
CHAPTER4 

Regression Analysis 

This chapter is divided into three parts and a historic~! notes sec~ion. Section 
4.1 deals with linear regression and Section 4.2 deals w1th the nonlinear regres­
sion problems. Section 4.3 deals with nonparametric regression models. In 
Section 4.4 we provide historical notes regarding the development of the 
bootstrap procedures in both the linear and nonlinear cases. 

In Section 4.1.1 we will briefly review the well-known Gauss-Markov 
theory, which applies to least-squares estimation in the linear regressi~n 
problem. A natural question for the practitioner is to ask. "Why bootstrap m 
the linear regression case? Isn't least-squares a well-estabhsh~d approach that 
has served us well in countless applications?" The answer 1s that for many 
problems, least-squares regression has served us well and is always ·~seful .as 
a first approach but is problematic when the residuals have heavy-tailed dis­
tributions or if even just a few outliers are present. 

The difficulty is that in some applications, certain key assumptions may be 
violated. These assumptions are as follows: (1) The error term in the model 
has a probability distribution that is the same for each observation and do.es 
not depend on the predictor variables (i.e., independence and homoscedastlc­
ity); (2) the predictor variables are observed without error; and (3) the error 
term has a finite variance. 

Under these three assumptions, the least-squares procedure provides the 
best linear unbiased estimate of the regression parameters. However, if 
assumption 1 is violated because the variance of the residuals varies as the 
predictor variables change, a weighted least-squares approach may be more 
appropriate. 

The strongest case for least-squares estimation can be made when the error 
term has a Gaussian or approximately a Gaussian distribution. Then the 
theory of maximum likelihood also applies and confidence intervals and 

Bootstrap Methods: A Guide for Practitioners and Researchers, Second Edition, 
by Michael R. Chernick 
Copyright© 2008 by John Wiley & Sons, Inc. 

78 

REGRESSION ANALYSIS 79 

hypothesis tests for the parameters can be applied using the standard theory 
and the standard statistical packages. 

However, if the error distribution is non-Gaussian and particularly if the 
error distribution is heavy-tailed, least-squares estimation may not be suitable 
(robust regression methods may be better). When the error distribution is 
non-Gaussian, regardless of what estimation procedure is used, it is difficult 
to determine confidence intervals for the parameters or to obtain prediction 
intervals for the response variable. 

This is where the bootstrap can help, and we will illustrate it for both the 
linear and nonlinear cases. In the nonlinear case, even standard errors for 
the estimates are not easily obtained, but bootstrap estimates are fairly 
straightforward. 

There are two basic approaches to bootstrapping in the regression problem. 
One is to first fit the model and bootstrap the residuals. The other is to boot­
strap the vector of the response variables and the associated predictor vari­
able. Bootstrapping the residuals requires that the residuals be independent 
and identically distributed (or at least exchangeable). 

In a quasi-optical experiment (Shimabukuro, Lazar, Dyson, and Chernick, 
1984), I used the bootstrap to estimate the standard errors for two of the 
parameters in the nonlinear regression model. Results are discussed in Section 
4.2.2. The residuals appear to be correlated with the incident angle of the 
measurement. This invalidates the exchangeability assumption, but how does 
it affect the standard errors of the parameters? 

Our suspicion is that bootstrapping the residuals makes the bootstrap 
sample more variable and consequently biases the estimated standard errors 
on the high side. This, however, remains an open question. Clearly, from the 
intuitive point of view the bootstrapping is not properly mimicking the varia­
tion in the actual residuals and the procedure can be brought into question. 

A second method with more general applicability is to bootstrap the vector 
of the observed response variable and the associated predictor variables. This 
only requires that the vectors are exchangeable and does not place explicit 
requirements on the residuals from the model. 

However, some statisticians, particularly from the British school, view the 
second method philosophically as an inappropriate approach. To them, the 
regression problem requires that the predictor variables be fixed for the exper­
iment and not selected at random from a probability distribution. The boot­
strapping of the vector of response and predictor variables implicitly assumes 
a joint probability distribution for the vector of predictor variables and 
response. From their point of view, this is an inappropriate model and hence 
the vector approach is not an option. 

However, from the practical point of view, if the approach of bootstrapping 
the vector has nice robustness properties related to model specification, it is 
justified. This was suggested by Efron and Tibshirani (1993, p. 113) for the 
case of a single predictor variable. Since it is robust, it is not important whether 
or not the method closely mimics the assumed but not necessarily correct 
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regression model. Presumably their observation extends to the case of more 
than one predictor variable. 

On the other hand, some might argue that bootstrapping the residuals is 
only appropriate when the predictor variables are not fixed. This comes down 
to another philosophical issue that only statisticians care about. The question 
is one of whether conditional inference is valid when the experiment really 
involves an unconditional joint distribution for the predictor and response 
variables. 

This is a familiar technical debate for statisticians because it is the same 
issue regarding the appropriateness of conditioning on the marginal totals 
in a 2 x 2 contingency table. Conditioning on ancillary information in the 
data (i.e., information in the data that does not have any affect on the "best" 
estimate of a parameter is a principle used by Sir Ronald Fisher in his theory 
of inference and is best known to be applied in Fisher's exact permutation 
test, which is most commonly used in applications involving categorical 
data). 

For the practitioner, I repeat the sage advice of my friend and former col­
league, V. K. Murthy, who often said "the proof of the pudding is in the 
eating." This applies here to these bootstrap regression methods as it does in 
the comparison of variants of the bootstrap in discriminant analysis. If we 
simulate the process under accepted modeling assumptions, the method that 
performs best in the simulation is the one to use regardless of how much you 
believe or like some particular theory. 

These two methods for bootstrapping in regression are given by Efron 
(1982a, pp. 35-36). These methods are very general. They apply to linear 
and nonlinear regression models and can be used for least-squares or for 
any other estimation procedure. We shall now describe these bootstrap 
methods. 

A general regression model can be given by 

for i = 1, 2, ... , n. 

The functions g; are of known form and may depend on a fixed vector of 
covariates C;. The vector f3 is a p x 1 vector of unknown parameters, and the 
8; are independent and identically distributeed with some distribution F. 

We assume that Pis "centered" at zero. Usually this means that the expected 
or average value of 8; is zero. However, in cases where the expected value 
does not exist, we may use the criterion that P(8 < 0) = 0.50. 

Given the observed vector 
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where the ith component y; is the observed value of the random variable Yj, 
we find the estimate of f3, which minimizes the distance measure between y 
and A(/3) where 

Denote the distance measure by D(y,A, (/3)). If 

D(y, A, (/3)) =I,~ [ (y;- g; (/3) JZ, 

we get the usual least-squares estimates. For least absolute deviations, we 
would choose 

Now by taking f3 = minD(y, A, (/3)) , we have our parameter estimate of f3. 
~ A 

The residuals are then obtained as E; = y;- g;(/3). 
The first bootstrap approach is to simply bootstrap the residuals. This is 

accomplished by constructing the distribution Fn that places probability 1/n at 
each E; We then generate bootstrap residuals 8( for i = 1, 2, ... , n, where the 
8( are obtained by sampling independently from Fn (i.e., we sample with 
replacement from £~, £2, ••• , En)· We then have a bootstrap sample data set; 

for i = 1, 2, ... , n. 

For each such bootstrap data set y*, we obtain 

/3* = min D[y*, IL, f3]. 
f3 

The procedure is repeated B times and the covariance matrix for f3 is 

. A 1 B (A* A )(A,,, A )T A* • 
estimated as I,= --I, f3} - /3* f37- /3* , where f3i IS the bootstrap 

B-1i~l 

estimate from the jth bootstrap sample and [3;' = 1_ IJ37 . This is the 
B i~l 

covariance estimate suggested by Efron (1982a, p. 36). 
We note that bootstrap theory suggests simply using [3 in place of [3; . The 

resulting covariance estimate should be close to that suggested by Efron. 
Confidence intervals for f3 can be obtained by t_!le methods described in 
Chapter 3, but with the bootstrap samples for the f3 values. 
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The second approach is to bootstrap the vector 

Z=G;) 
of the observations y; and the covariates or predictor variables ci for i = 1, 
2, ... , n. The bootstrap samples are then z~ for i = 1, 2, ... , n obtained by 

giving prob~bility of selection 1/n to each Z;. Taking z~ = ( ;; ) , we use y;" to 

obtain the {3* just as before. 
Efron claims that although the two approaches are asymptotically equiva­

lent for the given model, the second approach is less sensitive to model mis­
specification. It also appears that since we do not bootstrap the residuals, the 
second approach may be less sensitive to the assumptions concerning inde­
pendence or exchangeability of the error terms. 

4.1. LINEAR MODELS 

In the case of the linear regression model, if the least-squares estimation pro­
cedure is used, there is nothing to be gained by bootstrapping. As long as the 
error terms are independent and identically distributed with mean zero and 
common variance 0"2

, the least-squares estimates of the regression parameters 
will be the best among all linear unbiased estipwtors. The covariance matrix 
corresponding to the least-squares estimate f3 of the parameter vector f3 is 
given by 

where X is called the design matrix and (xrX)-1 is well-defined if X is a full­
rank matrix. If &2 is the least-squares estimate of the residual variance ci, 
then 

is the commonly used estimate of the parameter covariance matrix. 
For more details see Draper and Smith (1981). These least-squares esti­

mates are the standard estimates that can be found in all the standard statisti­
cal computer programs. 

If, in addition, the error terms are Gaussian or approximately Gaussian, 
the least -squares estimates are also the maximum likelihood estimates. Also, the 
confidence intervals for the regression parameters, hypotheses tests about the 
parameters, and prediction intervals for a new observation based on known 
values of the regression variables can be determined in a straightforward way. 
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ln the non-Gaussian case, even though we can estimate the p<);rameter 
covariance matrix, we will not know the probability distribution for f3 and so 
we cannot determine confidence intervals and prediction intervals or perform 
hypothesis tests using the standard methods. The bootstrap appr~ach does, 
however, provide a method fpr approximating the distribution of f3 through 
bootstrap sample estimates {3* . 

First we review the Gauss-Markov theory of least-squares estimation in 
Section 4.1.1. In Section 4.1.2 we discuss, in more detail, situations where we 
might prefer to use other estimates of f3 such as the least absolute deviation 
estimates or M-estimates. 

In Section 4.1.3 we discuss bootstrap residuals and the possible problems 
that can arise. If we bootstrap the vector of response and predictor variables, 
we can avoid some of the problems of bootstrapping residuals. 

4.1.1. Gauss-Markov Theory 

The least-squares estimator of the regression parameters are maximum likeli­
hood when the error terms is assumed to be Gaussian. Consequently, the 
least-squares estimates have the usual optimal properties under the Gaussian 
model. They are unbiased and asymptotically efficient. In fact, they have the 
minimum variance among unbiased estimators. 

The Gauss-Markov theorem is a more general result in that it applies to 
linear regression models with general error distributions. All that is assumed 
is that the error distribution has mean zero and variance d. The theorem 
states that among all estimators that are both unbiased and a linear function 
of the responses y; fori= 1, 2, ... , n the least-squares estimate has the small­
est possible variance. 

The result was first shown by Carl Friedrich Gauss in 1821. For more 
details about the theory, see the Encyclopedia of Statistical Science, Vol. 3, 
pp. 314-316. 

4.1.2. Why Not Just Use Least Squares? 

In the face of all these optimal properties, one should ask why least squares 
shouldn't always be the method of choice? The basic answer is that the least­
squares estimates are very sensitive to violations in the modeling assumptions. 
If the error distribution has heavy tails or the data contain a few "outliers," 
the least-squares estimates will not be very good. 

This is particularly true if these outliers are located at high leverage points 
(i.e., points that will have a large influence on the slope parameters). High 
leverage points occur at or near the extreme values of the predictor variables. 
In cases of heavy tails or outliers, the method of least absolute deviations or 
other robust regression procedures such as M-estimation or the method of 
repeated medians provide better solutions though analytically they are more 
complex. 
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Regardless of the procedure used, we may be interested in confidence 
regions for the regression parameters or prediction intervals for future cases. 
Under the Gaussian theory for least squares, this is possible. However, if 
the error distribution is non-Gaussian and unknown, the bootstrap provides 
a method for computing standard errors for the regression parameters 
or prediction intervals for future values, regardless of the method of 
estimation. 

There are many other complications to the regression problem that can be 
handled by bootstrapping. These include the problem of heteroscedasticity of 
the variance of the error term, nonlinearity in the model terms, and bias 
adjustment when transformation of variables is used. 

For a bootstrap-type approach to the problem of retransformation bias, see 
Duan (1983). Bootstrap approaches to the problem of heteroscedasticity are 
covered in Carroll and Ruppert (1988). 

An application of bootstrapping residuals for a nonlinear regression 
problem is given in Shimbukuro et al. (1984) and will be discussed later. When 
procedures other than least-squares are used, confidence intervals and predic­
tion intervals are still available by bootstrapping. 

Both editions of a book by Miller (1986, 1997) deal with linear models. 
These are very excellent references for the understanding of the importance 
of modeling assumptions. They also demonstrate when and why the 
methods are robust to departures from basic assumptions. These texts also 
point out when robust and bootstrap statistical procedures are more 
appropriate. 

4.1.3. Should I Bootstrap the Residuals from the Fit? 

From Efron (1979a, Section 7), the bootstrap estimate of the covariance 
matrix for the coefficients in a linear regression model is shown to be 

where 

The model is given by Yi = cJ3 + e; for i = 1, 2, ... , n and Ei is the residual 
estimate obtained by least-squares. The only difference between this estimate 
and the standard one from the Gauss-Markov theory is use of n in the denomi­
nator of the estimate for 0"2• The standard theory would use n p, where pis 
the number of the covariates in the model (i.e., the dimension of the vector 
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f3). So we see that at least when the linear least-squares model is an appropri­
ate method bootstrapping the residuals gives nearly the same answer as the 
Gauss-Markov theory for larger. Of course, in such a case, we do not need to 
bootstrap since we already have an adequate model. 

It is important to ask how well this approach to bootstrapping residuals 
works when there is not an adequate theory for estimating the covariance 
matrix for the regression parameters. There are many situations that we 
would like to consider: (1) heteroscedasticity in the residual variance; (2) cor­
relation structure in the residuals; (3) nonlinear models~ ( 4) non-Gaussian 
error distributions; and (5) more complex econometric and time series 
models. 

Unfortunately, the theory has not quite reached the level of maturity to 
give complete answers in these cases. There are still many open research ques­
tions to be answered. In this section and in Section 4.2, we will try to give 
partial answers to (1) through (4); (5) is being deferred to Chapter 5, which 
covers time series methods. 

A second approach to bootstrapping in a regression problem is to bootstrap 
the entire vector 

that is a (p + 1 )-dimensional vector of the response variable and the covariate 
values. A bootstrap sample is obtained by choosing integers at random with 
replacement from the set 1, 2, 3, ... , n until n integers have been chosen. If, 
on the first selection, say, integer j is chosen, then the bootstrap observation 
is Z;* = Zj. After a bootstrap sample has been chosen, the regression model is 
fit to the bootstrap samples producing an estimate [3*. By repeating this B 
times, we get f3t, fJi, ... , (3~ the bootstrap sample estimates of {3. The usual 
sample estimates of variance and covariance can then be applied to 
(3{, f3i, 0 0 0 '{3~ 0 

Efron and Tibshirani (1986) claim that the two approaches are asymptoti­
cally equivalent (presumably when the covariates are assumed to be chosen 
from a probability distribution), but can perform differently in small sample 
situations. 

The latter method does not take full advantage of the special structure of 
the regression problem. Whereas bootstrapping the residuals leads to the 
estimates L and 6-2 as defined earlier when B ~ oo, this latter procedure does 
not. 

The advantage is that it provides better estimates of the variability in the 
regression parameters when the model is not correct. We recommend it 
over bootstrapping the residuals when (1) there is heteroscedasticity in the 
residual variance, (2) there is correlation structure in the residuals, or (3) we 
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suspect that there may be other important parameters missing from the 
model. 

Wu (1986) discusses the use of a jackknife approach in regression analysis 
which he views to be superior to the bootstrap approaches we have mentioned. 
His approach works particularly well in the case of heteroscedasticity of resid­
ual variances. 

There are several discussants to Wu's paper. Some strongly support 
the bootstrap approach and point out modifications for heteroscedastic 
models, Wu claims that even such modifications to the bootstrap will not work 
for nonlinear and binary regression problems. The issues are far from 
settled. 

The two bootstrap methods described in this section apply equally to non­
linear (homoscedastic, i.e., constant variance) models as well as the linear 
(homoscedastic) models. In the next section, we will give some examples of 
nonlinear models. We will then consider a particular experiment where we 
bootstrap the residuals. 

4.2. NONLINEAR MODELS 

The theory of nonlinear regression models has advanced greatly in the 1970s 
and 1980s. Much of this development has been well-documented in recent 
textbooks devoted strictly to nonlinear models. Two such books are Bates and 
Watts (1988) and Gallant (1987). 

The nonlinear models can be broken up into two categories. In the first 
category, local linear approximations can be made using Taylor series, for 
example. When this can be done, approximate confidence or prediction inter­
vals can be generated based on asymptotic theory. 

Much of this theory is covered in Gallant (1987). In the aerospace 
industry, there has been great success applying local linearization methods in 
the construction of Kalman filters for missiles, satellites and other orbiting 
objects. 

The second category is the highly nonlinear model for which the linear 
approximation will not work. Bates and Watts (1988) provide methods for 
diagnosing the severity of the nonlinearity. 

The bootstrap method can be applied to any type or nonlinear model. The 
two methods as described in Efron (1982a) can be applied to fairly general 
problems. To bootstrap, we do not need to have a differentiable functional 
form. The nonlinear model could even be a computer algorithm rather than 
an analytical expression. We do not need to restrict the residual variance to 
have a Gaussian distribution. The only requirements are that the residuals 
should be independent and identically distributed (exchangeable may be suf­
ficient) and their distribution should have a finite variance. The distribution 
of the residuals should not change as the predictor variables are changed. This 
requirement imposes homoscedasticity on the residual variance. 
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The distribution of the residuals should not change because the predictor 
variables changed. This requirement imposes homoscedasticity on the residual 
variance. 

For models with heteroscedastic variance, modifications to the bootstrap 
are available. We shall not discuss these modifications here. To learn more 
about it, look at the discussion to Wu (1986). 

4.2.1. Examples of Nonlinear Models 

In Section 4.2.2, we discuss a quasi-optical experiment that was performed to 
determine the accuracy of a new measurement technique for the estimation 
of optical properties of materials used to transmit and/or receive millimeter 
wavelength signals. This experiment was conducted at the Aerospace 
Laboratory. 

As a statistician in the engineering group, I was asked to determine the 
standard errors of their estimates. The statistical model was nonlinear and I 
chose to use the bootstrap to estimate the standard error. Details on the model 
and the results of the analysis are given in Section 4.2.2. 

Many problems that arise in practice can be solved by approximate models 
that are linear in the parameters (remember that in statistical models the dis­
tinction between linear and nonlinear is in the parameters and not in the pre­
dictor variables). The scope of applicability of linear models can, at times, be 
extended by including transformations of the variables. 

However, there are limits to what can adequately be approximated by 
linear models. In many practical scientific endeavors, the model may arise 
from a solution to a differential equation. A nonlinear model that could arise 
as the solution of a simple differential equation might be the function 

where x is a predictor variable and 

is a three-dimensional parameter vector. 
A common problem in time series analysis is the so-called harmonic regres­

sion problem. We may know that the response function is periodic or the 
sum of a few periodic functions, but we do not know the amplitude or the 
frequency of the periodic components. Here it is the fact that the frequencies 
are among the unknown parameters that makes the model nonlinear. The 
simple case of a single periodic function can be described by the following 
function. 
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where t is the time since a specific epoch and 

is a vector of unknown parameters. The parameters cp,, (/>2, and ({>3 all have 
physical interpretations. <p1 is called the amplitude, (/>2 is the frequency, and ({>3 

is the phase delay. 
Because of the trigonometric identity 

sin(A +B)= sinAcosB+ cosAsinB 

we can reexpress 

as 

The problem can then be reparameterized as 

where 

and A 0 = <po, A 1 = <p1 cos(/>3, A 2 = (/>2, and A3 = <(J1 sin ({>3. 
This reparameterized form of the model is the form given by Gallant (1987, 

p. 3) with slightly different notation. . 
There are many other examples where nonlinear models are solutiOns to 

differential equations or systems of differential equations. Even in the case of 
linear differential equations or systems of linear differential equations, the 
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solutions involve exponential functions (both real- and complex-valued). The 
results are then real-valued functions that are periodic or exponential or a 
combination of both. 

If constants involved in the differential equation are unknown, then their 
estimates will be obtained through the solution of a nonlinear model. As a 
simple example, consider the equation 

d 
-y(x) = -cr1y(x) 
dx 

subject to the initial condition y(O) = 1. The solution is then 

Since <p1 is an unknown parameter, the function y(x) is nonlinear in <p1. 

For a commonly used linear system of differential equations whose solution 
involves a nonlinear model, see Gallant (1987, pp. 5-8). Such systems of 
differential equations arise in compartmental analysis commonly used in 
chemical kinetics problems. 

4.2.2. A Quasi-optical Experiment 

In this experiment, I was asked as a consulting statistician to determine esti­
mates of two parameters that were of interest to the experimenters. More 
importantly, they needed a "good" estimate of the standard errors of these 
estimates since they were proposing a new measurement technique that they 
believed would be more accurate than previous methods. 

Since the model was nonlinear and I was given a computer program rather 
than an analytic expression, I chose to bootstrap the residuals. The results 
were published in Shimabukuro, Lazar, Dyson, and Chernick (1984). 

The experimenters were interested in the relative permittivity and the loss 
tangent (two material properties related to the transmission of signals at 
millimeter wavelengths through a dielectric slab). The experimental setup is 
graphically depicted in Figure 4.1. Measurements are taken to compute ITI 2

, 

where Tis a complex number called the transmission coefficient. An expres­
sion for T is given by 

where 
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Figure 4.1 Photograph of experimental setup. The dielectric sample is mounted in the teflon 
holder. [From Shimabukuro et al. (1984).] 

and 

2n 
{30 = -cosq>, 

Ao 

£o = permittivity of free space 

£, = relative permittivity 
CJ = conductivity 

Ito = free-space wavelength 
(J 

--=tan 8 =loss tangent 
W£,£o 

d = thickness of the slab 
r = reflection coefficient of a plane wave incident to a dielectric 

boundary 
w = free-space frequency 

i=~ 

For more details on the vanous conditions of the experiment, see 
Shimbukuro et al. (1984). 
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We applied the bootstrap to the residuals using the nonlinear model 

Y1 = g;(v) + £; for i = 1, 2, ... , N 

where y1 is the power transmission measurement at incident angle q>1 with q>1 = 

i - 1 degrees. The nonlinear function g1(u) is ITI2 and v is a vector of two 
parameters, £, (relative permittivity) and tan 8 (loss tangent). For simplicity 
the wavelength It, the slab thickness d and the angle of incidence q>1 are all 
assumed to be known for each observation. The experimenters believe that 
measurement error in these variables would be relatively small and have little 
effect on the parameter estimates. Some checking of these assumptions was 
made. 

For most of the materials, 51 observations were taken. We chose to do 20 
bootstrap replications for each model. Results were given for eight materials 
and are shown in Table. 4.1. 

The actual kast-squares fit to the eight materials are shown in Figure 4.2. 
We notice that the fit is generally better at the higher-incidence angles. This 
suggests a violation of the assumption of independent and identically distrib­
uted residuals. There may be a bias at the low incidence angles indicative of 
either model inadequacy or poorer measurements. 

Looking back on the experiment, there are several possible ways we might 
have improved the bootstrap procedure. Since bootstrapping residuals is more 
sensitive to the correctness of the model, it may have been better to bootstrap 
the vector. 

Recent advances in bootstrapping in heteroscedastic models may also 
have helped. A rule of thumb for estimating standard errors is to take 
100-200 bootstrap replications, whereas we only did 20 replications in this 
research. 

Table 4.1 Estimates of Permittivities and Loss Tangents if= 93.7888 GHz) 

Bootstrap Estimates with 
Least-Squares Estimate Standard Error 

Material E, tan 8 E, tan 8 

Teflon 2.065 0.0002 2.065 ± 0.004 0.00021 ± 0.00003 
Rexolite 2.556 0.0003 2.556 ± 0.005 0.00026 ± 0.00006 
TPX 2.150 0.0010 2.149 ± 0.005 0.0009 ± 0.0001 
Herasil (fused 3.510 0.0010 3.511 ± 0.005 0.0010 ± 0.0001 

quartz) 
36D 2.485 (2.45) 0.0012 ( <0.0007) 2.487 ± 0.008 0.0011 ± 0.0002 
36DA 3.980 (3.7) 0.0012 ( <0.0007) 3.980 ± 0.009 0.0014 ± 0.0001 
36DK 5.685 (5.4) 0.0040 ( <0.0008) 5.685 ± 0.009 0.0042 ± 0.0001 
36DS 1.765 (1.9) 0.0042 (0.001) 1.766 ± 0.006 0.0041 ± 0.0001 

Source: Shimabukuro et al. (1984). 
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Figure 4.2 The measured power transmission for different dielectric samples is shown by the 
dotted lines. The line curves are the calculated I T~l2 using the best -fit estimates of £, and tan 8. 
[From Shimabukuro eta!. (1984).] 
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From a data analytic point of view, it may have been helpful to delete the 
low-angle observations and see the effect on the fit. We might then have 
decided to fit the parameters and bootstrap only for angle greater than, say, 
15 degrees. 

By bootstrapping the residuals, the large residuals at the low angles would 
be added at the higher angles for some of the bootstrap samples. We believed 
that this would tend to increase the variability in the parameter estimates of 
the bootstrap sample and hence lead to an overestimate of their standard 
errors. 

Since the estimated standard errors were judged to be good enough by the 
experimenters, we felt that our approach was adequate. The difficulty with the 
residual assumptions was recognized at the time. 

4.3. NONPARAMETRIC MODELS 

Given a vector X, the regression function E(yiX) is often a smooth function 
in X. In Sections 4.1 and 4.2, we considered specific linear and nonlinear forms 
for the regression function. Nonparametric regression is an approach that 
allows more general smooth functions as possibilities for the regression func­
tion. The nonparametric regression model for an observed data set (y;,x;) for 
lsisnis 

1 s i :0:: n, 

where g(x) == E(ylx) is the function we wish to estimate. We assume that the 
E; are independent and identically distributed with mean zero and variance 
d-. 

In the regression model, x is assumed to be given as in a designed experi­
ment. One approach to the estimation of the function g is kernel smoothing 
[see Hardie (1990a,b) or Hall (1992a, pp. (257-269)]. The bootstrap is used 
to help determine the degree of smoothing (i.e., determine the tradeoff 
between variance and bias analogous to its use in nonparametric density 
estimation). 

Cox's proportional hazards model is a standard regression method for 
dealing with censored data [see Cox (1972)]. The hazard function h(tlx) is the 
derivative of the survival function S(tlx) == probability of surviving t or more 
time units given predictor variables x. In Cox's model h(tlx) == h0(t)e<f3x), where 
h0(t) is an arbitrary unspecified function assumed to depend solely on t. 

Through the use of the "partial likelihood" function, the regression param­
eters f3 can be estimated independently of the function h0(t). Because of the 
form of h(tlx), the method is sometimes referred to as semi parametric. 

Efron and Tibshirani (1986) apply the bootstrap to leukemia data for mice 
in order to assess the effectiveness of a treatment. See their article for more 
details. 
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Without going into the details, we mention projection pursuit regression 
and alternating conditional expectation (ACE) as two other "nonparametric" 
regression techniques which have been studied recently. Efron and Tibshirani 
(1986) provide examples of applications of both methods and show how the 
bootstrap can be applied when using these techniques. 

The interested reader can consult Friedman and Stuetzle (1981) for the 
original source on project pursuit. The original work describing ACE (or 
alternating conditional expectation) is Breiman and Friedman (1985). 

Briefly, projection pursuit searches for linear combinations of the predictor 
variables and takes smooth functions of those linear combinations to form the 
prediction equation. ACE generalizes the Box-Cox regression model by 
transforming the response variable with an unspecified smooth function as 
opposed to a simple power transformation. 

4.4. HISTORICAL NOTES 

Although regression analysis is one of the most widely used statistical tech­
niques, application of the bootstrap to regression problems has only appeared 
fairly recently. The many fine books on regression analysis including Draper 
and Smith ( 1981) for linear regression and Gallant ( 1987) and Bates and Watts 
(1988) do not mention or pay much attention to bootstrap methods. A recent 
exception is Sen and Srivastava (1990). 

Draper and Smith (1998) also incorporate a discussion of the bootstrap. 
Early discussion of the two methods of bootstrapping in the nonlinear regres­
sion model with homoscedastic errors can be found in Efron (1982a). Carroll, 
Ruppert, and Stefanski (1995) deal with the bootstrap applied to the nonlinear 
calibration problem (measurement error models and other nonlinear regres­
sion problems, pp. 273-279, Appendix A.6). 

Efron and Tibshirani (1986) provide a variety of interesting applications 
and some insightful discussion of bootstrap applications in regression prob­
lems. They go on to discuss nonparametric regression applications including 
projection pursuit regression and methods for deciding on transformations for 
the response variable such as the alternating conditional expectation method 
(ACE) of Breiman and Friedman (1985). Texts devoted to nonparametric 
regression and smoothing methods include Hardie (1990a,b ), Hart (1997), and 
Simonoff (1996). Belsley, Kuh, and Welsch (1980) cover multicollinearity 
and related regression diagnostics. 

Bootstrapping the residuals is an approach that also can be applied to time 
series models. We shall discuss time series applications in the next chapter. 
An example of a time series application to the famous Wolfer sunspot numbers 
is given in Efron and Tibshirani (1986, p. 65). 

Shimabukuro et al. (1984) was an early example of a practical application 
of a nonlinear regression problem. The first major study of the bootstrap as 
applied to the problem of estimating the standard errors of the regression 
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coefficients by constrained least squares with an unknown, but estimated, 
residual covariance matrix can be found in Freedman and Peters (1984a). 
Similar analyses for econometric models can be found in Freedman and Peters 
(1984b). 

Peters and Freedman (1984b) also deals with issues related to bootstrap­
ping in regression problems. Their study is very interesting because it shows 
that the conventional asymptotic formulas that are correct for very large 
samples do not work well in small-to-moderate sample size problems. They 
show that these standard errors can be too small by a factor of nearly three! 
On the other hand the bootstrap method gives accurate answers. The motivat­
ing example is an econometric equation for the energy demand by industry. 

In Freedman and Peters (1984b) the bootstrap is applied to a more complex 
econometric model. Here the authors show that the three-stage least-squares 
estimates and the conventional estimated standard errors of the coefficients 
are good. However, conventional prediction intervals based on the model are 
too small due to forecast bias and underestimation of the forecast variance. 

The bootstrap approach given by Freedman and Peters (1984b) seems to 
provide better prediction intervals in their example. The authors point out 
that there is unfortunately no good rule of thumb to apply to determine when 
the conventional formulas will work of when it may be necessary to resort to 
the bootstrap. They suggest that the development of such a rule of thumb 
could be a result of additional research. Even the bootstrap procedure has 
problems in this context. 

Theoretical work on the use of bootstrap in regression is given in Freedman 
(1981), Bickel and Freedman (1983), Weber (1984), Wu (1986), and Shao 
(1988a,b ). Another application to an econometric model appears in Daggett 
and Freedman (1985). 

Theoretical work related to robust regression is given in Shorack (1982). 
Rousseeuw (1984) applies the bootstrap to the least median of squares algo­
rithm. Efron (1992a) discusses the application of bootstrap to estimating 
percentiles of a regression function. 

Jeong and Maddala (1993) review various resampling tests for econometric 
models. Hall (1989c) shows that the bootstrap applied to regression problems 
can lead to confidence interval estimates that are unusually accurate. 

Various recent regression applications include Breiman (1992) for model 
selection related to x-fixed prediction, Brownstone (1992) regarding admissi­
bility of linear model selection techniques, Bollen and Stine (1993) regarding 
fitting of structural equation models, and Cao-Abad (1991) regarding rates of 
convergence for a bootstrap variation called the "wild" bootstrap. The wild 
bootstrap is useful in nonparametric regression [see also Mammen (1993 ), who 
applies the wild bootstrap in linear models], DeAngelis, Hall, and Young 
(1993a) related to L 1 regression, Lahiri (1994c) forM-estimation in multiple 
linear regression problems, Dikta (1990) for nearest-neighbor regression, and 
Green, Hahn, and Rocke (1987) for an economic application to the estimation 
of elasticities. 
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Wu (1986) gives a detailed theoretical treatment of jackknife methods 
applied to regression problems. He deals mainly with the problem of het­
eroscedastic errors. He is openly critical of the blind application of bootstrap 
methods and illustrates that certain bootstrap approaches will give incorrect 
results when applied to data for which heterosecedastic models are appropri­
ate. A number of the discussants including Beran, Efron, Freedman, and 
Tibshirani defend the appropriate use of the "right" bootstrap in this context. 
The issue is a complex one which even today is not completely settled. 

It is fair to say that Jeff Wu's criticism of the bootstrap in regression prob­
lems was a reaction to the "euphoria" expressed for the bootstrap in some of 
the earlier works such as Efron and Gong (1983, Section 1) or Diaconis and 
Efron (1983). 

Although enthusiasm for the bootstrap approach is justified, some state­
ments could leave naive users of statistical methods with the idea that it is 
easy to just apply the bootstrap to any problem they might have. I think that 
every bootstrap researcher would agree that careful analysis of the problem 
is a necessary step in any applied problem and that if bootstrap methods are 
appropriate, one must be careful to choose the "right" bootstrap method from 
the many possible bootstraps. 

Stine (1985) deals with bootstrapping for prediction intervals, and Bai and 
Olshen as discussants to the paper by Hall (1988b) provide some elementary 
asymptotic theory for prediction intervals. Olshen, Biden, Wyatt, and Suther­
land (1989) provide a very interesting application to gait analysis. 

A theoretical treatment of nonparametric kernel methods in regression 
problems is given in Hall (1992a). His development is based on asymptotic 
expansions (i.e., Edgeworth expansions). Other key articles related to boot­
strap applications to nonparametric regression include Hardie and Bowman 
(1988) and Hardie and Marron (1991). 

The reader may first want to consult Silverman (1986) for a treatment of 
kernel density methods and some applications of the bootstrap in density 
estimation. Devorye and Gyorfi (1985) also deals with kernel density methods 
as does Hand (1982), and for multivariate densities see Scott (1992). Hardie 
(1990a) provides an account of nonparametric regression techniques. 

Hayes, Perl, and Efron ( 1989) have extended bootstrap methods to the case 
of several unrelated samples with application to estimating contrasts in parti­
cle physics problems. Hastie and Tibshirani (1990) treat a general class of 
models called generalized additive models. These include both the linear and 
the generalized linear models as special cases. It can be viewed as a form of 
curve fitting but is not quite as general as nonparametric regression. 

Bailer and Oris (1994) provide regression examples for toxicity testing and 
compare bootstrap methods with likelihood and Poisson regression models (a 
particular class of generalized linear models). One of their examples appears 
in Davison and Hinkley (1997, practical number 6, pp. 383-384). 

CHAPTERS 

Forecasting and Time 
Series Analysis 

5.1. METHODS OF FORECASTING 

One of the most common problems in the "real world" is forecasting. We try 
to forecast tomorrow's weather or when the next big earthquake will hit. 
When historical data are available and models can be developed which fit the 
historical data well, we may be able to produce accurate forecasts. For certain 
problems (e.g., earthquake predictions or the Dow Jones Industrial Average) 
the lack of a good statistical model makes forecasting problematic (i.e., no 
better than crystal ball gazing). 

Among the most commonly used forecasting techniques are exponential 
smoothing and autoregressive integrated moving average (ARIMA) model­
ing. The ARIMA models are often referred to as the Box-Jenkins models 
after George Box and Gwilym Jenkins, who popularized the approach in Box 
and Jenkins (1970, 1976). The autoregressive models, which are a subset of 
the ARIMA models, actually go back to Yule (1927). 

Exponential smoothing is an approach that provides forecasts future values 
using exponentially decreasing weights on the past values. The weights are 
determined by smoothing constants that are estimated from the data. The 
simplest form-single exponential smoothing-is a special case of the ARIMA 
models namely the IMA (1, 1) model. The smoothing constant in the model 
can be determined from the moving average parameter of the IMA (1, 1) 
model. The smoothing constant can be determined from the moving average 
parameter of the IMA (1, 1) model. 

Bootstrap Methods: A Guide for Practitioners and Researchers, Second Edition, 
by Michael R. Chernick 
Copyright© 2008 by John Wiley & Sons, Inc. 
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5.2. TIME SERIES MODELS 

ARIMA models are attractive because they provide good empirical approxi­
mations to a large class of time series. There is a body of statistical theory 
showing that "most" stationary stochastic processes can be well-approximated 
by high-order autoregressive processes. 

The term stationary stochastic process generally means strictly stationary. 
A stochastic process is said to be strictly stationary if the joint probability 
distribution of k consecutive observations does not depend on the time para­
meter t for all choices of k = 1, 2, 3, 4, 5, ... , oo. informally, this means that 
if we are looking at the first k observations in a time series, the statistical 
properties of that set of observations wouldn't change if we took any other 
set of k consecutive observations in the time series. 

A weaker form of stationarity is second-order (or weak) stationarity. 
Second-order stationarity requires only that the second-order moments exist 
and that the first- and second-order moments, the mean function and the 
autocorrelation function, respectively, do not depend on time (i.e., they are 
constant over time). 

Strict stationarity implies weak stationarity, but there are weakly station­
ary, processes that are not strictly stationary. For Gaussian processes, second­
order (weakly) stationary processes are strictly stationary because they 
have the property that the joint distribution, for any choice of k consecutive 
observations, depends only on the first and second moments of their 
joint distribution. 

Box and Jenkins used the mixed autoregressive moving average model to 
provide a parsimonious representation for these high-order autoregressive 
processes (i.e., by including just a few moving average terms an equivalent 
model is found with only a small number of parameters to estimate). To 
generalize this further to handle trends and seasonal variations (i.e., non­
stationarity), Box and Jenkins (1976) include differencing and seasonal 
differences of the series. Using mathematical operator notation, let 

where Y 1 is the original observation at timet and the operation !J.d applies the 
difference operation !J.d times where !J. is defined by !J.yt = Yt- Yt-1· 

So, 

!J. 2 y, = !J..(yt- Yt-1) = !J..yt- !J.y,_1 = (Yt- Yt-1)- (Yt-1- Yt-2) = y,- 2yt-~ + Yr-2· 

In general, 

Ad A d-1( A ) A rf-1( ) A d-1 A d-1 
L.l Yr = Ll LlYt = Ll Yt- Yt-1 = Ll y, -Ll Yt-1· 

WHEN DOES BOOTSTRAPPING HELP WITH PREDICTION INTERVALS? 

After differencing the times series, W1 is a stationary 
ARMA (p, q) model given by the equation 
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where er. e1_J, . •• , e1_q are the assumed random innovations and W 1_J, 

W1_2 , ••• , W1_r are past values of the dth difference of the Y1 series. 
These ARIMA models handle polynomial trends in the time series. Addi­

tional seasonal components can be handled by seasonal differences [see Box 
and Jenkins (1976) for details]. 

Although the Box-Jenkins models cover a large class of time series and 
provide very useful forecasts and prediction intervals, they have drawbacks 
for some cases. The models are linear and the least-squares or maximum 
likelihood parameter estimates are good only if the innovation series e1 is 
nearly Gaussian. 

If the innovation series e1 has heavy tails or there are a few spurious obser­
vations in the data, the estimates can be distorted and the prediction intervals 
are not valid. In fact, the Box-Jenkins methodology for choosing the order of 
the model (i.e., deciding on the values for p, d, and q) will not work if outliers 
are present. This is because estimates for the autocorrelation and partial auto­
correlation functions are very sensitive to outliers [see, for example, Chernick, 
Downing, and Pike (1982) or Martin (1980)]. 

One approach to overcoming the difficulty is to detect and remove the 
outliers and then fit the Box-Jenkins model with some missing observations. 
Another approach is to use robust estimation procedures for parameters [see 
Rousseeuw and Leroy (1987)]. 

In the 1980s there were also a number of interesting theoretical develop­
ments in bilinear and other nonlinear time series models which may help to 
extend the applicability of statistical time series modeling [see Tong (1983, 
1990)]. 

Even if an ARIMA model is appropriate and the innovations e1 are uncor­
related but not Gaussian, it may be appropriate to bootstrap the residuals to 
obtain appropriate standard errors for the model parameters and the predic­
tions. Bootstrap prediction intervals may also be appropriate. 

The approach is the same as we have discussed in Chapter 4, which covers 
regression analysis. The confidence interval methods of Chapter 3 may be 
appropriate for the prediction intervals. We shall discuss this further in the 
next section. 

5.3. WHEN DOES BOOTSTRAPPING HELP WITH 
PREDICTION INTERVALS? 

Some results are available on the practical application of the bootstrap to 
time series models. These results apply to stationary autoregressive (AR) 
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processes, a subset of the stationary autoregressive-moving average (ARMA) 
models discussed in the previous section. 

To illustrate how the bootstrap can be applied to an autoregressive model, 
we will illustrate the approach with the simple first-order autoregressive 
process. This model is sufficient to illustrate the key points. For the first-order 
autoregression (AR (1) model) the model is given by 

where y1 is the observation at time t (possible centered to have zero mean) 
and e1 are the innovations. 

If the average of the observed series is not zero, a sample estimate of the 
mean is subtracted from each observation in order to center the data. In prac­
tice, if the original series appears to be nonstationary, differencing methods 
or other forms of trend removal would be applied first. 

For Gaussian processes, least-squares or maximum likelihood estimates for 
b1 are computed along with standard errors for the estimates. If y1"' is the last 
observation, then a one-step-ahead prediction is obtained at tm + 1 by using 
b1Yrm as the prediction, where b1 is the estimate of h. Statistical software pack­
ages (e.g., SAS/ETS, BMDP, and IMSL) provide such estimates of parameters 
and also produce forecast intervals. 

These procedures work well when the e1 have approximately a Gaussian 
distribution with mean zero. Stine (1987) provides forecasts and prediction 
intervals with the classical Gaussian model but using a bootstrap approach. 
He shows that although the bootstrap is not as efficient as the classical 
estimate when the Gaussian approximation is valid, it provides much better 
prediction intervals for non-Gaussian cases. 

In order to apply the bootstrap to the AR (1) ~odel, we need to 
generate a bootstrap sample. First we need an estimate b1 • We may take the 
Gaussian maximum likelihood estimate generated by a software program such 
as PROC ARIMA from SAS. We then generate the estimated residuals, 
namely, 

for t = 2, 3, ... , tm. 

Note that we cannot compute a residual e1 since Yo is not available to us. A 
bootstrap sample y{, yr, ... , yt,, is then generated by bootstrapping the resid­
uals. We simply generate er, ef, ... , et,, by sampling with replacement from 
e2, e3, ... 'elm and defining by recursion: 

A A 

yf = blyr + ef, ... ' yt,, = blyt,,_l + et,,-1· 

Efron and Tibshirani (1986) take y{ = y1 for each bootstrap sample. With 
autoregressive processes, since we have a first time point that we denote as 
t 1, we need initial values. In the AR (1) example, we see that we need a 
single initial value to start the process. In this case we let y{ = y1. 

WHEN DOES BOOTSTRAPPING HELP WITH PREDICTION INTERVALS? 101 

In general for the pth-order autoregression, we will need p initial values. 
Stine (1987) and Thombs and Schucany (1990) provide alternative methods 
for obtaining starting values for the bootstrap samples. 

Now for each bootstrap sample, an estimate b{ is obtained by applying the 
estimation procedure to y[, yf, . .. , yt,. Efron and Tibshirani iVustrate this on 
the Wolfer sunspot data. They obtain the standard errors for b1 by this proce­
dure. They then go on to fit an AR (2) (second-order autoregressive model) 
to the sunspot data and obtain bootstrap estimates of the standard errors for 
the two parameters in the AR (2) model. They did not go on to consider pre­
diction intervals. 

For the Gaussian case, the theory has been developed to obtain the minimum 
mean-square error predictions based on "known" autoregressive parameters. 
Formulas for the predictions and their mean-square errors can be found in 
Box and Jenkins (1976) or Fuller (1976). Stine ( 1987) shows that when the 
autoregressive parameter b1 is replaced by the estimate b1 in the forecasting 
equations, the prediction mean-square error increases. 

Stine (1987) provides a Taylor series expansion to estimate the mean­
square error of the prediction that works well for Gaussian data. The boot­
strap estimates of mean-square error are biased, but his bootstrap approach 
does provide good prediction intervals. We shall describe this approach, which 
we recommend when the residuals do not fit well to the Gaussian model. 

Stine (1987) assumes that the innovations have a continuous and strictly 
increasing distribution with finite moments. He also assumes that the distribu­
tion is symmetric about zero. The key difference between Stine's approach 
and that of Efron and Tibshirani is the introduction of the symmetric error 
distribution. Instead of sampling with replacement from the empirical distri­
bution for the estimated residuals (the method of Efron and Tibshirani previ­
ously described), Stine does the following: 

Let 

1 
FT(x) = "2+(L(x)/[2(T- p)]), x ~ 0, t = p+ 1, ... , T 

x<O, 

where L(x) = number of t such that k j.S,i :::: x, and 

k = [(T- p)!(T- 2p)r12
. 

This choice of Fy produces bootstrap residuals that are symmetric about 
zero and have a variance that is the same as the original set of residuals. 

A bootstrap approximation to the prediction error distribution is easily 
obtained given the bootstrap estimates of the autoregressive parameters and 
the bootstrap observations y{, yf, ... , yt,. The prediction formulas are used to 
obtain bootstrap prediction yt,,+f for the time tm + f, ftime steps in the future. 
The variable Ytn+f- Ytm+f provides the bootstrap sample estimate of prediction 
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error fsteps ahead, where yi;:,+f is the original prediction based on the original 
estimates of the autoregressive parameters and the observations Yt. Yz, ... , y,m. 
Actually, Stine uses a more sophisticated approach based on the structure of 
the forecast equation [see Stine (1987) for details]. 

Another difference between Stine's approach and that of Efron and 
Tibshirani is that Efron and Tibshirani fix the first p values of the process in 
generating the bootstrap sample whereas Stine chooses a block of p consecu­
tive observations at random to initiate the bootstrap sample. 

In practice, we will know the last p observations when making future pre­
dictions. Autoregressive forecasts for 1, 2, ... , f steps ahead depend only on 
the autoregressive parameters and the last p observations. Consequently, it 
makes sense to condition on the last p observations when generating the 
bootstrap predictions. 

Thombs and Schucany (1990) use a time-reversal property for autoregres­
sive processes to fix the last p observations and generate bootstrap samples 
for the earlier observations. They apply the backward representation (Box 
and Jenkins, 1976, pp. 197-200) to express values of the process at timet as a 
function of future values. This representation is based on generating the 
process backward in time, which is precisely what we want to do with the 
bootstrap samples. The correlation structure for the reversed process is 
the same as for the forward process. 

For Gaussian processes, this means that the two series are distributionally 
equivalent. Weiss (1975) has shown that for linear processes (including autore­
gressions) the time-reversed version is distributional equivalent to the original 
only if the process is Gaussian. 

Chernick, Daley, and Littlejohn (1988) provide an example of a first-order 
autoregression with exponential marginal distributions whose reversed version 
also has exponential marginals, is first-order Markov, and has a special struc­
ture. The process is not time-reversible (in the strict sense where reversibility 
means distribution equivalence of the two stochastic processes, original and 
time-reversed) as can be seen by looking at sample paths. 

Thombs and Schucany (1990) also present simulation results that show that 
their method has promise. They did not use the symmetrized distribution for 
the residuals. In small samples, they concede that some refinements such as 
the bias-corrected percentile method might be helpful. 

Unfortunately, we cannot recommend a particular bootstrap procedure as 
a "best" approach to bootstrapping time series even for generating prediction 
intervals for autoregressive time series. The method of Stine (1987) is recom­
mended for use when the distributions are non-Gaussian. For nearly Gaussian 
time series, the standard methods available in most statistical time series pro­
grams are more efficient. 

These methods are called model-based and the results do not work well 
when the form of the model is misspecified. Kiinsch (1989) was the first to 
develop the block bootstrap method in the context of stationary time series. 
It turns out to be a general approach that can be applied in many dependent 
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data situations including spatial data, M-dependent data, and time series. 
Lahiri has developed a theory for bootstrapping dependent data predomi­
nantly for classes of block bootstrap methods including (1) moving block 
bootstrap, (2) nonoverlapping block bootstrap, and (3) generalized block 
bootstrap that includes the circular block bootstrap and the stationary 
block bootstrap. This work is well-summarized along with other bootstrap 
methods for dependent data in the text by Lahiri (2003a). Block-based versus 
model-based bootstrap methods are considered in the next section. Alter­
native approaches to time series problems are described in Sections 5.4 and 
5.5, with block resampling methods contrasted to model-based methods in 
Section 5.4. 

5.4. MODEL-BASED VERSUS BLOCK RESAMPLING 

The methods described thus far all fall under the category of model-based 
resampling methods, because the residuals are generated and resampled based 
on a time series model [i.e., the AR(1) model in the earlier illustration]. 
Refinements to the above approach are described in Davison and Hinkley 
(1997, pp. 389-391). 

There they center the residuals by subtracting the average of the residuals. 
They then use a prescription just as we have described above. However, they 
point out that the generated series is not stationary. This is due to the initial 
values. This could be remedied by starting the series in equilibrium or more 
practically by allowing a "burn-in" period of k observations that are discarded. 
We choose k so that the series has "reached" stationarity. 

To use the model-based approach, we need to know the parameters and 
the structure of the model, and this is not always easy to discern from the data. 
If we choose an incorrect structure, the resampled series will have a different 
structure (which we incorrectly thrust upon it) from the original data and 
hence will have different statistical properties. So if we know that we have a 
stationary series but we don't know the structure, analogous to the nonpara­
metric alternative to the distributional assumptions for the observations, we 
would like a bootstrap resampling structure that doesn't depend on this 
unknown structure. But what is the time series analog to nonparametric 
models? 

Bose (1988) showed that if an autoregressive process is a "correct" model 
(or for practical use at least approximately correct) there is an advantage to 
using the model-based resampling approach, namely, good higher-order 
asymptotic properties for a wide variety of statistics that can be derived from 
the model. On the other hand, we could pay a heavy price, in that the estimates 
could be biased and/or grossly inaccurate if the model structure is wrong. This 
is very much like the tradeoff we have between parametric and non parametric 
inference where the model is the assumed parametric family of distributions 
for the observations. 
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A remedy, the block bootstrap, which was first introduced by Carlstein 
(1986), was further developed by Kiinsch (1989) and is a method that resam­
ples the time series, in blocks (possibly overlapping blocks). For uncorrelated 
exchangeable sequences, the original nonparametric bootstrap that resamples 
the individual observations is appropriate. For stationary time series, succes­
sive observations are correlated but observations separated by a large time 
gap are nearly uncorrelated. This can be seen by the exponentially declining 
autocorrelation function for a stationary AR (1) model. 

A key idea in the development and success of block resampling is that, for 
stationary series, individual blocks of observations that are separated far 
enough in time will be approximately uncorrelated and can be treated as 
exchangeable. So suppose the time series has length n = bl. We can generate 
b nonoverlapping blocks each of length l. 

The key idea that underlies this approach is that if the blocks are sufficiently 
long, each block preserves, in the resampled series, the dependence present 
in the original data sequence. The resampling or bootstrap scheme here is to 
resample with replacement from the set of b blocks. 

There are several variants on this idea. One is to allow the blocks to 
overlap. This was one of Kiinsch's proposals, and it allows for more blocks 
than if they are required not to overlap. 

Suppose we take the first block to be (y1, y2 , y3 , y 4), the second to be (Y2, h 
y4, Ys), the third to be (YJ, y4, y5, y6), and so on. The effect of this approach is 
that the first I 1 observations from the original series appear in fewer blocks 
than the rest. 

Note that observation y1 appears in only one block, y2 appears in only two 
blocks, and so on. This effect can be overcome by wrapping the data around 
in a circle (i.e., the last observation in the series is followed again by the first, 
etc.) 

At the time of the writing of the first edition the block bootstrap approach 
was the subject of much additional research. Many theoretical results and 
applications have occurred from 1999 to the present (2007). 

Professor Lahiri, from Iowa State University, has been one of the prime 
contributors and has nicely summarized the theoretical properties and (through 
examples) the applications of the various types of block bootstrap methods 
for time series and other models of dependent data (including spatial data) in 
his text (Lahiri, 2003a). I will not cover these topics in depth but rather refer 
the reader to the literature and the chapters in the Lahiri text as they are 
discussed. 

The various block bootstraps discussed in Lahiri (2003a, Chapter 2) are (1) 
the moving block bootstrap (MBB), (2) nonoverlapping block bootstrap 
(NEB), (3) circular block bootstrap (CBB), and (4) the stationary block boot­
strap (SBB). I will give formal definitions and discuss these methods in detail 
later in this section. 

Lahiri (2003a) also compares various block methods based on both theory 
and empirical simulation results (Chapter 5), covers methods for selecting the 
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block size for the moving block bootstrap (Chapter 7), pointing out how it can 
be generalized to other block methods, and covers model-based methods 
(Chapter 8) including the ones discussed in this chaptyr and more, frequency 
domain methods (Chapter 9) such as the ones we will discuss in Section 5.5, 
long-range-dependent models (Chapter 10), heavy-tailed distributions and the 
estimation of extreme values (Chapter 11), and spatial data (Chapter 12). In 
Chapter 8 we will cover some of the results for spatial data and in Chapter 9 
we will cover situations where the nai've bootstrap fails, which includes the 
estimation of extreme values. Lahiri shows that for dependent data, the moving 
block bootstrap also fails if the resample size m is the same as the original 
sample size n. But as we will see for the independent case in Chapter 9 of this 
text, an m-out-of-n bootstrap remedies the situation. Lahiri derives the same 
result for MBB. 

Some of the drawbacks of block methods in general are as follows: (1) 
Resampled blocks do not quite mimic the behavior of the time series, and (2) 
they have a tendency to weaken the dependency in the series. 

Two methods, postblackening and resampling blocks of blocks, both help 
to remedy these problems. The interested reader should consult Davison and 
Hinkley (1997, pp. 397-398) for some discussion of these methods. 

Another simple way to overcome this difficulty is what is called the station­
ary block bootstrap, SBB as referred to by Lahiri (2003a) and described in 
Section 2.7.2 of Lahiri (2003a) with statistical properties for the sample mean 
given in Section 3.3 of Lahiri (2003a). The stationary block bootstrap is a block 
bootstrap scheme that instead of having fixed length blocks has a random 
block length size. The distribution for block length is given using the random 
length L, where 

Pr(L = j) = (1- py-'p, for j = 1, 2, 3, ... , =. 

This length distribution is the geometric distribution with parameter p. The 
mean block length for Lis A= p-1

• We may choose A as one might choose the 
length of a fixed block length. Since A.= lip, determining A, also determines p. 
The stationary block bootstrap was first described by Politis and Romano 
(1994a). 

It appears that the block resampling method has desirable properties of 
robustness to model specification in that it applies to a broad class of station­
ary series. Other variations and some theory related to block resampling can 
be found in Davison and Hinkley (1997, pp. 401-403) for choice of block 
length and pp. 405-408 for the underlying theory. Hall (1998) provides an 
overview of the subject. A very detailed and up-to-date coverage of block 
resampling can be found in the text Lahiri (2003a) and in the summary article 
Lahiri (2006) in the book "Frontiers in Statistics" Fan and Koul (2006). 

Davison and Hinkley ( 1997) illustrate the application of block resampling 
using data on the river heights over time for the Rio Negro. A concern of the 
study was that there is a trend for heights of the river near Manasas to increase 
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over time due to deforestation. A test for trend was applied, and there is some 
evidence that a trend may be present but the statistical test was inconclusive. 
The trend test was based on a test statistic that was a linear combination of 
the observations, namely, 

where, for i = 1, 2, 3, ... , n, Yi is the sequence for river levels at Manasas 
and 

ai = ( -1)[1- ((i -1)/(n + 1))r12
- i[1- i!(n + 1)]112 for i = 1, 2, 3, ... , n. 

The test based on this statistic is optimal for detecting a monotonic trend when 
the observations are independent and identically distributed (i.e., liD under 
the null hypothesis). However, the time series data show clear autocorrelation 
at time lags i. A smoothed version of the Rio Negro river heights (i.e., a cen­
tered ten-year moving average) is shown in Figure 5.1 taken from Davison 
and Hinkley (1997). 

The test statistic T above is still used, and its value in the example turns 
out to be 7.908. But is this statistically significantly large based on the null 
hypothesis? Instead of using the distribution of the test statistic under the 
null hypothesis, Davison and Hinkley choose to estimate its null distribution 
using block resampling. This is a more realistic approach for the Rio Negro 
data. 

2 

1940 1980 
Time (years) 

Figure 5.1 Ten-year running average of the Manasas data. [From Davison and Hinkley (1997, 
Figure. 8.9, p. 403), with permission from Cambridge University Press.] 
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They compare the stationary bootstrap to a fixed block length method. The 
purpose is to use the bootstrap to estimate the variance of T under the null 
hypothesis that the series is stationary but uncorrelated (as opposed to an liD 
null hypothesis). The asymptotic normality of T is used to do the statistical 
inference. 

Many estimates were obtained using these two methods because various 
block sizes were used. For the fixed block length method, various fixed block 
sizes were chosen; for the stationary bootstrap, several average block lengths 
were specified. The bottom line is that the variance of Tis about 25 based on 
the first 120 time points, but the lowest "reasonable" estimate for the variance 
of T based on the entire series is approximately 45! This gives us a p-value of 
0.12 for the test statistic, indicating a lack of strong evidence for a trend. 

When considering autoregressive processes, there are three cases to con­
sider that involve the roots of the characteristic polynomial associated with 
the time series. See Box and Jenkins (1976) for details about the characteristic 
polynomial and the relationship of its roots to stationarity. The roots of the 
characteristic polynomial are found in the complex plane. If all the roots fall 
inside the unit circle, the time series is stationary. When one or more of the 
roots lies on the boundary of the unit circle, the time series is nonstationary 
and called unstable. If all the roots of the characteristic polynomial lie outside 
the unit circle, the time series is nonstationary and called explosive. In the first 
case the model-based method that Lahiri calls the autoregressive bootstrap 
(ARB) can be used. In the case of unstable processes the ARB bootstrap is 
not consistent but can be made consistent by an m-out-of-n modification that 
is one of the two. In the case of explosive processes, another remedy is 
required. The details are given in Chapter 8 of Lahiri (2003a) and the remedies 
are also covered in Chapter 9, where we cover remedies when the ordinary 
bootstrap methods fail. 

5.5. EXPLOSIVE AUTOREGRESSIVE PROCESSES 

An explosive autoregressive process is simply an autoregressive time series 
whose characteristic polynomial has all its roots outside the unit circle. As 
such, it is nonstationary process with unusual properties. 

Datta (1995) showed that the normalized least-squares estimator of the 
autoregressive parameters in the explosive case converges to a nonnormal 
limiting distribution that is dependent on the initial p-observations. As a 
result, in the explosive case, any bootstrap method needs to use a consistent 
estimate of joint distribution of the first p-observations. Or alternatively, one 
can consider the distribution of the parameter by conditioning on the first p­
observations. This is how Lahiri (2003a) constructs a consistent ARB estimate. 
In the explosive case the innovation series may not have a finite expectation; 
so although in the stationary case the innovations are centered, they cannot 
be in the explosive case. 
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The bootstrap observations are generated by the following bootstrap recur­
sion relationship: 

X *- R X* [3A X* * i -}Jln i-1+···+ pn i-p+E;, i:2:p+l. 

This is well-defined when because of the conditioning argument we set 
(X(, ... , x;)'= (Xt> ... , XP)'. The bootstrap error variables e( are generated 
at random with replacement from the residuals, [e; =X,.- L~~1 f3jnX,._j: 
p+ 1:0:: i :0:: n]. Datta has proven [Theorem 3.1 of Datta (1995)] that this ARB 
is consistent. This result may seem surprising since in the unstable case a 
similar ARB is not consistent and requires an m-out-of-n bootstrap to be 
consistent. 

5.6. BOOTSTRAPPING STATIONARY ARMA PROCESSES 

The stationary ARMA process was first popularized by Box and Jenkins 
(1970) as a representation that is parsimonious in terms of parameters. The 
process could also be represented as an infinite moving average process or 
possibly even an infinite autoregressive process. In practice, since the process 
is stationary, the series could be approximated by a finite AR process or a 
finite moving average process. But in either case the number of parameters 
required in the truncated process is much more than the few AR and MA 
parameters that appear in the ARMA representation. 

Now let [X,.], i E Z, be a stationary ARMA (p, q) process satisfying the 
equation 

where p and q are integers greater than or equal to 1. The formal description 
of this model-based bootstrap is involved but can be found in Lahiri (2003a, 
pp. 214-217). He invokes the standard stationarity and invertibility conditions 
that Box and Jenkins (1970) generally assume for an ARMA process. Given 
these conditions, the ARMA process admits both an infinite moving average 
and an infinite autoregressive representation. The resulting bootstrap is called 
ARMAB by Lahiri. 

5.7. FREQUENCY-BASED APPROACHES 

As we have mentioned before, second-order stationary Gaussian processes 
are strictly stationary as well and are characterized by their mean value func­
tion and their autocovariance (or autocorrelation) function. The Fourier 
transformation of the autocorrelation function is a function of frequency 
called the spectral density function. 
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Since a mean zero stationary Gaussian process is characterized by its auto­
correlation function and the Fourier transform of the autocorrelation function 
is invertible, the spectral density function also characterizes the process. This 
helps explain the importance of the autocorrelation function and the spectral 
density function in the theory of stationary time series (especially for station­
ary Gaussian time series). Time series methods based on knowledge or esti­
mates of the autocorrelation function are called time domain methods, and 
time series methods based on the spectral density function are called fre­
quency domain methods. Brillinger (1981) gives a nice theoretical account of 
the frequency domain approach to time series. 

The periodogram, the sample analog to the spectral density function, and 
smoothed versions of the periodogram that are estimates of the spectral 
density function have many interesting and useful properties, which are 
covered in detail in Brillinger (1981). The Fourier transform of the time series 
data itself is a complex function called the empirical Fourier transform. 

From the theory of stationary processes, it is known that if the process has 
a well-defined spectral density function and can be represented by an infinite 
moving average process (representation), then as the series length n ~ oo the 
real and imaginary parts of this empirical Fourier transform at the Fourier 
frequencies OJ"' == 2nx/n are approximately independent and normally distrib­
uted with mean zero and variance ng( w"')/2, where g( OJ"') is the true spectral 
density function at OJ"'. 

This asymptotic result is important and practically useful. The empirical 
Fourier transform is easy to compute thanks to a technique known as the fast 
Fourier transform (FFT), and independent normal random variables are easier 
to deal with than nonnormal correlated variables. 

So we use these ideas to construct a bootstrap. Instead of bootstrapping, 
the original series we can use a parametric bootstrap on the empirical Fourier 
transformed data. In the frequency domain we have basically an uncorrelated 
series of observations on the set of Fourier frequencies. The parametric boot­
strap samples the indices of the Fourier frequencies with replacement, and 
then at each sampled frequency a bootstrap observation is generated from the 
estimated normal distribution. This generates a bootstrap version of the 
empirical Fourier transform, and then a bootstrap sample for the original 
series is obtained by inverting this Fourier transform. This idea has been 
exploited in what Davison and Hinkley (1997) call the phase scrambling algo­
rithm. Although the concept is easy to understand, the actual algorithm is 
somewhat complicated. The interested reader can see more detail and exam­
ples in Davison and Hinkley (1997, pp. 408-409). 

Davison and Hinkley (1997) then apply the phase scrambling algorithm to 
the Rio Negro data. This allows them to compare their previous time domain 
bootstrapping approach (SSE) with this frequency domain approach. For the 
null hypothesis, they again assume that the series is an AR (2) process and 
get an estimate of the variance of the trend estimator T. Using the frequency 
domain approach, they again determine T to be close to 51. So this result is 
very close to the result from the previous time domain SSE approach. 
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Now under the conditions described above, the periodogram has its values 
at the Fourier frequencies, and they are well-approximated as independent 
identically distributed exponential random variables. If one is interested only 
in confidence intervals for the spectral density at certain frequencies or to 
access variability of estimates that are based on the periodogram values, it is 
only necessary to resample the periodogram values and you don't have to 
bother with the empirical Fourier transform or the original time series. This 
method is called periodogram resampling, and details about the method and 
its applications to inference about the spectral density function are given by 
Davison and Hinkley (1997, pp. 412-414). 

These frequency domain bootstraps are part of a general category of 
methods called transformation-based bootstraps where the bootstrapping all 
takes place on the transformed data and analysis can then be done in the time 
domain after taking the inverse transform. Lahiri (2003a) covers a number of 
these approaches on pages 40-41 of the text and uses the acronym TBB for 
transformation-based bootstrap. Lahiri provides a generalization of a method 
due originally to Hurvich and Zeger (1987) which is similar conceptually but 
still different from the method described above from the Davison and Hinkley 
(1997) text. 

Hurvich and Zeger (1987) consider the discrete Fourier transform (DFT) of 
the data and bootstrap the transformed data rather the original series and then 
apply the liD nonparametric bootstrap to this transformed data. In this way, 
they also take advantage of the result in time series analysis that the Fourier 
transform of the series at distinct frequencies A;, where -n <A; :s; n, are approxi­
mately distributed as complex normal and are independent [see Brillinger 
(1981) or Brockwell and Davis (1991, Chapter 10) for more details]. 

In Lahiri (2003a), he generalized the approach of Hurvich and Zeger. His 
development now follows. We let e = e(P) be the parameter of interest and 
P the probability measure that generates the observed series. Let Tn be an 
estimator of e based on the observed series up to time n. The goal is to 
approximate the sampling distribution of a studentized statistic Rn that is used 
to draw inference about e. The bootstrapping is done on Rn and will be used 
to get estimates of e. See Lahiri (2003a, pp. 40-41) and Lahiri (2003a, Chapter 
9) for further discussion of the Hurvich and Zeger approach along with more 
detail about the use of frequency domain bootstraps (FDBs). 

5.8. THE SIEVE BOOTSTRAP 

Another time domain approach to bootstrap from a stationary stochastic 
process is called the sieve bootstrap. We let P be the unknown joint probability 
distribution of the "infinite time series sequence" (Xh X 2, X 3, ••• , X"' .... }. 
In the liD case we use the empirical distribution Fn or some other estimate 
of the marginal distribution F and the joint distribution for the first n observa­
tions is the product of the Fn s by independence. In this case, because the 
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observations in the time series are dependent, the joint distribution is not the 
product of the marginal distributions. 

_The idea of the sieve bootstrap is to choose a sequence of joint distributions 
[ Pn ]n>o called a sieve that approximates P. This sequence is such that for each 
n the probability measure ~n+l is a finer approximation toP than the previous 
member of the sequence Pn. This sequence of measures converges to P as 
n -7 oo in an appropriate sense. 

For a large class of stationary processes, Btihlmann (1997) presents a sieve 
bootstrap method based on a sieve of increasing order, a pth_order autoregres­
sive process. Read Btihlmann (1997) for more details. We will give a brief 
description similar to the description in Lahiri (2003a). Another approach 
suggested in Btihlmann (2002a) is based on a variable-length Markov chain. 
When considering the choice of a sequence of approximating distributions 
for the sieve, there is a tradeoff between the accuracy of the approximating 
distribution and its range of validity. This tradeoff is discussed in Lahiri 
(2002b). 

Now let us consider a stationary sequence [Xn] with n E Z, where Z is the 
set of positive integers with EX1 = J1 that admits a one-sided infinite moving 
average representation given by 

with 2..;=J3f < oo. This representation indicates that for autoregressive 

processes of finite order: Pn -7 oo as n -7 oo, but n-1 Pn -7 0 as n -7 oo. The 
autoregressive representation is given by 

Using the autoregressive representation above, we fit the parameters f3j to 
an AR (pn) model. The sieve is then based on the sequence of probability 
measures associated with the fitted AR (pn) model. For more details see Lahiri 
(2003a, pp. 41-43). In his paper, Btihlmann (1997) establishes the consistency 
of this autoregressive sieve bootstrap. 

5.9. HISTORICAL NOTES 

The use of ARIMA and seasonal ARIMA models for forecasting and control 
problems was first popularized by Box and Jenkins (1970, 1976). This work 
was recently updated in Box, Jenkins, and Reinsel (1994). A classic theoretical 
text on time series analysis is Anderson (1971). 

A popular common theoretical account of time series analysis is Brockwell 
and Davis (1991), which covers both time domain and frequency domain 
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analysis. Fuller (1976) is another excellent text at the high undergraduate or 
graduate school level that also covers both domains well. A couple of articles 
by Tong (1983, 1990) deal with nonlinear time series models. 

Bloomfield (1976), Brillinger (1981 ), and Priestley (1981) are all time series 
texts that concentrate strictly on the frequency domain approach. Hamilton 
(1994) is another major text on time series. Braun and Kulperger (1997) did 
some work on the Fourier transform approach to bootstrapping. 

The idea of bootstrapping residuals was described in Efron (1982a) in the 
context of regression. It is not clear who was the first to make the obvious 
extension of this to ARMA time series models. Findley (1986) was probably 
the first to point out some difficulties with the bootstrap approach particularly 
regarding the estimation of mean-square error. 

Efron and Tibshirani (1986) showed how bootstrapping residuals provided 
improved standard error estimates for the autoregressive parameter estimates 
for the Wolfer sunspot data. Stine (1987) and Thombs and Schucany (1990) 
provide refinements to obtain better prediction intervals. Other empirical 
studies are Chatterjee (1986) and Holbert and Son (1986). McCullough (1994) 
provides an application of bootstrapping prediction intervals for AR(p) 
models. 

Results for nonstationary autoregressions appear in Basawa, Mallik, 
McCormick, and Taylor (1989) and Basawa, Mallik, McCormick, Reeves, and 
Taylor (1991a,b ). Theoretical developments are given in Bose (1988) and 
Ki.insch (1989). 

Ki.insch (1989) is an attempt to develop a general theory for bootstrapping 
stationary time series. Bose (1988) also shows good asymptotic higher-order 
properties when applying model-based resampling to a wide class of statistics 
used with autoregressive processes. 

Shao and Yu (1993) apply the bootstrap for the sample mean in a general 
class of time series, namely, stationary mixing processes. Hall and Jing (1996) 
apply resampling methods to general dependent data situations. Lahiri (2003a) 
is the new authoritative and up-to-date text to cover time series and other 
dependent data problems, including extremes in stationary processes and 
spatial data models. 

Model-based resampling for time series was discussed by Freedman (1984), 
Freedman and Peters (1984a,b), Swanepoel and van Wyk (1986), and Efron 
and Tibshirani (1986). Li and Maddala (1996) provide a survey of related 
time domain literature on bootstrapping with emphasis on econometric 
applications. 

Peters and Freedman (1985) deal with bootstrapping for the purpose of 
comparing competing forecasting equations. Tsay ( 1992) provides an applied 
account of parametric bootstrapping of time series. 

Kabaila (1993a) discusses prediction in time series. Stoffer and Wall 
( 1991) apply the bootstrap to state space models for time series. Chen, Davis, 
Brockwell, and Bai (1993) use model-based resampling to determine the 
appropriate order for an autoregressive model. 
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Good higher-order asymptotic properties for block resampling [similar to 
the work in Bose (1988)] have been demonstrated by Lahiri (1991) and Gotze 
and Ki.insch (1996). Davison and Hall (1993) show that good asymptotic prop­
erties for the bootstrap generally depend crucially on the choice of a variance 
estimate. Lahiri (1992b) applies an Edgeworth correction in using the moving 
block bootstrap for both stationary and nonstationary time series models. 

Block resampling was introduced by Carlstein (1986). The key break­
through with the block resampling approach came later when Ki.insch (1989) 
provided many of the important theoretical developments on the block boot­
strap idea and introduced the idea of overlapping blocks. 

The stationary bootstrap was introduced by Politis and Romano (1994a). 
They also proposed the circular block bootstrap in an earlier work, Politis and 
Romano (1992a). Liu and Singh (1992b) obtain general results for moving 
block jackknife and bootstrap approaches to general types of weak depen­
dence. Liu (1988) and Liu and Singh (1995) deal with bootstrap approaches 
to general data sets that are not liD. For the most recent developments in 
block bootstrap theory and methods see Lahiri (2003a) and Lahiri (2006). 

Theoretical developments for general block resampling schemes followed 
the work of Ki.insch, in the articles Politis and Romano (1993a, 1994b), 
Bi.ihlmann and Ki.insch (1995), and Lahiri (1995). Issues of block length are 
addressed by Hall, Horowitz, and Jing (1995). Lahiri (2003a, pp. 175-186) 
covers optimal block sizes for estimating bias, variance, and distribution quan­
tiles. He covers much of the research from Hall, Horowitz, and Jing (1995). 

Fan and Hung (1997) use balanced resampling (a variance reduction tech­
nique that is covered in Chapter 7) to bootstrap finite Markov chains. Liu and 
Tang (1996) use bootstrap method for control charting in both the indepen­
dent and dependent situations. 

Frequency domain resampling has been discussed by Franke and Hardie 
(1992) with an analogy to nonparametric regression. Janas (1993) and 
Dahlhaus and Janas (1996) extended these results. Politis, Romano, and Lai 
(1992) provide bootstrap confidence bands for spectra and cross-spectra (fre­
quency domain analog, respectively, autocorrelation and cross-correlation 
functions in the time domain). 

The sieve bootstrap was introduced for a class of stationary stochastic pro­
cesses (that admit an infinite moving average representation) by Bi.ihlmann 
(1997). It is also covered in Section 2.10 of Lahiri (2003a). 


