with then becomes important in
practice;

Guidance from economic theory is
important at several stages of the fore-
casting process. Besides assisting in the
choice of the forecaster’s objective func-
tion, economic theory can be helpful in
selecting categories of variables to be
considered as potential predictors and
in imposing long-run restrictions that
may reduce parameter estimation error.
Econometric methods can then be used
for variable selection among the predic-
tors deemed potentially relevant from a
theoretical perspective (often a large set),
for specification of the short-run dynam-
ics, and for determination of the func-
tional form of the forecasting model.
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