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Jain Dubes and Chen (1987) and Chatterjee and Chatterjee (1983) also 
consid~red co~fidence intervals and the standard error of the estimat~rs, 
respectively. Chernick, Murthy, and Nealy (1988a,b !• Hirst (199.6) and Snapmn 
and Knoke (1985b) considered certain non-Gaussian popu~atwns. The most 
recent results on the .632 estimator and an enhancement of It called .632+ are 
given in Efron and Tibshirani (1997a). . . . . . . 

McLachlan has done a lot of research m discrrmmant analysis and particu­
larly on error rate estimation. His survey articl~ (Mc~achlan, 1986) provides 
a good review of the issues and the literature m.cludmg bootstra~ results up 
to 1986. Some of the developments discussed in this chapter appear m ~cLa~h­
lan (1992), where he devotes an entire chapter, (Chapter 10) to the estrmat1on 
of error rates. It includes a section on bootstrap (pp. 346-360). 

An early account of discriminant analysis methods is given in .Lache~bruch 
(1975). Multivariate simulation methods ~uch as those used m studies by 
Chernick, Murthy, and Nealy are covered m Johnson (1987) .. 

The bootstrap distribution for the median is also discussed m Efron (1982a, 
Chapter 10, pp. 77-78). Mooney and Duval (1993) discuss the problem of 
estimating the difference between two medians. . . . 

Justification (consistency results) for the bootstrap approach to mdiVI~ual 
bioequivalence came in Shao, Kubler, and Pigeot (2000). The surve~ article 
by Pigeot (2001) is an excellent reference for the advantages and .d~sadvan­
tages of the bootstrap and the jackknife in biom~di~al research, and 1t mcludes 
coverage of the individual bioequivalence apphcatwn. 

CHAPTER3 

Confidence Sets and 
Hypothesis Testing 

Because of the close relationship between tests of hypotheses and confidence 
intervals, we include both in this chapter. Section 3.1 deals with "nonparamet­
ric" bootstrap confidence intervals (i.e., little or no assumptions are made 
about the form of the distribution being sampled). 

There has also been some work on parametric forms of bootstrap confi­
dence intervals and on methods for reducing or eliminating the use of Monte 
Carlo replications. We shall not discuss these in this text but do include refer­
ences to the most relevant work in the historical notes (Section 3.5). Also, the 
parametric bootstrap is discussed briefly in Chapter 6. 

Section 3.1.2 considers the simplest technique, the percentile method. This 
method works well when the statistic used is a pivotal quantity and has a sym­
metric distribution [see Efron (1981c, and 1982a)]. 

The percentile method and various other bootstrap confidence interval 
estimates require a large number of Monte Carlo replications for the intervals 
to be both accurate (i.e., be as small as possible for the given confidence level) 
and nearly exact (i.e., if the procedure were repeated many times the percent­
age of intervals that would actually include the "true" parameter value is 
approximately the stated confidence levels). 

This essentially states for exactness that the actual confidence level of the 
interval is approximately the stated level. So, for example, if we construct a 
95% confidence interval, we would expect that our procedure would produce 
intervals that contain the true parameter in 95% of the cases. Such is the defi­
nition of a confidence interval. 

Unfortunately for "nonparametric" intervals, we cannot generally do this. 
The best we can hope for is to have approximately the stated coverage. Such 
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intervals will be called approximately correct or almost exact. As the sample 
size increases and the number of bootstrap Monte Carlo replications increases, 
we can expect the percentile method to be approximately correct and 

accurate. 
Another method that Hall (1992a) refers to as the percentile method is also 

mentioned in Section 3.1.2. Hall refers to Efron's percentile method as the 
"other" percentile method. . . . . 

For pivotal quantities that do not have symmetnc d1st~Ibutwns, the 
intervals can be improved by bias adjustment and acceleratiOn constants. 
This is the approach taken in Efron (1987) and is the topic of Section 
3.1.3. 

Another approach that also provides better bootstrap confidence intervals 
is called bootstrap iteration (or double bootstrap). This approach has been 
studied in detail by Hall and Martin, among others, and is covered in Section 
3.1.4. There we provide a review of research results and the developments 
from Martin (1990a) and Hall (1992a). 

In each of the sections, examples are given to instruct the reader in the 
proper application of the methods, to illustrate their accuracy and correct~ess. 
Important asymptotic results will be mentioned, but we shall not delve mto 
the asymptotic theory. . 

Section 3.1.5 deals with the bootstrap t method for generatmg bootstrap­
type confidence intervals. In some problems, the bootstrap t method may ?e 
appropriate and has better accuracy and correctness than the percentile 
method. It is easier to implement than methods involving Efron's corrections. 
It is not as computer intensive as the iterated bootstrap. Consequently, it is 
popular in practice. We applied it in the Passive Plus DX clinical trial at Pac­
esetter. So Section 3.1.5 is intended to provide the definition of it so that the 
reader may apply it. The bootstrap t was introduced by Efron, in his mono-
graph (Efron, 1982a). . 

In Section 3.2, the reader is shown the connectiOn between confidence 
intervals and hypothesis tests. This close connection enables the reader to see 
how a confidence interval for a parameter can be reinterpreted in terms of the 
acceptance or rejection of a hypothesis test with a null hypothesis that the 
parameter is a specified value. 

The confidence level is directly related to the significance level of the test. 
Knowing this, the reader will be able to test hypotheses by constructing boot­
strap confidence intervals for the parameter. 

In Section 3.3, we provide examples of hypothesis tests to illustrate the 
usefulness of the bootstrap approach. In some cases, we can compare the 
bootstrap tests with other nonparametric tests including the permutation tests 
from Good (1994) or Manly (1991, 1997). 

Section 3.4 provides an historical perspective on the literature for confi­
dence interval estimation and hypothesis testing using the bootstrap 
approach. 
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3.1. CONFIDENCE SETS 

Before introducing the various bootstrap-type confidence intervals, we will 
review what a confidence set or region is and then, in Section 3.1.1, present 
Hartigan's typical value theorem in order to motivate the percentile method 
of Section 3.1.2. Section 3.1.3 then explains how refinements can be made to 
handle asymmetric cases where the percentile method does not work well. 

Section 3.1.4 presents bootstrap interation. Bootstrap iteration or double 
bootstrapping is another approach to confidence intervals that overcomes the 
deficiencies of the percentile method. In Section 3.1.5, we present the boot­
strap t method that also overcomes deficiencies of the percentile method but 
is simpler and more commonly used in practice than the iterated bootstrap 
and other bootstrap modifications to the percentile method. 

What is a confidence set for a parameter vector? Suppose we have a param­
eter vector v that belongs to an n-dimensional Euclidean space (denoted by 
Rn). A confidence set with confidence coefficient 1- a is a set in Rn determined 
on the basis of a random sample and having the property that if the random 
sampling were repeated infinitely many times with a new region generated 
each time, then 100* (1 - a)% of the time the region will contain v. 

In the simplest case where the parameter is one-dimensional, the confi­
dence region will be an interval or the union of two or more disjoint 
intervals. 

In parametric families of population distributions involving nuisance param­
eters (parameters required to uniquely specify the distribution but which are 
not of interest to the investigator) or when very little is specified about the 
population distribution, it may not be possible to construct confidence sets 
which have a confidence coefficient that is exactly 1 - a for all possible v and 
all possible values of the nuisance parameters [see Bahadur and Savage (1956), 
for example]. We shall see that the bootstrap percentile method will at least 
provide us with confidence intervals that have confidence coefficient approach­
ing 1 - a as the sample size becomes very large. 

If we only assume that the population distribution is symmetric, then the 
typical value theorem of Hartigan (1969) tells us that subsampling methods 
(e.g., random subsampling) can provide confidence intervals that are exact 
(i.e., have confidence coefficient 1 - a for finite sample sizes). We shall 
now describe these subsampling methods and present the typical value 
theorems. 

3.1.1. Typical Value Theorems forM-Estimates 

We shall consider the case of independent identically distributed observations 
from a symmetric distribution on the real line. We denote then random vari­
ables by X1, X 2, ••• , Xn and their distribution by Fe. For any set A let Pe (A) 
denote the probability that a random variable X with distribution Fe has its 
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value in the set A. As in Efron (1982a, p. 69) we will assume that Fe has a 
symmetric density function /0 so that 

Pe(A) =LA f(x- e) dx, 

where 

r: f(x) dx = 1, f(x)?.O, and /(-x)=f(x). 

An M-estimate e(xb Xz, ... 'Xn) for e, is any solution to the equation 

Here we assume that the observed data Xi= xi fori== 1, 2, ... , n are fixed 
while t is the variable to solve for. 

We note that in general M-estimates need not be unique. The function 'I' 
is called the kernel, and 'I' is assumed to be antisymmetric and strictly increas­
ing [i.e.,'!'( -z) = -'P(z) and 'P(z +h)> 'P(z) for all z and for h > 0]. Examples 
of M-estimates are given in Efron (1982a). For an appropriately chosen func­
tions, '¥ many familiar estimates can be shown to be M-estimates including 
the sample mean and the sample median. 

Consider the set of integers (1, 2, 3, ... , n). The number of nonempty 
subsets of this set is 2n - 1. Let S be any one of these non-empty subsets. Let 
e, denote an M-estimate based on only those values X; for i belonging to s. 

Under our assumptions about 'I' these M-estimates will be different for 
differing choices of S. Now let It, 12 , ••• , I~ denote the following partition of 
the real line: 

and 

where a1 is the smallest fJ5, a2 is the second smallest fJs, and so on. We now are 
able to state the first typical value theorem. 

Theorem 3.1.1.1. The Typical Value Theorem (Hartigan, 1969). The true 
value of ()has probability 112n of being in the interval !1 for i = 1, 2, ... , 2n, 
where I, is defined as above. 

The proof of this theorem is given in Efron (1982a, pp. 70-71). He attributes 
the method of proof to the paper by Maritz (1979). The theorem came origi­
nally from Hartigan (1969), who attributes it to Tukey and Mallows. 
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We now define a procedure called random subsampling. Let S1, S2, S3 , •.• , 

S8 _1 be B -1 of the 2n -1 non-empty subsets of [1, 2, ... , n) selected at random 
without replacement and let It. h ... , !8 be the partition of the real line 
obtained by ordering the corresponding e, values, We then have the following 
typical value theorem, which can be viewed as a corollary to the previous 
theorem. 

Theorem 3.1.1.2. The true value of e has probability liB of being in the 
interval!; for i = 1, 2, ... , B where l; is defined as above. 

For more details and discussion about these results see Efron (1982a). The 
important point here is that we know the probability that each interval 
contains e. 

We can then construct an exact 100(j/B) percent confidence region for 1 :S::: 

j :S::: B - 1 by simply combining any j of the intervals. The most sensible 
approach would be to paste together the j intervals in the "middle" if a two­
sided interval is desired. 

3.1.2. Percentile Method 

The percentile method is the most obvious way to construct a col}fidence 
interval for a parameter based on bootstrap estimates. Suppose that e;* is the 
ith bootstrap estimate from the ith bootstrap sample where each bootstrap 
sample is of size n. By analogy with the case of random subsampling, we would 
expect that if we ordered the observations from smallest to largest, we would 
expect an interval that contains 90% of the et to be a 90% confidence interval 
for e. The most sensible way to choose the interval that excludes the lowest 
5% and the highest 5%. 

A bootstrap confidence interval generated this way is called a percentile 
method confidence interval or, more specifically, Efron's percentile method 
confidence interval. This result (the exact confidence level) would hold if the 
typical value theorem applied to bootstrap sample estimates just as it did to 
random subsample estimates. Remember, we also had the symmetry condition 
and the estimator had to be an M-estimator in Hartigan's theorem. 

Unfortunately, even if the distribution is symmetric and the estimator is an 
M-estimator as is the case for the sample median of, say, a Cauchy distribution, 
the bootstrap percentile method would not be exact (i.e., the parameter is 
contained in the generated intervals in exactly the advertised proportion of 
intervals as the number of generated cases becomes large). 

Efron (1982a, pp. 80-81) shows that for the median, the percentile method 
provides nearly the same confidence interval as the nonparametric interval 
based on the binomial distribution. So the percentile method works well in 
some cases even though it is not exact. 

Really, the main difference between random subsampling and bootstrap­
ping is that bootstrapping involves sampling with replacement from the origi-



58 CONFIDENCE SETS AND HYPOTHESIS TESTING 

nal sample whereas random subsampling selects without replacement from 
the set of all possible subsamples. As the sample size becomes large, the 
difference in the distribution of the bootstrap estimates and the subsample 
estimates becomes small. Therefore, we expect the bootstrap percentile inter­
val to be almost the same as the random subsample interval. So the percentile 
intervals inherit the exactness property of the subsample interval asymptoti­
cally (i.e., as the sample size becomes infinitely large). 

Unfortunately, in the case of small samples (especially for asymmetric dis­
tributions) the percentile method does not work well. But fortunately, there 
are modifications that will get around the difficulties as we shall see in the next 
section. 

In Chapter 3 of Hall (1992a), several bootstrap confidence intervals are 
defined. In particular, see Section 3.2 of Hall (1992a). In Hall's notation, 
F0 denotes the population distribution, F 1 the empirical distribution and 
F2 denotes the distribution of the samples drawn at random and with replace­
ment from F1. 

Let q>o be the unknown parameter of interest which is expressible as a func­
tional of the distribution F0• So q>o = cp(F0). A theoretical a-level percentile 
confidence interval for q>o (by Hall's definition) is the interval /1 = (-oo, If!+ t0 ), 

where t0 is defined so that 

P( (/Jo :::; If/+ to)= a. 

Alternatively, if we define 

j;(F0 , F1 ) = I[cp(F0 ):::; cp(F;) + t)- a, 

then t0 is a value oft such that !t(F0, F1) = 0. 
By analogy, a bootstrap one-sided percentile interval for q>o would be 

obtained by solving the equation 

since in bootstrapping, F 1 replaces F0 and F2 replaces F1• If t0 is a solution to 
Eq. (3.1 ), the interval ( -oo, cp( F2 ) + (fo) is a one-sided bootstrap percentile 
confidence interval for cp. Here cp(F2) is the bootstrap sample estimate for cp. 
This is a natural way to define a percentile confidence interval according to 
Hall. It can easily be approximated by Monte Carlo, but differs from Efron's 
percentile method. Hall refers to Efron's percentile as the "other" percentile 
method or the "backwards" percentile method. 

3.1.3. Bias Correction and the Acceleration Constant 

Efron and Tibshirani (1986, pp. 67-70) describe four methods for constructing 
approximate confidence intervals for a parameter e. They provide the assump-
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tions required for each method to work well. In going from the first method 
to the fourth, the assumptions become less restrictive while the methods 
become more complicated but more generally applicable. 

The first method i~ referred to as the standard method. It is obtained by 
taking th~ estima!or e of e and an estimate of its standard deviation cr. The 
interval [ e- CTZa, e + CTZa] is the standard lQO(l- a)% approximate confidence 
interval for e. This method works well if e has an approximate Gaussian dis­
tribution with mean e and standard deviation (J' independent of e. 

The second method is the bootstrap percentile method (Efron's definition) 
described in Section 3.1.2. It works well, when there exists a monotone trans­
formation <jJ = g( e), such that $ = g( e) is approximately Gaussian with mean 
<jJ and standard deviation r independent of </J. 

The third method is the bias-corrected bootstrap interval, which we discuss 
in this section. It works well if the transformation ¢ = g( e) is approximately 
Gaussian with mean <jJ- ZoT, where z0 is the bias correction and Tis the stan­
dard deviation of ¢ that does not depend on <jJ. 

The fourth method is the BCa }llethod, which incorporates an acceleration 
constant a. For it to work well, <jJ is approximately Gaussian with mean <jJ­
ZoT¢, where Zo is the bias correction and T¢ is the standard deviation of ¢, which 
does depend on <jJ as follows: T¢ = 1 + a<jJ, where a is the acceleration constant 
to be defined later in this section. These results are summarized in Table 6 of 
Efron and Tibshirani (1986) and are reproduced in Table 3.1. 

Efron and Tibshirani (1986) claim that the percentile method automatically 
incorporates normalizing transformations. To illustrate the difficulties that can 
be encountered with the percentile method, they consider the case where e is 
the bivariate correlation coefficient from a two-dimensional Gaussian distri­
bution and the sample size is 15. 

A In this case, there is no monotone transformation g that maps e into ¢ with 
</J Gaussian with mean <jJ and constant variance -r2 independent of <jJ. For a set 
of data referred to as the "law school data," Efron and Tibshirani (1986) show 
that the sample bivariate correlation is 0.776. 

Assuming we have bivariate Gaussian data with a sample of size 15 and a 
sample correlation estimate equal to 0.776, we would find that for a bootstrap 
sample the probability that the correlation coefficient is less than 0.776 based 
on the bootstrap estimate is only 0.431. 

For any monotone transformation, this would also be the probability that 
the transformed value of the bootstrap sample correlation is less than the 
transformed value of the original sample correlation [i.e., g(0.776)]. However, 
for the transformed values to be Gaussian or at least a good approximation 
to the Gaussian distribution and centered about g(0.776), this probability 
would have to be 0.500 and not 0.431. Note that for symmetric distributions 
like the Gaussian, the mean is equal to the median. But we do not see that 
here for the correlation coefficient. 

What we see here is that, at least for some values of e different from zero, 
no such transformation will work well. Efron and Tibshirani remedy this 
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Table 3.1 Four Methods of Setting Approximate Confidence Intervals for a Real 
Valued Parameter 8 

Method 

1. Standard 

2. Percentile 

3. Bias­
corrected 

4. BCa 

Abbreviation a-Level Endpoint 

8s[ a] e + 6-z(a) 

fJsc[a] 

c-t(I/J[ +----'--'[Z.::,-o+_z_Ca--7-:)]-;-:-]) 
Zo 1- a[zo + zCal] 

Correct if 

e = N(8, cs2
) cs is 

constant 
There exists a 

monotone 
transformation 
such that ~ = g(B), 
where, ¢ = g( 8), 
~ = N(¢, -r2

) and 
T is constant. 

There exists a 
monotone 
transformation 
such that 
~=N(I/J-Zo'f,T2 ) 
and zo and T are 
constant. 

There exists a 
monotone 
transformation 
such that 
~ =N(I/J-zo-r'" -rn 
where -r¢ = 1 + a¢ 
and zo and a are 
constant. 

Note: Each method is correct under more general assumptions than its predecessor. Methods 2. 
3, and 4 are defined in terms of the percentile of G, the bootstrap distribution. 
Source: Efron and Tibshirani (1986, Table 6) with permission from The Institute of Mathematical 
Statistics. 

problem by making a bias correction to the percentile method. Basically, !he 
percentile, method works if exactly 50% of the bootstrap distribution for e is 
less than e. 

By applying the Monte Carlo approximation, we determine an approxima­
tion to the bootstrap distribution. We find the 50th percentile of this distribu­
tion and call it eta. Taking this bias B to be e- e{0, we see that e- B equals 
eta and so B is called the bias correction. 

Another way to look at it, which is explicit but may be somewhat confusing, 
is to define zo = <I>-1{G(e)] (where <I>-1 is the inverse of the cumulative Gaussian 
distribution and G is the cumulative bootstrap sample distribution for e. For 
a central 100(1 - 2a)% confidence interval, we then take the lower endpoint 
to be d-1(<I>{2z0 + z(a)]) and the upper endpoint to be G-\<I>{2z0 + zll-al]). This 
is how Efron defines the bias correction method in Efron (1982a) and Efron 
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and Tibshirani (1986), where z<al satisfies <I>(zCaJ) = a. Note that we use the 
"hat" notation over the cumulative bootstrap distribution G to indicate that 
Monte Carlo estimate of it is used. 

It turns out that in the case of the law school data (assuming that it is a 
sample from a bivariate Gaussian distribution) the exact central 90% confi­
dence interval is [0.496, 0.898]. The percentile method gives an interval of 
[0.536, 0.911] and the bias-corrected method yields [0.488, 0.900]. Since the 
bias-corrected method comes closer to the exact interval, we can conclude, 
in this case, that it is better than percentile method for the correlation 
coefficient. 

What is important here is that this bias-correction method will work no 
matter what the value of e really is. This means that after the adjustment, the 
monotone transformation leads to a distribution that is approximately Gauss­
ian and whose variance does not depend on the transformed value, ¢. If the 
variance cannot be made independent of¢, then a further adjustment, referred 
to as the acceleration constant a, is required. 

Schenker (1985) provides an example for which the bias-correct percentile 
method did not work very well. It involves a .i random variable with 19 
degrees of freedom. In Efron and Tibshirani (1986) and Efron (1987) it is 
shown that the use of an acceleration constant overcomes the difficulty. It 
turns out in examples like Schenker's that there is a monotone transformation 
that works after a bias correction. The problem is that the resulting Gaussian 
distribution has a standard deviation r1 that depends linearly on ¢ (i.e., r"' = 1 
+ a¢, where a is called the acceleration constant). A difficulty in the applica­
tion of this modification to the bootstrap is the determination of the accelera­
tion constant, a. 

Efron found that a good approximation to the constant is one-sixth of the 
skewness of the score statistic evaluated at e. See Efron and Tibshirani (1986) 
for details and examples of the computations involved. 

Although this method seems to work in very general cases, it is complicated 
and may not be necessary. Bootstrap iteration to be explained in Section 
3.1.4 is an alternative, as is the bootstrap percentile t method of Section 
3.1.5. 

These methods have a drawback that they share with the bootstrap percen­
tile t intervals, namely, that they are not monotone in the assumed level of 
coverage (i.e., one could decrease the confidence level and not necessarily get 
a shorter interval that is contained in the interval obtained at the higher 
confidence level). This is not a desirable property and goes counter to our 
intuition about how confidence intervals should behave. 

3.1.4. Iterated Bootstrap 

A number of authors have contributed to the literature on bootstrap iteration, 
and we mention many of these contributors in the historical notes (Section 
3.4). Major contributions were made by Peter Hall and his graduate student 
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Michael Martin. Martin (1990a) provides a clear and up-to-date summary of 
these advances [see also Hall (1992a, Chapter 3)]. 

Under certain regularity conditions on the population distributions, there 
has developed an asymptotic theory for the degree of closeness of the boot­
strap confidence intervals to their stated coverage probability. Details can be 
found in a number of papers [e.g., Hall (1988b), Martin (1990a)]. 

An approximate confidence interval is said to be first-order accurate if its 
coverage probability differs from its advertised coverage probability by terms 
which go to zero at a rate of n-u2

• The standard intervals discussed in Section 
3.1.3 are first-order accurate. The BCa intervals of Section 3.1.3 and the iter­
ated bootstrap intervals to be discussed in this section are both second-order 
accurate (i.e., the difference goes to zero at rate n- 1

). 

A more important property for a confidence interval than just being accu­
rate would be for the interval to be as small as possible for the given coverage 
probability. It may be possible to construct a confidence interval using one 
method which has coverage probability of 0.95, and yet it may be possible to 
find another method to use which will also provide a confidence interval with 
coverage probability 0.95, but the latter interval is actually shorter! 

Confidence intervals that are "optimal" in the sense of being the shortest 
possible for the given coverage are said to be "correct." Efron (1990) provides 
a very good discussion of this issue along with some examples. 

A nice property of these bootstrap intervals (i.e., the BCa and the iterated 
bootstrap) is that in addition to being second-order accurate, they are also 
close to the ideal of "correct" interval in a number of problems where it makes 
sense to talk about "correct" intervals. 

In fact the theory has gone further to show for certain broad parametric 
families of distributions that corrections can be made to get third-order accu­
rate (i.e., with rate n-312) intervals (Hall, 1988; Cox and Reid, 1987a and Welch 
and Peers, 1963). 

Bootstrap iteration provides another way to improve the accuracy of boot­
strap confidence intervals. Martin (1990a) discusses the approach of Beran 
(1987) and shows for one-sided confidence intervals that each bootstrap itera­
tion improves the coverage by a factor of n- 112 and for two-sided intervals by 

-1 n . 
What is a bootstrap iteration? Let us now describe the process. Suppose 

we have a random sample X of size n with observations denoted by Xh X2, 
X 3 , •.. , Xn- Let Xt, Xi, X{, ... , x: denote a bootstrap sample obtained from 
this sample and let X* denote this sample. Let 10 denote a nominal 1 - a level 
confidence interval for a parameter¢ of the population from which the original 
sample was taken. For example, 10 could be a 1 - a level confidence interval 
for¢ obtained by Efron's percentile method. To illustrate the dependence of 
10 on the original sample X and the level 1 - a, we denote it as lo(aiX). We 
then denote the actual coverage of the intervallo( aiX) by no( a). 

Let f3a be the solution to 
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7ro(f3a) = P{8 E 10(f3a IX}= 1- a. (3.2) 

Now let 10(f3a1X*) denote the version of l 0 computed using the resample in 
place of the original sample. The resampling principle of Hall and Martin 
(1988a) states that to obtain better coverage accuracy than given by the origi­
nal intervall0 we use l 0(f3a.IX*) where 

f3a is the estimate of f3a 

in Equation (3.2) obtained by replacing ¢ with 8 and X with X*. To 
iterate again we just use the newly obtained interval in place of 10 and apply 
the same procedure to it. An estimate based on a single iteration is called 
the double bootstrap and is the most common iterated estimate used in 
practice. 

The algorithm just described is theoretically possible but in practice a 
Monte Carlo approximation must be used. In the Monte Carlo approximation 
B bootstrap resamples are generated. Details of the bootstrap iterated confi­
dence interval are given in Martin (1990a, pp. 1113-1114). Although it is a 
complicated procedure to describe the basic idea is that by resampling from 
the B bootstrap resamples, we can estimate the point f3a and use that estimate 
to correct the percentile intervals. Results for particular examples using simu­
lations are also given in Martin (1990a). 

Clearly, the price paid for this added accuracy in the coverage of the confi­
dence interval is an increase in the number of Monte Carlo replications. If we 
have an original sample size n and each bootstrap resample is of size n, then 
the number of replications will be nB1B2 where B1 is the number of bootstrap 
samples taken from the original sample and B 2 is the number of bootstrap 
samples taken from each resample. In his example of two-sided intervals for 
the studentized mean from a folded normal distribution, Martin (1990a) uses 
n = 10, B1 = B2 = 299. The examples do seem to be in agreement with the 
asymptotic theory in that a single bootstrap iteration does improve the cover­
age in all cases considered. 

Bootstrap iteration can be applied to any bootstrap confidence interval 
to improve the rate of convergence to the level 1 - a. Hall (1992a) remarks 
that although his version of the percentile method may be more accurate 
than Efron's, bootstrap iteration works better on Efron's percentile method. 
The reason is not clear and the observation is based on empirical findings. A 
single bootstrap iteration provides the same type correction as BCa does to 
Efron's percentile method. Using more than one bootstrap iteration is not 
common practice. This is due to the large increase in complexity and computa­
tion compared to the small potential gain in accuracy of the confidence 
interval. 
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3.1.5. Bootstrap Percentile t Confidence Intervals 

The iterated bootstrap method and the BCa confidence interval both 
provide improvements over Efron's percentile method, but ~oth ~re com­
plicated and the iterated bootstrap is even more ~omputer-mte.nstve th~n 
other bootstraps. The idea of the bootstrap percentde t method ts found m 
Efron (1982a). A clearer presentation can be found in Efron and Tibshirani 
(1993, pp. 160-167). As a consequence of these attributes, it is popular in 

practice. 
It is a simple method and has higher-order accuracy compared to Efron's 

percentile method. To be precise, bootstrap percentile t confidence intervals 
are second-order accurate (when they are appropriate). See Efron and Tib­
shirani (1993, pp. 322-325). Consequently, it is popular in practice. We used 
it in the Passive Plus DX clinical trial. 

We shall now describe it briefly. Suppose that we have a parameter 8 and 
an estimate eh for e. Let 8* be a nonparametric bootstrap estimate for 8 based 
on a bootstrap sample and let S* be an estimate of the standard deviation for 
eh based on the bootstrap samples. Define T* = (8* - eh)IS*. For each of the 
B bootstrap estimates 8*, there is a corresponding T*. We find the percentiles 
ofT*. For an approximate two-sided 100(1- 2a)% confidence interval for 8, 
we take the interval [8h -ttl-alS, eh -t(ad, where t(l-al is the 100(1- a) percen­
tile of the T* values and t(a) is the 100a percentile of the T* values and S is 
the estimated standard deviation for eh. This we call the bootstrap t (or boot­
strap percentile t as Hall refers to it) two-sided 100(1 - 2a)% confidence 
interval for . 

A difficulty with the bootstrap t is the need for an estimate of the 
standard deviation S for eh and the corresponding bootstrap estimate S*. 
In some problems there are obvious estimates, as in the simple case of a 
sample mean or the difference between the experimental group and control 
group means). For more complex parameters (e.g., Cpk) S may not be 
available. 

3.2. RELATIONSHIP BETWEEN CONFIDENCE INTERVALS 
AND TESTS OF HYPOTHESES 

In Section 3.1 of Good (1994), hypothesis testing for a single location param­
eter, 8, of a univariate distribution is introduced. In this it is shown how 
confidence intervals can be generated based on the hypothesis test. Namely 
for a 100(1 - a)% confidence interval, you include the values of 8 at which 
you would not reject the null hypotheses at the level a. Conversely, if we 
have a 100(1 - a)% confidence interval for e, we can construct an a level 
hypothesis test by simply accepting the hypothesis that 8 = 80 if 8o is contained 
in the 100(1 - a)% confidence interval for 8 and rejecting if it is outside of 
the interval. 
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In problems involving nuisance parameters, this procedure becomes 
more complicated. Consider the case of estimating the mean fl of a normal 

distribution when the variance cf is unknown. The statistic :; -:J/; has 

Student's t distribution with n - 1 degrees of freedom where 

Here n is the sample size and xi is the ith observed value. What is nice about 
the t statistic is that its distribution is independent of the nuisance parameter 
d and it is a pivotal quantity. Because its distribution does not depend on d 
or any other unknown quantities, we can use the tables of the t distribution 

to determine probabilities such as P[a:::; t:::; b ], where t = :;1n· 
Now t is also a pivotal quantity, which means that probability statements 

like the one above can be converted into confidence statements involving the 
unknown mean, fl· So if 

P[ a:::; t:::; b] = 1- a, (3.3) 

then the probability is also 1 - a that the random interval 

[
- bs _ as J x-- x--

J";;' J";; 
(3.4) 

includes the true value of the parameter fl, This random interval is then a 
100(1 - a)% confidence interval for fl· 

The interval (3.4) is a 100(1 - a)% confidence interval for fl, and we can 
start with Eq. (3.3) and get Eq. (3.4) or vice versa. If we are testing the hypoth­
esis that fl = flo versus the alternative that fl differs from flo, using (3.2), we 
replace fl with flo in the t statistic and reject the hypothesis at the a level of 
significance if t < a or if t > b. 

We have seen earlier in this chapter how to construct various bootstrap 
confidence intervals with confidence level approximately 100(1 - a)%. Using 
these bootstrap confidence intervals, we will be able to construct hypothesis 
tests by rejecting parameter values if and only if they fall outside the confi­
dence interval. In the case of a translation family of distributions, the power 
of the test for the translation parameter is connected to the width of the con­
fidence interval. 

In the next section we shall illustrate the procedure by using a bootstrap 
confidence interval for the ratio of two variances in order to test the equality 
of the variances. This one example should suffice to illustrate how bootstrap 
tests can be obtained. 
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3.3. HYPOTHESIS TESTING PROBLEMS 

In principle, we can use any bootstrap confidence int.er.val for a p~ramete~ to 
construct a hypothesis test just as we have described 1t m the prevwus sect10n 
(as long as we have a pivotal or asymptotically pivotal q~antity or ~ave ~o 
nuisance parameters). Bootstrap iteration and the use of bws correctiOn With 
the acceleration constant are two ways by which we can provide more accuracy 
to the confidence interval by making the interval shorter without increasing 
the significance level. Consequently, the corresponding hypothesis test based 
on the iterated bootstrap or BCa confidence interval will be more powerful 
than the test based on Efron's percentile interval, and it will more closely 
maintain the advertised level of the test. 

Another key point that relates to accuracy is the choice of a test statistic 
that is asymptotically pivotal. Fisher and Hall (1990) pointed out that tests 
based on pivotal statistics often result in significance levels that differ from 
the advertised level by O(n-2

) as compared to O(n- 1
) for tests based on non-

pivotal statistics. . 
As an example, Fisher and Hall (1990) show that for the one-way analysis 

of variance, the F ratio is appropriate for testing equality of means wh~n the 
variances are equal from group to group. For equal (homogeneous) vanances 
the F ratio test is asymptotically pivotal. . 

However, when the variances differ (i.e., are heterogeneous) the F ratio 
depends on these variances, which are nuisance parameters. For the hetero­
geneous case the F ratio is not asymptotically pivotal. Fi~her an.d Hall use .a 
statistic first proposed by James (1951) which is asymptotically pivotal. Addi­
tional work on this topic can be found in James (1954). 

In our example, we will be using an F ratio to test for equality of two vari­
ances. Under the null hypothesis that the two variances are equal, the F ratio 
will not depend on the common variance and is therefore pivotal. 

In Section 3.3.2 of Good (1994), he points out that permutation tests had 
not been devised for this problem. On the other hand, there is no problem 
with bootstrapping. If we have n 1 samples from one population and n2 from 
the second, we can independently resample with sample sizes of n1 and n2 from 
population one and population two, respectively. 

We construct a bootstrap value for the F ratio by using a bootstrap sample 
of size n 1 from the sample from population one to calculate the numerator (a 
sample variance estimate for population one) and a bootstrap samp~e of size 
n2 from the sample from population two to calculate the denommator (a 
sample variance estimate for population two). Since the two variances are 
equal under the null hypothesis, we expect the ratio to be close to ~ne .. By 
repeating this many times, we are able to get a Monte Carlo approx1mat10n 
to the bootstrap distribution for the F ratio. This distribution should be cen­
tered about one when the null hypothesis is true, and the extremes of the 
bootstrap distribution tell us how far from one we need to set our threshold 
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for the test. Since the F ratio is pivotal under the null hypothesis, we use the 
percentiles of the Monte Carlo approximation to the bootstrap distribution to 
get critical points from the hypothesis test. Alternatively, we could use the 
more sophisticated bootstrap confidence intervals, but in this case it is not 
crucial. 

In the above example under the null hypothesis we assume uf/u~ = 1, and 
we would normally reject the null hypothesis in favor of the alternative that 
af/u~ :t 1, if the F ratio differs significantly from 1. However, in Hall (1992a, 
Section 3.12) he points out that the F ratio for the bootstrap sample should 
be compared or "centered" at the sample estimate rather than at the hypoth­
esized value. Such an approach is known to generally lead to more powerful 
tests than the approach based on sampling at the hypothesized value. See Hall 
(1992a) or Hall and Wilson (1991) for more examples and a more detailed 
discussion of this point. 

3.3.1. Tendril DX Lead Clinical Trial Analysis 

In 1995 Pacesetter Inc., a St. Jude Medical Company that produces pacemak­
ers and leads for patients with bradycardia, submitted a protocol to the United 
States Food and Drug Administration (FDA) for a clinical trial to demon­
strate the safety and effectiveness of an active fixation steroid eluting lead. 
The study called for the comparison of the Tendril DX model l388T with a 
concurrent control, the market-released Tendril model l188T active fixation 
lead. 

The two leads are almost identical, with the only differences being the use 
of titanium nitride on the tip of the l388T lead and the steroid eluting plug 
also in the l388T lead. Both leads were designed for implantation in either 
the atrial or the ventricular chambers of the heart, to be implanted with 
dual chamber pacemakers (most commonly Pacesetter's Trilogy DR+ pulse 
generator). 

From the successful clinical trials of a competitor's steroid eluting leads and 
other research literature, it is known that the steroid drug reduces inflamma­
tion at the area of implantation. This inflammation results in an increase in 
the capture threshold for the pulse generator in the acute phase (usually con­
sidered to be the first six months post-implant). 

Pacesetter statisticians (myself included) proposed as its primary endpoint 
for effectiveness a 0.5-volt or greater reduction in the mean capture threshold 
at the three-month follow-up for patients with 1388T leads implanted in the 
atrial chamber when they are compared to similar patients with 1188T leads 
implanted in the atrial chamber. The same hypothesis test was used for the 
ventricular chamber. 

Patients entering the study were randomized as to whether they received 
the l388T steroid lead or the 1188T lead. Since the effectiveness of steroid is 
well established from other studies in the literature, Pacesetter argued that it 
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would be unfair to patients in the study to give them only a 50-50 chance of 
receiving the 1388T lead (which is expected to provide less inflammation and 
discomfort and lower capture thresholds). 

So Pacesetter designed the trial to have reasonable power to detect a 
0.5-volt improvement and yet give the patient a 3-to-1 chance of receiving 
the 1388T lead. Such an unbalanced design required more patients for stati­
stical conformation of the hypothesis (i.e., based on Gaussian assumptions, 
a balanced design required 50 patients in each group, whereas with the 
3-to-1 randomization 99 patients were required in the experimental group and 
33 in the control group to achieve the same power for the test at the 0.05 sig­
nificance level), a total of 132 patients compared to the 100 for the balanced 
design. 

The protocol was approved by the FDA and the trial proceeded. Interim 
reports and a pre-market approval report (PMA) were submitted to the FDA 
and the leads were approved for market release in June 1997. 

Capture thresholds take on very discrete values due to the discrete pro­
grammed settings. Since the early data at three months was expected to be 
convincing but the sample size possibly relatively small, nonparametric 
approaches were taken as alternatives to the standard t tests based on Gauss­
ian assumptions. 

The parametric methods would only be approximately valid for large 
sample sizes due to the non-Gaussian nature of capture threshold distributions 
(possibly skewed, discrete and truncated). The Wilcoxon rank sum test was 
used as the non parametric standard for showing improvement in the mean (or 
median) of the capture threshold distribution, and the bootstrap percentile 
method was also used to test the hypothesis. 

Figures 3.1 and 3.3 show the distributions (i.e., histograms) of bipolar 
capture thresholds for 1188T and 1388T leads in the atrium and the ventricle, 
respectively, at the three-month follow-up visit. The variable, named "leadloc," 
refers to the chamber of the heart where the lead was implanted. 

Figures 3.2 and 3.4 provide the bootstrap histogram of the difference in 
mean atrial capture threshold and mean ventricular capture threshold, respec­
tively, for the 1388T leads versus the 1188T leads at the three-month 
follow-up. 

The summary statistics in the box are N, the number of bootstrap replica­
tions; Mean, the mean of the sampling distribution; Std Deviation, the stan­
dard deviation of the bootstrap samples; Minimum, the smallest values out of 
the 5000 bootstrap estimates of the mean difference; and Maximum, the 
largest value out of the 5000 bootstrap estimates of the mean difference. Listed 
on the figures is the respective number of samples for the control (1188T) 
leads and for the investigational (1388T) leads in the original sample for which 
the comparison is made. 

It also shows the mean difference of the original data that should be (and 
is) close in value to the bootstrap estimate of the sample mean. The estimate 
of the standard deviation for the mean difference is also given on the figures. 
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Figure 3.1 Capture threshold distributions for the three-month visit (Ieadloc; atrial 
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We note that this too is very close in value to the bootstrap estimate for these 
data. 

The histograms are based 5000 bootstrap replications on the mean differ­
ences. Also shown on the graph of the histogram is the lower 5th percentile 
(used in Efron's percentile method as the lower bound on the true difference 
for the hypothesis test). The proportion of the bootstrap distribution below 
zero provides a bootstrap percentile p-value for the hypothesis of no improve­
ment versus a positive improvement in capture threshold. 

Due to the slight skewness in the shape of the histogram that can be seen 
in Figures 3.1 and 3.3, the Pacesetter statisticians were concerned that the 
percentile method for determining the bootstrap lower confidence bound on 
the difference in the mean values might not be sufficiently accurate. 

The bootstrap percentile t method was considered, but time did not permit 
the method to be developed in time for the submission. In a later clinical trial, 
Pacesetter took the same approach with the comparison of the control and 
treatment for the Passive Plus DX clinical trial. 

The bootstrap percentile t method is a simple method to program and 
appears to overcome some of the shortcomings of Efron's percentile method 
without the complications of bias correction and acceleration constants. This 
technique was first presented by Efron as the bootstrap (Efron, 1982a, Section 
10.1 0). Later, in Hall (1986a) asymptotic formulas were developed for the 
coverage error of the bootstrap percentile t method. This is the method dis­
cussed previously in Section 3.1.5. 

The Passive Plus DX lead is a passive fixation steroid eluting lead that was 
compared with a non-steroid approved version of the lead. The 3: 1 random­
ization of treatment group to control group was used in the Passive Plus study 
also. 

In the Passive Plus study, the capture thresholds behaved similarly to those 
for the leads in the Tendril OX study. The main difference in the results was 
that the mean differences were not quite as large (i.e., close to the 0.5-volt 
improvement for the steroid lead over the non-steroid lead, whereas for 
Tendril DX the improvement was close to a 1.0-volt improvement). 

In the Passive Plus study, both the bootstrap percentile method lower 95% 
and the bootstrap percentile t method lower 95% confidence bounds were 
determined. 

3.4. AN APPLICATION OF BOOTSTRAP CONFIDENCE INTERVALS 
TO BINARY DOSE-RESPONSE MODELING 

At pharmaceutical companies, a major part of the early phase II development 
is the establishment of a dose-response relationship for a drug that is being 
considered for marketing. At the same time estimation of doses that are mini­
mally effective or maximally safe are important to determine what is the best 
dose or small set of doses to carry over into phase III trials. The following 
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example, Klingenberg (2007), was chosen because it addresses methods that 
are important in improving the phase 2 development process for new phar­
maceuticals (an important application) and it provides an example where 
resampling methods are used in a routine fashion. Permutation methods are 
used for p-value adjustment due to multiplicity, and bootstrap confidence 
intervals are used to estimate the minimum effective dose after proof of 
concept. 

In the spirit of faster development of drugs through adaptive design con­
cepts, Klingenberg (2007) proposes a unified approach to determining proof 
of concept with a new drug followed by dose-response modeling and dose 
estimation. In this paper, Klingenberg describes some of the issues that have 
motivated this new statistical research. The purpose of the paper is to provide 
a unified approach to proof of concept (PoC) phase 2a clinical trials with the 
dose finding phase 2b trials in an efficient way when the responses are binary. 
The goal at the end of phase 2 is to find a dose for the drug that will be safe 
and effective and therefore will have a good chance for success in phase 3. 
Klingenberg cites the following statistics as an indication of the need to find 
different approaches that have better chances of achieving the phase 2 
objectives. 

He notes that the current failure rate for phase 3 trials is approaching 50%, 
largely attributed to improper target dose estimation/selection in phase II and 
incorrect or incomplete knowledge of the dose-response, and the FDA reports 
that 20% of the approved drugs between 1980 and 1989 had the initial dose 
changed by more than 33%, in most cases lowering it. So current approaches 
to phase 2 trials are doing a poor job of achieving the objectives since poor 
identification of dose is leading to the use of improper doses that lead to 
wasted phase 3 trials and even when the trials succeed, they often do so with 
a less than ideal choice of dose and in the post-marketing phase the dose is 
determined to be too high and reduced dramatically. 

The idea of the approach is to use the following strategy: (1) Work with 
the clinical team to identify a reasonable class of potential dose-response 
models; (2) from this comprehensive set of models, choose the ones that best 
describe the dose-response data; (3) use model averaging to estimate a target 
dose; ( 4) decide which models, if any, significantly pick up the signal, establish­
ing PoC; (5) use the permutation distribution of the maximum penalized 
deviance over the candidate set to determine the best model (sO); and (6) use 
the best model to estimate the minimum effective dose (MED). Important 
aspects of the approach are the use of permutation methods to determine 
adjusted p-values and control the error rate of declaring spurious signals as 
significant (due to the multiplicity of models considered). A thorough evalu­
ation and comparison of the approach to popular contrast tests reveals that 
its power is as good or better in detecting a dose-response signal under a 
variety of situations, with many more additional benefits: It incorporates 
model uncertainty in proof of concept decisions and target dose estimation, 
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yields confidence intervals for target dose estimates (MED), allows for adjust­
ments due to covariates, and extends to more complicated data structures. 
Klingenberg illustrates his method with the analysis of a Phase II clinical 
trial. 

The bootstrap enters into this process as the procedure for determining 
confidence intervals for the dose. Permutation methods due to Westfall and 
Young (1993) were used for the p-value adjustment. Westfall and Young 
(1993) also devised a bootstrap method for p-value adjustment that is very 
similar to the permutation approach and could also have been used. We 
cover the bootstrap method for p-value adjustment with some applications in 
Chapter 8. 

The unified approach that is used by Klingenberg is similar to the approach 
taken by Bretz, Pinheiro, and Branson (2005) for normally distributed data 
but applied to binomial distributed data. MED estimation in this paper follows 
closely the approach of Bretz, Pinheiro, and Branson (2005). A bootstrap 
percentile method confidence interval forMED is constructed using the fit to 
the chosen dose-response model. The confidence interval is constructed con­
ditional on the establishment of PoC. Klingenberg illustrates the methodology 
by reanalyzing data from a phase 2 clinical trial using a unified approach. 

In Klingenberg's example, the key variable is a binary indicator for the 
relief of symptoms from irritable bowl syndrome (IBS), a disorder that is 
reported to affect up to 30% of all Americans at sometime during their lives 
(American Society of Colon and Rectal Surgeons, www.fascrs.org). A phase 
II clinical trial investigated the effcacy of a compound against IBS in women 
at k = 5 dose levels ranging from placebo to 24 mg. Expert opinion was used 
to determine a target dose. Here, Klingenberg reanalyzes these data within 
the statistical framework of the unified approach. 

Preliminary studies with only two doses indicated a placebo effect of roughly 
30% and a maximal possible dose effect of 35%. However, prior to the trial, 
investigators were uncertain about the monotonicity and curvature of a pos­
sible dose effect. The first eight models and the zero effect model are pictured 
in Figure 3.5 for a particular prior choice of parameter values, cover a broad 
range of dose-response shapes deemed plausible for his particular compound, 
and were selected to form the candidate set. The candidate models had to be 
somewhat broad because the investigators could not rule out strongly concave 
or convex patterns or even a down-tum at higher doses, and hence the candi­
date set includes models to the see these possible effects. All models in Figure 
3.5, most with fractional polynomial (Roystone and Altman, 1994) linear 
predictor form, are fit to the data by maximum likelihood, but some of the 
models might not converge for every possible data set. 

The author is interested in models that pick up a potential signal observed 
in a dose-response study. To this end, he compared each of the eight models 
to the model of no dose effect via a (penalized) likelihood ratio test. A descrip­
tion of the models is given in Table 3.2. 
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Figure 3.5 A zero effect model and eight candidate dose-response models. [Taken from 

Klingenberg (2007) with permission.] 

Table 3.2 Dose-Response Models for the Efficacy of Irritable Bowel Syndrome 
Compound 

Number of 

M Model Link Predictor Permutations 

M1: Logistic logit f3o + f3,d 2 

M2: Log-Log log-log f3o + /M 2 

M3: Logistic in log-dose logit /30 + f31log(d + 1) 2 

M4: Log-linear log f3o + f31d 2 

Ms: Double-exponential identity /30 + f31exp( exp(d/max(d))) 2 

M6: Quadratic identity f3o + f31d + Acf2 3 

M1: Fractional Poly logit /30 + f31log(d + 1) + A!(d + 1) 3 

Ms: Compartment identity /30 + f3tdexp(-d/A), A> 0 3 

M9: Square root logit f3o + /31d112 2 

M!O: Em ax logit f3o + f31di(A +d), A > 0 3 

Source: Taken from Klingenberg (2007) with permission. 
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Table 3.3 G; -Statistics,p-Values, Target Dose Estimates and Model Weights 

Model 
Number Model Type 

Logistic 
Log-Log 
Logistic in 

log-dose 
Log-linear 
Double-

exponential 
Quadratic 
Fractional 

Polynomial 
Compartment 

Raw 
c.: p-Value 

3.68 0.017 
3.85 0.015 

10.53 <lo-3 

3.25 0.022 
0.90 0.088 

6.71 0.005 
15.63 <lo-4 

11.79 do-' 

Critical value 2.40 

Adjusted MED Model Weight 
p-Value (mg) (%) 

0.026 N/A 0 
0.024 N/A 0 
0.001 7.9 6 

0.032 N/A 0 
0.106 N/A 0 

0.005 7.3 1 
<lo-4 0.7 81 

<lo-3 2.5 12 

MED (avg.) = 1.4 

95% Conf. Int. = [0.4, 12.0] 

Source: Adapted from Klingenberg (2007) with permission. 

Table 3.3 gives the results for the tests of the models including the raw and 
adjusted p-values. Also included are the weights used in the model averaging. 
For each model that was included the point estimate of the MED is given. 
Also we see that the weighted average of the four selected models is 1.4 and 
the 95% bootstrap percentile confidence interval is [0.4, 12.0]. The critical 
value for the null (permutation) distribution of the maximum penalized devi­
ance is shown to be 2.4, and seven of the eight models (all but M5) have a test 
statistic that exceeds the critical value. But only models (M3, M6, M7, and M8) 

were used in the final averaging. 

3.5. HISTORICAL NOTES 

Bootstrap confidence intervals were introduced in Efron (1982a, Chapter 10). 
Efron's percentile method and the bias corrected percentile method were 
introduced at that time. Efron also introduced in Efron (1982a) the bootstrap 
t intervals and illustrated these techniques with the median as the 
parameter. 

It was recognized at that time that confidence interval estimation was a 
tougher problem than estimating standard errors and considerably more boot­
strap samples would be required (i.e., 1000 bootstrap samples for confidence 
intervals where only 100 would be required for standard error estimates). For 
more discussion of this issue see Section 7.1. 

In an important work, Schenker (1985) shows that bias adjustment to 
Efron's percentile method is not always sufficient to provide "good" confi-
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dence intervals. Nat Schenker's examples motivated Efron to come up with 
the use of an acceleration constant as well as a bias correction in the modifica­
tion of the confidence interval endpoints. This led to a significant improvement 
in the bootstrap confidence intervals and removed Schenker's objections. 

The idea of bootstrap iteration to improve confidence interval estimation 
appears in Hall (1986a), Beran (1987), Loh (1987), Hall and Martin (1988a), 
and DiCiccio and Romano (1988). The methods of Hall, Beran, and Loh all 
differ in the way they correct the critical point(s). Loh refers to his approach 
as bootstrap calibration. 

Hall (1986b) deals with sample size requirements. Specific application to 
the confidence interval estimation for the correlation coefficient is given in 
Hall, Martin, and Schucany (1989). For further developments in bootstrap 
iteration see Martin (1990a), Hall (1992a), or Davison and Hinkley (1997). 

Some of the asymptotic theory is based on formal Edgeworth expansions 
that were rigorously developed in Bhattacharya and Ghosh (1978) (see Hall 
( 1992a) for a detailed account with applications to the bootstrap]. Other 
asymptotic expansions such as saddlepoint approximations may provide com­
parable confidence intervals without the need for Monte Carlo [see the mono­
graph by Field and Ronchetti (1990) and the papers by Davison and Hinkley 
(1988) and Tingley and Field (1990)]. 

DiCiccio and Efron (1992) also obtain very good confidence intervals 
without Monte Carlo for data from an exponential family of distributions. 
DiCiccio and Romano (1989a) also produce accurate confidence limits by 
making some parametric assumptions. 

Some the research in the 1980s and late 1990s suggests that the Monte Carlo 
approximation may not be necessary (see Section 7.3 and the references 
above) or that the number of Monte Carlo replications can be considerably 
reduced by variance reduction techniques (see Section 7.2 and Davison, 
Hinkley, and Schechtman (1986), Therneau (1983), Hesterberg (1988), Johns 
(1988), and Hinkley and Shi 1989]. The most recent developments can be 
found in Hesterberg (1995a,b, 1996, 1997). 

Discussions of bootstrap hypothesis tests appear in the early paper of Efron 
(1979a) and some work can be found in Beran (1988c), Hinkley (1988), Fisher 
and Hall (1990) and Hall and Wilson (1991). Specific applications and Monte 
Carlo studies of bootstrap hypothesis testing problems are given in Dielman 
and Pfaffenberger (1988), Rayner (1990a,b), and Rayner and Dielman 
(1990). 

Fisher and Hall (1990) point out that even though there are close connec-
tions between bootstrap hypothesis tests and confidence intervals there are 
also important differences which lead to specialized treatment. They recom­
mend the use of asymptotic pivotal quantities in order to maintain a close 
approximation to the advertised significance level for the test. 

[deas are illustrated using the analysis of variance problem with both real 
and simulated data sets. Results based on Edgeworth expansions and Cornish­
Fisher expansions clearly demonstrate the advantage of bootstrapping pivotal 

HISTORICAL NOTES 77 

statistics for both hypothesis testing and confidence intervals [see Hall (1992a)]. 
Lehmann (1986) is the second edition of a classic reference on hypothesis 
testing and any reader wanting a rigorous treatment of the subject would be 
well advised to consult that text. 

The first application of Edgeworth expansions to derive properties for the 
bootstrap is Singh (1981). The work of Bickel and Freedman (1981) is similar 
to that of Singh (1981) and also uses Edgeworth expansions. Their work shows 
how bootstrap methods correct for skewness. 

Both papers applied one-term Edgeworth expansion corrections. Much of 
the development of Edgeworth expansions goes back to the determination of 
particular cumulants, as in James (1955, 1958). 

The importance of asymptotically pivotal quantities was not brought out in 
the early papers because the authors considered a nonstudentized sample 
mean and assumed the population variance is known. Rather this result was 
first mentioned by Babu, and Singh in a series of papers (Babu and Singh, 
1983, 1984a, and 1985). Another key paper on the use of Edgeworth expan­
sions for hypothesis testing is Abramovitch and Singh (1985). 

Hall (1986a, 1988b) wrote two key papers which demonstrate the value 
of asymptotically pivotal quantities in the accuracy of bootstrap confidence 
intervals. 

Hall (1986a) derives asymptotic formulas for coverage error of the boot­
strap percentile t confidence intervals and Hall (1988b) gives a general theory 
for bootstrap confidence intervals. Theoretical comparisons of variations on 
bootstrap percentile t confidence intervals are given in Bickel (1992). Other 
papers that support the use of pivotal statistics are Beran (1987) and Liu and 
Singh (1987). 

Methods based on symmetric bootstrap confidence intervals are introduced 
in Hall (1988a). Hall also defines "short" bootstrap confidence intervals in 
Hall (1988b) [see also Hall (1992a) for some discussions]. The idea for the 
"short" bootstrap confidence intervals goes back to Buckland (1980, 1983). 

Efron first proposed his version of the percentile method in Efron (1979a) 
[see also Efron (1982a) for detailed discussions]. The BCa intervals were first 
given in Efron (1987). Buckland (1983, 1984, 1985) provide applications for 
Efron's bias correction intervals along with algorithms for their 
construction. 

Bootstrap iteration in the context of confidence intervals is introduced in 
Hall (1986a) and Beran (1987). Hall and Martin (1988a) develop a general 
framework for bootstrap iteration. Lob (1987) introduced the notion of boot­
strap calibration. When applied to bootstrap confidence intervals, calibration 
is equivalent to bootstrap iteration. 

Other important works related to confidence intervals and hypothesis 
testing include Beran (1986, 1990a,b ). 


