
CHAPTER2 

Estimation 

In this chapter, we deal with problems involving point estimates. Section 2.1 
covers the estimation of the bias of an estimator by the bootstrap technique. 
After showing you how to use the bootstrap to estimate bias in general, we 
will focus on the important application to the estimation of error rates in the 
classification problem. 

This will require that we first provide you with an introduction to the clas
sification problem and the difficulties with the classical estimation procedures 
when the training set is small. Another application to classification problems, 
the determination of a subset of features to be included in the classification 
rule, will be discussed in Section 8.2. 

Section 2.2 explains how to bootstrap to obtain point estimates of location 
and dispersion parameters. When the distributions have finite second moments, 
the mean and the standard deviation are the common measures. However, we 
sometimes have to deal with distributions that do not even have first moments 
(the Cauchy distribution is one such example). 

Such distributions come up in practice when taking ratios or reciprocals of 
random variables where the random variable in the denominator can take on 
the value zero or values close to zero. The commonly used location parameter 
is the median, and the interquartile range R is a common measure of disper
sion where R = L 75 - L 25 for L 75 the 75th percentile of the distribution and L 25 

the 25th percentile of the distribution. 

2.1. ESTIMATING BIAS 

2.1.1. How to Do It by Bootstrapping 

Let E(X) denote the expected (or mean) value of a random variable X. For 
an estimator e of a parameter 8, we consider the random variable e- 8 for 
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our X. The bias of an estimator e for 8 is defined to be b = E( {)- 8). As an 
example, the sample variance, 

based on a sample of n independent and identically distributed random vari
ables X~, X2, ... , Xn from a population distribution with a finite variance, is 
an unbiased estimator for rr2

, the population variance where 

On the other hand, for Gaussian populations the maximum likelihood estima
tor for <Y2 is equal to 

It is a biased estimator with the bias equal to 

since 

The bootstrap estimator B* of b is then E( 8*- e), where 8* is an estimate 
of 8 based on a bootstrap sample. A Monte Carlo approximation to B* is 
obtained by doing k bootstrap replications as described in Section 1.1. 

For the ith bootstrap replication, we denote the estimate of 8 by 8,*. The 
Monte Carlo approximation to B* is· the average of the differences between 
the bootstrap sample estimates 8[ of 8 and the original sample estimate e, 

k 

BMonte = 2:,(8t- e)/k. 
i~l 

Generally, the purpose of estimating bias is to improve a biased estimator 
by subtracting an estimate of its bias from it. In Section 2.1.2, we shall see that 
Efron's definition of the bias is given by the negative of the definition given 
here [i.e., B* = E( {j- 8*)], and consequently we will add the bias to the estima
tor rather than subtract it. 

Bias correction was the original idea that led to a related resampling 
method, the jackknife [dating back to Quenouille (1949) and Tukey (1958)]. 
In the next section, we find an example of an estimator which in small samples 
has a large bias but not a very large variance. For this problem, the estimation 
of the prediction error rate in linear discriminant analysis, the bootstrap bias 
correction approach to the estimating the error rate is a spectacular success! 
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2.1.2. Error Rate Estimation in Discrimination 

First you'll be given a brief description of the two-class discrimination problem. 
Then, some of the traditional procedures for estimating the expected condi
tional error rate (i.e., the expected error rate given a training set) will be 
described. Next we will provide a description some of the various bootstrap
type estimators that have been applied. Finally, results are summarized for 
some of the simulation studies that compared the bootstrap estimators with 
the resubstitution and leave-one-out (or cross-validation) estimators. 

I again emphasize that this particular example is one of the big success 
stories for the bootstrap. It is a case where there is strong empirical evidence 
for the superiority of bootstrap estimates over traditional methods, particu
larly when the sample sizes are small! 

In the two-class discrimination problem you are given two classes of objects. 
A common example is the case of a target and some decoys that are made to 
look like the target. The data consist of a set of values for variables which are 
usually referred to as features. 

We hope that the values of the features for the decoys will be different from 
the values for the targets. We shall also assume that we have a training set 
(i.e., a sample of features for decoys and a separate sample of features for 
targets where we know which values correspond to targets and which corre
spond to decoys). We need the training set in order to learn something about 
the unknown feature distributions for the target and the decoy. 

We shall briefly mention some of the theory for the two-class problem. The 
interested reader may want to consult Duda and Hart (1973), Srivastava and 
Carter (1983, pp. 231-253), Fukunaga (1990), or McLachlan (1992) for more 
details. 

Before considering the use of training data, for simplicity, let us suppose 
that we know exactly the probability density of the feature vector for the 
decoys and also for the targets. These densities shall be referred to as the 
class-conditional densities. 

Now suppose someone discovers a new object and does not know whether 
it is a target or a decoy but does have measured or derived values for that 
object's features. Based on the features, we want to decide whether it is a 
target or a decoy. 

This is a classical multivariate hypothesis testing problem. There are two 
possible decisions: (1) to classify the object as a decoy and (2) to classify the 
object as a target. Associated with each possible decision is a possible error: 
We can decide (1) when the object is a target or we can decide (2) when the 
object is a decoy. 

Generally, there are costs associated with making the wrong decisions. 
These costs need not be equal. If the costs are equal, Bayes' theorem provides 
us with the decision rule that minimizes the cost. 

For the reader who is not familiar with Bayes' theorem, it will be presented 
in the context of this problem, after we define all the necessary terms. Even 
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with unequal costs, we can use Bayes' theorem to construct the decision rule 
which minimizes the expected cost. This rule is called the Bayes rule and it 
follows our intuition. 

For equal costs, we classify the object as a decoy if the a posteriori probabil
ity of a decoy given that we observe the feature vector xis higher for the decoy 
than the a posteriori probability of a target given that we observe feature x. 
We classify it as a target otherwise. 

Bayes' theorem gives us a way to compute these a posteriori probabilities. 
If our a priori probabilities are equal (i.e., before collecting the data we assume 
that the object is as likely to be a target as it is to be a decoy), the Bayes' rule 
is equivalent to the likelihood ratio test. 

The likelihood ratio test classifies the object as the type which has the 
greater likelihood for x (i.e., the larger class conditional density). For more 
discussion see Duda and Hart (1973, p. 16). 

Many real problems have unequal a priori probabilities; sometimes we can 
determine these probabilities. In the target versus decoy example, we may 
have intelligence information that the enemy will put out nine decoys for every 
real target. In that case, the a priori probability for a target is .1, whereas the 
a priori probability for a decoy is 0.9. 

Let PD(x) be the class conditional density for decoys and let Pr(x) be the 
class conditional density for targets. Let C1 be cost of classifying a decoy as a 
target, c2 the cost of classifying a target as a decoy, p1 the a priori probability 
for a target and P2 the a priori probability for a decoy. 

Let P(Dix) and P(Ilx) denote, respectively, the probability that an object 
with feature vector xis a decoy and the probability that an object with feature 
vector xis a target. For the two-class problem it is obvious that P(Tix) = 1 -
P(Dix) since the object must be one of these two types. By the same argument, 
P1 = 1 - P2 for the two-class problem. Bayes' theorem states that 

The Bayes rule, which minimizes expected cost, is defined as follows: 

Classify the object as a decoy if PD(x) > K 
Pr(x) ' 

PD(x) :S: K, Classify the object as a target if 
Pr(x) 

where K = ( C2P 1)/( C1P2). See Duda and Hart ( 1973, pp. 10-15) for a derivation 
of this result. 

Notice that we have made no assumptions about the form of the class
conditional densities. The Bayes rule works for any probability densities. Of 
course, the form of the decision boundary and the associated error rates 
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depend on these known densities. If we make the further assumption that the 
densities are both multivariate Gaussian with different covariance matrices, 
then Bayes' rule has a quadratic decision boundary (i.e., the boundary is a 
quadratic function of x). 

If the densities are Gaussian and the covariance matrices are equal, then 
Bayes' rule has a linear boundary (i.e., the boundary is a linear function of x). 
Both of these results are derived in Duda and Hart (1973, pp. 22-31). The 
possible decision boundaries for Gaussian distributions with unequal covari
ances and two-dimensional feature vectors are illustrated in Figure 2.1, which 
was taken from Duda and Hart (1973, p. 31). 

Bayes Decision theory-The Discrete Case 

(a) Circle (b) Ellipse 

(c) Parabola 

(d) Hyperbola (e) Straight lines 

Figure 2.1 Forms for decision boundaries for the general bivariate normal case. [From Duda 
and Hart (1973), p. 31, with permission from John Wiley and Sons, Inc.] 
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The circles and ellipses in the figure represent, say, the one sigma equal 
probability contours corresponding to the covariances. These covariances are 
taken to be diagonal without any loss of generality. The shaded region R2 is 
the region in which class 2 is accepted. 

In many practical problems the class-conditional densities are not known. 
If we assume the densities to be Gaussian, the training samples can be used 
to estimate the mean vectors and covariance matrices (i.e., the parameters 
required to determine the densities). If we have no knowledge of the form 
of the underlying densities, we may use available data whose classes are 
known (such data are referred to as the training data) to obtain density 
estimates. 

One common approach is to use the kernel density estimation procedure. 
The rule used in practice replaces the Bayes rule (which is not known) with 
an approximation to it based on the replacement of the class-conditional 
densities in the Bayes rule with the estimated densities. 

Although the resulting rule does not have the optimal properties of the 
Bayes rule, we argue that it is an appropriately optimal rule since as the train
ing set gets larger and larger for both classes the estimated densities come 
closer and closer to the true densities and the rule comes closer and closer to 
the Bayes rule. For small sample sizes, it at least appears to be a reasonable 
approach. We shall call this procedure the estimated decision rule. To learn 
more about kernel discrimination, consult Hand (1981, 1982). 

For known class-conditional densities, the Bayes rule can be applied and 
the error rates calculated by integrating these densities in the region in which 
a misclassification would occur. In parametric problems, so-called "plug-in" 
methods compute these integrals using the estimated densities obtained by 
plugging in the parameter estimates for their unknown values. These plug-in 
estimates of the error rates are known to be optimistically biased [i.e., they 
tend to underestimate the actual expected error rates; see Hills (1966)]. 

When we are unable to make any parametric assumptions, a naive approach 
is to take the estimated decision rule, apply it to the training data, and then 
count how many errors of each type would be made. We divide the number 
of misclassified objects in each class by their respective number of training 
samples to get our estimates of the error rates. This procedure is referred to 
as the resubstitution method, since we are substituting training samples for 
possible future cases and these training samples were already used to construct 
the decision rule. 

In small to moderate sample sizes the resubstitution estimator is generally 
a poor estimator because it also tends to have a large optimistic bias (actually 
the magnitude of bias depends on the true error rate). Intuitively, the opti
mistic bias of the plug-in and resubstitution estimators is due to the fact that 
in both cases the training data are used to construct the rule and then reused 
to estimate the error rates. 

Ideally, it would be better to estimate the error rates based on an indepen
dent set of data with known classes. This, however, creates a dilemma. It is 
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wasteful to throw away the information in the independent set, since these 
data could be used to enlarge the training set and hence provide better 
estimates of the class-conditional densities. On the other hand, the holdout 
estimator, obtained by the separation of this independent data set for error 
rate estimation from the training set, eliminates the optimistic bias of 
resubstitution. 

Lachenbruch (1967) [see also Lachenbruch, and Mickey (1968)] provided 
the leave-one-out estimate to overcome the dilemma. Each training vector is 
used in the construction of the rule. To estimate the error rate, the rule is 
reconstructed n times where n is the total number of training vectors. In the 
ith reconstruction, the ith training vector is left out of the construction. 

We then count the ith vector as misclassified if the reconstructed rule would 
misclassify it. We take the total number misclassified in each class and divide 
by the number in the respective class to obtain the error rates. 

This procedure is referred to as leave-one-out or cross-validation and the 
estimators are called the leave-one-out estimates or U estimates. Because the 
observations are left out one at a time, some have referred to it as the jack
knife estimator, but Efron (1982a, pp. 53-58) defines another bias correction 
estimator to be the jackknife estimator [see also Efron (1983)]. 

Now, you'll be shown how to bootstrap in this application. Essentially, we 
will apply the bootstrap bias correction procedure that we learned about in 
Section 2.1.1 to the resubstitution estimator. 

The resubstitution estimator, although generally poor in small samples, 
has a large bias that can be estimated by bootstrapping [see, for example, 
Chernick, Murthy, and Nealy (1985, 1986)]. Cross-validation (i.e., the leave
one-out estimator) suffers from a large variance for small training sample 
sizes. Despite this large variance, cross-validation has been traditionally the 
method of choice. 

Glick (1978) was one of the first to recognize the problem of large variance 
with the leave-one-out estimate, and he proposed certain "smooth" estimators 
as an alternative. Glick's approach has since been followed up by Snapinn and 
Knoke (1984, 1985a). 

Efron (1982a, 1983) showed that the bootstrap bias correction can produce 
an estimator that is nearly unbiased (the bias is small though not quite as small 
as for the leave-one-out estimator) and has a far smaller variance than the 
leave-one-out estimator. Consequently, the bootstrap is superior in terms of 
mean square error (a common measure of statistical accuracy). 

As a guideline to the practitioner, f believe that the simulation studies to 
date indicate that for most applications, the .632 estimator is to be preferred. 
What follows is a description of the research studies to date that provide the 
evidence to support this general guideline. We shall now describe the various 
bootstrap estimators that were studied in Efron (1983) and in Chernick, 
Murthy, and Nealy (1985, 1986, 1988a,b). 

It is important to clarify here what error rate we are estimating. It was 
pointed out by Sorum (1972) that when training data are involved, there are 
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at least three possible error rates to consider [see also Page (1985) for a more 
recent account]. 

In the simulation studies that we review here, only one error rate is con
sidered. It is the expected error rate conditioned on the training set of size n. 
This averages the two error rates (weighing each equally). It is the natural 
estimator to consider since in the classification problem the training set is fixed 
and we need to predict the class for new objects based solely on our prior 
knowledge and the particular training set at hand. 

A slightly different and less appropriate error rate would be the one 
obtained by averaging these conditional error rates over the distribution of 
possible training sets of size n. Without carefully defining the error rate to be 
estimated, confusion can arise and some comparisons may be inappropriate. 

The resubstitution estimator and cross-validation have already been defined. 
The standard bootstrap (obtained using 100-200 bootstrap samples in the 
simulations of Efron and Chernick, Murthy, and Nealy) uses the bootstrap 
sample analog to Equation 2.10 of Efron (1983, p. 317) to correct the bias. 
Define the estimated bias as 

where E. denotes the expectation under the bootstrap random sampling mech
anism (i.e., sampling with replacement from the empirical distribution), Q[yi> 
ry(t;, X*)] is the indicator function defined to be equal to one if y; = ry(ti> X*) 
and zero if y; #- TJ(l;, X*), y; is the ith observation of the response, t; is the vector 
of predictor variables, and T] is the prediction rule. 

X* is the vector for a bootstrap sample a (of length n) and P;* is the ith 
repetition frequency (i.e. the proportion of cases in particular where the ith 
sample value occurs). The bootstrap estimate is then eboot = errapp + wh, where 
wh is the bootstrap estimate of the bias as define above. 

This is technically slightly different from the simple bias correction proce
dure described in Section 2.1.1 but is essentially the same. Using the conven
tion given in Efron (1983), this bias estimate is then added to the apparent 
error rate to produce the bootstrap estimate. 

To be more explicit, let Xb X 2, ••• , Xn denote then training vectors where, 
say for convenience, n =2m form an integer X1, X 2, •.• , Xm come from class 
1 and Xm+l• Xm+2 , ••• , Xn come from class 2. A bootstrap sample is generated 
by sampling with replacement from the empirical distribution for the pooled 
data X], X2 ... , Xn. 

Although different, this is almost the same as taking m samples with replace
ment from X~, X 2 , • .• , Xm and another m samples with replacement from Xm+b 
Xm+ 2, ••• , Xn. In the latter case, each bootstrap sample contains m vectors 
from each class, whereas in the former case the number in each class varies 
according to a binomial distribution where N1, the number from class 1, is 
binomial with parameters n and p (with p = 1/2) and N 2, the number from 
class 2, equals n N 1. E(N1) = E(N2) = n/2 = m. 
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The approach used in Efron (1983) and Chernick, Murthy, and ~e.aly (19~5, 
1986, 1988a,b) is essentially the former approach except that the ongtnal tram
ing set itself is also selected in the same way as the bootstrap samples. So, for 
example, when n = 14, it is possible to have 7 training vectors from class 1 and 
7 from class 2, but also we may have 6 from class 1 and 8 from class 2, and so 

on. 
Once a bootstrap sample has been selected, we treat the bootstrap sample 

as though it were the training set. We construct the discriminant rule (linear 
for the simulations under discussion, but the procedure can apply to other 
forms such as quadratic) based on the bootstrap sample and subtracting the 
fraction of the observations in the bootstrap sample that would be misclassi
fied by the same rule (where each observation is counted as many times as it 
occurs in the bootstrap sample). 

The first term is a bootstrap sample estimate of the "true" error rate, while 
the second term is a bootstrap sample estimate of the apparent error rate. The 
difference is a bootstrap sample estimate of the optimistic bias in the apparent 
error rate. Averaging these estimates over the k Monte Carlo replications 
provides a Monte Carlo approximation to the bootstrap estimator. 

An explicit formula for the bootstrap estimator and its Monte Carlo 
approximation is given on p. 317 of Efron (1983). Although the formulas ar.e 
explicit, the notation is complicated. Nevertheless, the Monte Carlo approxi
mation is simple to describe as we have done above. 

The e
0 

estimator was introduced as a variant to the bootstrap in Chatterjee 
and Chatterjee (1983), although the name e0 came later in Efron (1983 ). For 
the e0 estimate we simply count the total number of training vectors misclas
sified in each bootstrap sample. The estimate is then obtained by summing 
over all bootstrap samples and dividing by the total number of training vectors 
not included in the bootstrap samples. 

The .632 estimator is obtained by the formula 

err632 = 0.368en:,PP + 0.632eo, 

where err a denotes the apparent error rate and e0 is as defined in the previous 
paragraph~PWith only the exception of the very heavy-tailed distributions, the 
.632 estimator is the clear-cut winner over the other variants. 

Some heuristic justification for this is given in Efron (1983) [see also Cher
nick and Murthy (1985)]. Basically, the .632 estimator appropriately balances 
the optimistic bias of the apparent error rate with the pessimistic bias of eo. 
The reason for this weighting is that 0.368 is a decimal approximation to 1/e, 
which is the asymptotic expected percentage of training vectors that are not 
included in a bootstrap sample. 

Chernick, Murthy, and Nealy (1985) devised a variant called the MC esti
mator. This estimator is obtained just as the standard bootstrap. The differ
ence is that a controlled bootstrap sample is generated in place of the ordinary 
bootstrap sample. In this procedure, the sample is restricted to include obser-
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vations with replication frequencies as close as possible to the asymptotic 
expected replication frequency. 

Another variant, also due to Chernick, Murthy, and Nealy (1985), is the 
convex bootstrap. In the convex bootstrap, the bootstrap sample contains 
linear combinations of the observation vectors. This smoothes out the sam
pling distribution for the bootstrap estimate by allowing a continuum of pos
sible observations instead of just the original discrete set. 

A theoretical difficulty with the convex bootstrap is that the bootstrap dis
tribution does not converge to the true distribution since the observations are 
weighting according to A which is chosen uniformly on [0,1]. This means that 
the "resamples" will not behave in large samples exactly like the original 
samples from the class-conditional densities. We can therefore not expect the 
estimated error rates to be correct for the given classification rule. 

To avoid the inconsistency problem, Chernick, Murthy, and Nealy (1988b) 
introduced a modified convex bootstrap that concentrates the weight closer 
and closer to one of the samples, as the training sample size n increases. They 
also introduced a modification to the .632 estimator which they called the 
adaptive 632. 

It was hoped that the modification of adapting the weights would improve 
the .632 estimator and increase its applicability, but results were disappointing. 
Efron and Tibshirani (1997a) introduce .632+, which also modifies the .632 
estimator so that it works well for an even wider class of classification prob
lems and a variety of class-conditional densities. 

In Efron (1983) other variants-the double bootstrap, the randomized 
bootstrap, and the randomized double bootstrap-are also considered. The 
reader is referred to Efron (1983) for the formal definitions of these estima
tors. Of these, only the randomized bootstrap showed significant improvement 
over the ordinary bootstrap, and so these other variants were not considered. 
Follow-up studies did not include the randomized bootstrap. 

The randomized bootstrap applies only to the two-class problem. The idea 
behind the randomized bootstrap is the modification of the empirical distribu
tions for each class by allowing for the possibility that the observed training 
vectors for class 1 come from class 2 and vice versa. 

Efron allowed a probability of occurrence of .1 to the opposite class in the 
simple version. After modifying the empirical distributions, bootstrap sam
pling is applied to the modified distributions rather than the empirical distribu
tions and the bias is estimated and then corrected for, just as the standard 
bootstrap. In a way the randomized bootstrap smoothes the empirical distribu
tions, an idea similar in spirit to the convex bootstrap. 

Implementation of the randomized bootstrap by Monte Carlo is straight
forward. We sample at random from the pooled training set (i.e., training data 
from both classes are mixed together) and then choose a uniform random 
number U. If U::;; .9, we assign the observation vector to its correct class. If 
not, we assign it to the opposite class. To learn more about the randomized 
bootstrap and other variations, see Efron (1983, p. 320). 
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For Gaussian populations and small training sample sizes (14-29) the .632 
estimator is clearly superior in all the studies in which it was considered, 
namely Efron (1983), Chernick, Murthy, and Nealy (1985, 1986) and Jain, 
Dubes, and Chen (1987). 

A paper by Efron and Tibshirani ( 1997), which we have already mentioned, 
looks at the .632 estimator and a variant called .632+. They treat more general 
classification problems as compared to just the linear (equal co variances) case 
that we focus on here. 

Chernick, Murthy, and Nealy (1988a,b) consider multivariate (two
dimensional, three-dimensional, and five-dimensional) distributions. Uniform, 
exponential, and Cauchy distributions are considered. The uniform provides 
shorter than Gaussian tails to the distribution, and the bivariate exponential 
provides an example of skewness and the autoregressive family of Cauchy 
distributions provides for heavier-than-Gaussian tails to the distribution. 

They found that for the uniform and exponential distributions the .632 
estimator is again superior. As long as the tails are not heavy, the .632 estima
tor provides an appropriate weighting to balance the opposite biases of eo and 
the apparent error rate. 

However, for the Cauchy distribution the e0 no longer has a pessimistic bias·· 
and both the e0 and the convex bootstrap outperform the .632 estimator. They 
conjectured that the result would generalize to any distributions with heavy 
tails. They also believe that skewness and other properties of the distribution 
which cause it to depart from the Gaussian distribution would have little effect 
on the relative performance of the estimators. 

In Chernick, Murthy, and Nealy (1988b), the Pearson VII family of distri
butions was simulated for a variety of values of the parameter m. The proba
bility density function is defined as 

f(x) = r(m- (p/2))nP12 [1 + (x- ,u)'(x- ,u)]m' 

where .u is a location vector, I: is a scaling matrix, m is a parameter that 
affects the dependence and controls the tail behavior, pis the dimension, and 
r is the gamma function. The symbol I I denotes the determinant of the 
matrix. 

The Pearson VII distributions are all elliptically contoured (i.e., contours 
of constant probability density are ellipses). An elliptic contoured density 
is a property the Pearson VII family shares with the Gaussian family of dis
tributions. Only p = 2 was considered in Chernick, Murthy, and Nealy (1988b ). 
The parameter m was varied from 1.3 to 3.0. For p = 2, second moments exist 
only for m greater than 2.5 and first moments exist only for m greater than 
1.5. 

Chernick, Murthy, and Nealy (1988b) found that when m :s; 1.6, the pattern 
observed for the Cauchy distributions in Chernick, Murthy, and Nealy (1988a) 
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pertained; that is, the e0 and the convex bootstrap were the best. As m decreases 
from 2.0 to 1.5, the bias of the e0 estimator decreases and eventually it changes 
sign (i.e., goes from a pessimistic to an optimistic bias). Form greater than 
2.0, the results are similar to the Gaussian and the light-tailed distributions 
where the .632 estimator is the clear winner. 

Table 2.1 is taken from Chernick, Murthy, and Nealy (1988b). It summa
rizes for various values of m the relative performance of the estimators. The 
totals represent the number of cases for which the estimators ranked first, 
second, and third among the seven considered. The cases vary over the range 
of the "true" error rates that varied from about .05 to .50. 

Table 2.2 is a similar summary taken from Chernick, Murthy, and Nealy 
(1986) which summarizes the results for the various Gaussian cases 
considered. 

Again, we point out that for most applications the .632 estimator is pre
ferred. It is not yet clear whether or not the smoothed estimators are as good 
as the best bootstrap estimates. 

Snapinn and Knoke (1985b) claim that their estimator is better than the 
.632 estimator. Their study simulated both Gaussian distributions and a few 
non-Gaussian distributions. 

They also show that the bias correction applied to the smoothed estimators 
by resampling procedures may be as good as their own smoothed estimators. 
This has not yet been confirmed in the published literature. Some results 
comparing the Snapinn and Knoke estimators with the .632 bootstrap and 
some other estimates in two-class cases are found in Hirst (1996). 

For very heavy-tailed distributions, our recommendation would be to use 
the ordinary bootstrap or the convex bootstrap. But how does the practitioner 
know that the distributions are heavy-tailed? It may sometimes be possible to 
make such an assessment from knowledge as to how the data are generated 
for the practitioner to determine something about the nature of the tails of 
the distribution. One example would be when the data is ratios where the 
denominator can be close to zero. But in many practical cases it may not be 
possible. 

To be explicit, consider the case where a feature is the ratio of two random 
variables and the denominator is known to be approximately Gaussian with 
zero mean; we will know that the feature has a distribution with tails like the 
Cauchy. This is because such cases are generalizations of the standard Cauchy 
distribution. It is a known result that the ratio of two independent Gaussian 
random variables with zero mean and the same variance has the standard 
Cauchy distribution. The Cauchy distribution is very heavy-tailed, and even 
the first moment or mean does not exist. 

As the sample size becomes larger, it makes little difference which estima
tor is used, as the various bootstrap estimates and cross-validation are asymp
totically equivalent (with the exception of the convex bootstrap). Even the 
apparent error rate may work well in very large samples where its bias is much 
reduced, although never zero. Exactly how large is large is difficult to say 



TabJe 2.1 Summary Comparison of Estimators Using Root Mean Square Error 
(Number of Simulations on Which Estimator Attained Top Three Ranks) 

.632 MC C1) Boot Conv u App Total 

M= 1.3 

First 0 0 2 0 10 0 0 12 

Second 3 0 0 9 0 0 0 12 

Third 0 9 0 1 2 0 0 12 

Total 3 9 2 10 12 0 0 36 

M = 1.5 

First 6 1 8 5 12 0 1 33 

Second 8 4 0 14 7 0 0 33 

Third 3 15 2 4 8 0 1 33 

Total 17 20 10 23 27 0 2 99 

M = 1.6 

First 1 1 2 1 5 0 2 12 

Second 4 3 0 5 0 0 0 12 

Third 0 4 0 4 4 0 0 12 

Total 5 8 2 10 9 0 2 36 

M = 1.7 

First 2 1 2 l 2 1 3 12 

Second 3 3 1 4 1 0 0 12 

Third 4 2 0 3 2 0 1 12 

Total 9 6 3 8 5 0 1 36 

M=2.0 

First 18 1 3 0 1 0 7 30 

Second 10 4 4 2 5 2 3 30 

Third 1 9 3 8 5 0 3 30 

Total 29 14 10 10 11 2 13 90 

M=2.5 

First 21 0 8 1 0 0 3 33 

Second 10 3 4 5 4 2 5 33 

Third 1 13 1 6 10 0 2 33 

Total 32 16 13 12 14 2 10 99 

M=3.0 

First 21 0 6 0 0 0 3 30 

Second 9 3 5 3 2 2 6 30 

Third 0 8 1 8 11 1 1 30 

Total 30 11 12 11 13 3 10 90 

Source: Chernick, Murthy, and Nealy ( 1988b ). 
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TabJe 2.2 Summary Comparison 

Rank .632 MC Eo Boot Conv u App Total 

First 72 1 29 6 0 0 1 109 

Second 21 13 27 23 11 1 13 109 
Third 7 20 8 25 37 7 5 109 

Total 100 34 64 54 48 8 19 

Source: Chernick, Murthy, and Nealy (1986). 

because the known studies have not yet adequately varied the size of the 
training sample. 

2.1.3. Error Rate Estimation: An Illustrative Problem 

In this problem, we have five bivariate normal training vectors from class 1 

and have 5 from class 2. For class 1, the mean vector is (~) and the 

covariance matrix is 

For class 2, the mean vector is C) and the covariance matrix is also 

The training vectors generated by random sampling from the above distribu
tions are as follows: 

For Class 1 

(
2.052) 
0.339 ' ( 

1.083) ( 0.083) ( 1.278) (-1.226). 
-1.320 ' -1.524 ' -0.459 ' -0.606 

For Class 2 

(
1.307) (-0.548) (2.498) (0.832) (1.498). 
2.268 ' 1.741 ' 0.813 ' 1.409 ' 2.063 
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We generate four bootstrap samples of size 10 and calculate the standard 
bootstrap estimate of the error rate. We also calculate e0 and the apparent 
error rate in order to compute the .632 estimator. We denote by the indices 
1, 2, 3, 4, and 5 the respective five bivariate vectors from class 1 and denote 
by the indices 6, 7, 8, 9, and 10 the respective five bivariate vectors from class 
2. A bootstrap sample can be represented by a random set of 10 indices 
sampled with replacement from the integers 1 to 10. In this instance, our four 
bootstrap samples are [9, 3, 10, 8, 1, 9, 3, 5, 2, 6], [1, 5, 7, 9, 9, 9, 2, 3, 3, 9], [6, 
4, 3, 9, 2, 8, 7, 6, 7, 5], and [5, 5, 2, 7, 4, 3, 6, 9, 10, 1J. 

Bootstrap sample numbers 1 and 2 have five observations from class 1 and 
five from class 2, bootstrap sample number 3 has four observations from class 
1 and six from class 2, and bootstrap sample number 4 has six observations 
from class 1 and four from class 2. We also observe that in bootstrap sample 
number 1, indices 3 and 9 repeat once and indices 4 and 7 do not occur. In 
bootstrap sample number 2, index 9 occurs three times and index 3 twice while 
indices 4, 6, and 10 do not appear. In bootstrap sample number 3, indices 6 
and 7 are repeated once while 1 and 10 do not appear. 

Finally, in bootstrap sample number 4, only index 5 is repeated and index 
8 is the only one not to appear. These samples are fairly typical of the behavior 
of bootstrap samples (i.e., sampling with replacement from a given sample), 
and they indicate how the bootstrap samples can mimic the variability due to 
sampling (i.e., the sample-to-sample variability). 

Table 2.3 shows how the observations in the bootstrap sample were classi
fied by the classification rule obtained using the bootstrap sample. We see that 
only in bootstrap samples 1 and 2 were any of the bootstrap observations 
misclassified. So for bootstrap samples 3 and 4 the bootstrap sample estimate 
of the apparent error rate is zero. In both bootstrap sample 1 and sample 2, 
only observation number 1 was misclassified and in each sample, observation 
number 1 appeared one time. So for these two bootstrap samples the estimate 
of apparent error is 0.1. 

Table 2.4 shows the resubstitution counts for the original sample. Since 
none of the observations were misclassified, the apparent error rate or resub
stitution estimate is also zero. 

Table 2.3 Truth Table for the Four Bootstrap Samples 

Sample #1 Classified As Sample #2 Classified As 

True Class Class 1 Class 2 Class 1 Class 2 

Class 1 4 1 4 1 

Class 2 0 5 0 5 

Sample #3 Classified As Sample #4 Classified As 

True Class Class 1 Class 2 Class 1 Class 2 

Class 1 4 0 6 0 

Class 2 0 6 0 4 
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Table 2.4 Resubstitution Truth Table for Original 
Data 

Sample #1 Classified As 

True Class Class 1 Class 2 

Class 1 5 0 

Class 2 0 5 
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In the first bootstrap sample, observation number 1 was the one misclassi
fied. Observation numbers 4 and 7 did no appear. They both would have been 
correctly classified since their discriminant function values were 0.030724 for 
class 1 and -1.101133 for class 2 for observation 4 and -5.765286 for class 1 
and 0.842643 for class 2 for observation 7. Observation 4 is correctly classified 
as coming from class 1 since its class 1 discriminant function value is larger 
than its class 2 discriminant function value. Similarly observation 7 is correctly 
classified as coming from class 2. 

In the second bootstrap sample, observation number 1 was misclassified, 
and observation numbers 4, 6, and 10 were missing. Observation 3 was 
correctly classified as coming from class 1, and observations 60 and 10 
were correctly classified as coming from class 2. Table 2.6 provides the coeffi
cients of the linear discriminant functions for each of the four bootstrap 
samples. 

It is an exercise for the reader to calculate the discriminant function values 
for observation numbers 4, 6, and 10 to see that the correct classifications 
would be made with bootstrap sample number 2. 

In the third bootstrap sample, none of the bootstrap sample observations 
were misclassified but observation numbers 1 and 10 were missing. Using 
Table 2.6, we see that for class 1, observation number 1 has a discriminant 
function value of -3.8587, whereas for class 2 it has a discriminant function 
value of 2.6268. 

Consequently, observation 1 would have been misclassified by the discrimi
nation rule based on bootstrap sample number 3. The reader may easily check 
this and also may check that observation 10 would be correctly classified as 
coming from class 2 since its discriminant function value for class 1 is -9.6767 
and 13.1749 for class 2. 

In the fourth bootstrap sample, none of the bootstrap sample observations 
are misclassified and only observation number 8 is missing from the bootstrap 
sample. We see, however, by again computing the discriminant functions, that 
observation 8 would be misclassified as coming from class 1 since its class 1 
discriminant function value is -2.1756 while its class 2 discriminant function 
value is -2.4171. 

Another interesting point to notice from Table 2.5 is the variability of the 
coefficients of the linear discriminants. This variability in the estimated coef
ficients is due to the small sample size. Compare these coefficients with the 
ones given in Table 2.6 for the original data. 
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Table 2.5 Linear Discriminant Function Coefficients for Bootstrap Samples 

True Class Constant Term Variable No. 1 Variable No.2 

Class 1 
Class 2 

Class 1 
Class 2 

Class 1 
Class 2 

Class 1 
Class 2 

Bootstrap Sample No. 1 

~1.793 

~3.781 

0.685 
1.027 

Bootstrap Sample No. 2 

~ 1.919 
~3.353 

0.367 
0.584 

Bootstrap Sample No. 3 

~2.343 

~6.823 

0.172 
1.340 

Bootstrap Sample No. 4 

~1.707 

~6.130 

0.656 
0.469 

~2.066 

2.979 

~2.481 

3.540 

~3.430 

6.549 

~2.592 

6.008 

Table 2.6 Linear Discriminant Function Coefficients for the Original Sample 

Class Number Constant Term Variable No. 1 Variable No.2 

1 
2 

~ 1.493 
~4.044 

0.563 
0.574 

~1.726 

3.653 

The bootstrap samples give us an indication of the variability of the rule. 
This would otherwise be difficult to see. It also indicates that we can expect a 
large optimistic bias for resubstitution. 
We can now compute the bootstrap estimate of bias: 

~ (0.1 ~ 0.1) + (0.1- 0.1) + (0.1- 0.) + (0.1- 0) = 0.2/4 = 0.05. 
mboot- 4 

Since the apparent error rate is zero, the bootstrap estimate of the error rate 
is also 0.05. 

The e0 estimate is the average of the four estimates obtained by counting 
in each bootstrap sample the fraction of the observations that do not appear 
in the bootstrap sample and that would be misclassified. We see from the 
results above that these estimates are 0.0, 0.0, 0.5, and 1.0 for bootstrap 
samples 1, 2, 3, and 4, respectively. This yields an estimated value of 0.375. 

Another estimate similar to e0 but distinctly different is obtained by 
counting all the observations left out of the bootstrap samples that would have 
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been misclassified by the bootstrap sample rule and dividing by the total 
number of observations left out of the bootstrap samples. Since only two of 
the left-out observations were misclassified and only a total of eight observa
tions were left out, this would give us an estimate of 0.250. This amounts to 
giving more weight to those bootstrap samples with more observations left 
out. 

For the leave-one-out method, observation 1 would be misclassified as 
coming from class 2 and observation 8 would be misclassified as coming from 
class 1. This leads to a leave-one-out estimate of 0.200. 

Now the .632 estimator is simply 0.368 x (apparent error rate) + 0.632 x 
(e0). Since the apparent error rate is zero, the .632 estimate is 0.237. 

Since the data were taken from independent Gaussian distributions, each 
with variance one and with the mean equal to zero for population 1 and with 
mean equal to one for population 2, the expected error rate for the optimal 
rule based on the distributions being known is easily calculated to approxi
mately 0.240. 

The actual error rate for the classifier based on a training set of size 10 can 
be expected to be even higher. We note that in this example, the apparent 
error rate and the bootstrap both underestimate the true error rate, whereas 
the e0 overestimates it. 

The .632 estimator comes surprisingly close to the optimal error rate and 
gives clearly a better estimate of the conditional error rate (0.295, discussed 
below) than the others. The number of bootstrap replications is so small in 
this numerical example that it should not be taken too seriously. It is simply 
one numerical illustration of the computations involved. Many more simula
tions are required to draw conclusions, and thus simulation studies such as the 
ones already discussed are what we should rely on. 

The true conditional error rate given the training set can be calculated by 
integrating the appropriate Gaussian densities over the regions defined by the 
discriminant rule based on the original 10 sample observations. An approxi
mation based on Monte Carlo generation of new observations from the two 
classes, classified by the given rule, yields for a sample size of 1000 new obser
vations (500 from each class) an estimate of 0.295 for this true conditional 
error rate. 

Since (for equal error rates) this Monte Carlo estimator is based on a bino
mial distribution with parameters n 1000 and p = the true conditional error 
rate, using p = .3, we have that the standard error of this estimate is approxi
mately 0.0145 and an approximate 95% confidence interval for p is [0.266, 
0.324]. So our estimate of the true conditional error rate is not very 
accurate. 

If we are really interested in comparing these estimators to the true condi
tional error rate, we probably should have taken 50,000 Monte Carlo replica
tions to better approximate it. By increasing the sample size by a factor of 50, 
we decrease the standard error by .JSO, which is a factor slightly greater than 
7. Hence, the standard error of the estimate would be about 0.002 and the 
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confidence interval would be [ph - 0.004, Ph + 0.004], where Ph is the point 
estimate of the true conditional error rate based on 50,000 Monte Carlo repli
cations. We get 0.004 as the interval half-width since a 95% confidence interval 
requires a half-width of 1.96 standard errors (close to 2 standard errors). 

The width of the interval would then be Jess than 0.01 and would be useful 
for comparison. Again, we should caution the reader that even if the true 
conditional error rate were close to the .632 estimate, we could not draw a 
strong conclusion from it because we would be looking at only one .632 esti
mate, one e0 estimate, one apparent error rate estimate, and so on. It really 
takes simulation studies to account for the variability of the estimates for us 
to make valid comparisons. 

2.1.4. Efron's Patch Data Example 

Sometimes in making comparisons we are interested in computing the ratio 
of the two quantities. We are given a set of data that enables us to estimate 
both quantities, and we are interested in estimating the ratio of two quantities, 
What is the best way to do this? The natural inclination is to take the ratio of 
the two estimates. Such estimators are called ratio estimators. 

However, statisticians know quite well that if both estimates are unbiased, 
the ratio estimate will be biased (except for special degenerate cases). To see 
why this is so, suppose that X is unbiased for E( Y) and that Y is unbiased for 
f.l· Since X is unbiased for e, E(X) = e and since Y is unbiased for f.l, E(Y) = 
f.l· Then e/f.l = E(X)/E(Y), but this is not E(XIY), which is the quantity that 
we are interested in. Let us further suppose that X and Y are statistically 
independent; then we have 

E(X!Y) = E(X)£(1/Y) e£(1/Y). 

The reciprocal function f(z) = liz is a convex function and therefore by 
Jensen's inequality (see Ferguson, 1967, pp. 76-78) implies that f(E(Y)) = f(f.l) 
= 1/f.l :s; E(f(Y)) = E(l/Y). Consequently, E(XIY) = e E(l!Y);:::: e/f.l. The only 
instance where equality holds is when Y equals a constant. Otherwise E(X/Y) 
> e/f.l and the bias B = E(XIY) - elf.l is positive. This bias can be large, and it 
is natural to try to improve the estimate of the ratio by adjusting for the bias. 
Ratio estimators are also common in survey sampling [see Cochran (1977) for 
some examples]. 

In Efron and Tibshirani (1993) an example of ratio estimator is given in 
Section 10.3 on pages 126-133. This was a small clinical trial used to show the 
FDA that a product produced at a new plant is equivalent to the product 
produced at the old plant where the agency had previously approved the 
product. In this example the product is a patch that infuses a certain natural 
hormone into the patient's bloodstream. The trial was a crossover trial 
involving eight subjects. Each subject was given three different patches: one 
patch that was manufactured at the old plant containing the hormone, one 
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manufactured at the new plant containing the hormone, and a third patch 
(placebo) that contained no hormone. 

The purpose of the placebo is to establish a baseline level to compare with 
the hormone. Presumably the subjects were treated in random order with 
regard to treatment, and between each treatment an appropriate wash-out 
period is applied to make sure that there is no lingering effect from the previ
ous treatment. 

The FDA has a well-defined criterion for establishing bioequivalence in 
such trials. They require that the new patch produces hormone levels that are 
within 20% of the amount produced by the old patch to the placebo. Mathe
matically, we express this as 

e = [ E(new)- E( old)]/[£( old)- £(placebo)] 

and require that 

1e1 =[IE( new)- E( old)I]/[IE( old)- £(placebo )I] :s; 0.20. 

So, for the FDA, the pharmaceutical company must show equivalence by 
rejecting the "null" hypothesis of non-equivalence in favor of the alternative of 
equivalence. So the null hypothesis is lei :s; 0.20, versus the alternative that 1e1 > 
0.20. This is most commonly done by applying Schurmann's two one-sided t 
tests. In recent years a two-stage group sequential test can be used with the hope 
of requiring a smaller total sample size than for the fixed sample size test. 

For the ith subject we define z, = (old patch blood level - placebo blood 
level) and Yi (new patch blood level - old patch blood level). The natural 
estimate of e is the plug-in estimate yblzb, where Yb is the average of the eight 
Yi and Zb is the average of the eight Zi· As we have already seen, such a ratio 
estimator will be biased. 

Table 2.7 shows they and z values. Based on these data, we find that the 
plug-in estimate for e is -0.0713, which is considerably less than the 0.20 in 
absolute value. However, the estimate is considerably biased and we might be 
able to improve our estimate with an adjustment for bias. The bootstrap can 
be used to estimate this bias as you have seen previously in the error rate 
estimation problem. The real problem is one of confidence interval estimation 
or hypothesis testing, and so the methods presented in Chapter 3 might be 
more appropriate. Nevertheless, we can see if the bootstrap can provide a 
better point estimate of the ratio. Efron and Tibshirani (1993) generated 400 
bootstrap samples and estimated the bias to be 0.0043. They also estimated 
the standard error of the estimate, and the ratio of the bias estimate divided 
by the estimated standard error is only 0.041. This is small enough to indicate 
that the bias adjustment will not be important. 

The patch data example is a case of equivalence of a product as it is 
manufactured in two different plants. It is also common for pharmaceutical 
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Table 2.7 Patch Data Summary 

Subject 

1 
2 
3 
4 
5 
6 
7 
8 

Average 

Old -Placebo (z) 

8,406 
2,342 
8,187 
8,459 
4,795 
3,516 
4,796 

10,238 

6,342 

ESTIMATION 

New- Old (y) 

-1,200 
2,601 

-2,705 
1,982 

-1,290 
351 

-638 
-2,719 

-452.3 

Source: Efron and Tibshirani (1993, p. 373), with permission from CRC Press, LLC. 

companies to make minor changes in approved products since the change may 
improve the marketability of the product. To get the new product approved, 
the manufacturer must design a small bioequivalence trial much like the one 
shown in the patch data example. Recently, bootstrap methods have been 
developed to test for bioequivalence. There are actually three forms of bio
equivalence defined. They are individual bioequivalence, average bioequiva
lence, and population bioequivalence. Depending on the application, one type 
may be more appropriate to demonstrate than another. We will give the formal 
definitions of these forms of bioequivalence and show examples of bootstrap 
methods for demonstrating individual and population bioequivalence in 
Chapter 8. The approach to individual bioequivalence was so successful that 
it has become a recommended approach in an FDA guidance document. 

It is important to recognize that although the bootstrap adjustment will 
reduce the bias of the estimator and can do so substantially when the bias is 
large, it is not clear whether or not it improves the accuracy of the estimate. 
If we define the accuracy to be the root mean square error (rms), then since 
the rms error is the square root of the bias squared plus the variance, there is 
the possibility that although we decrease the bias, we could also be increasing 
the variance. If the increase in variance is larger than the decrease in the 
squared bias, the rms will actually increase. This tradeoff between bias and 
variance is common in a number of statistical problems including kernel 
smoothing, kernel density estimation, and the error rate estimation problem 
that we have seen. Efron and Tibshirani (1993, p. 138) caution about the 
hazards of bias correction methods. 

2.2. ESTIMATING LOCATION AND DISPERSION 

In this section, we consider point estimates of location parameters. For 
distributions with finite first and second moments the population mean is a 
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natural location parameter. The sample mean is the "best" estimate, and 
bootstrapping adds nothing to the parametric approach. We shall discuss this 
briefly. 

For distributions without first moments, the median is a more natural 
parameter to estimate the location of the center of the distribution. Again, the 
bootstrap adds nothing to the point estimation, but we see in Section 2.2.2 that 
the bootstrap is useful in estimating standard errors and percentiles, which 
provide measures of the dispersion and measures of the accuracy of the 
estimates. 

2.2.1. Means and Medians 

For population distributions with finite first moments, the mean is a natural 
measure of central tendency. If the first moment does not exist, sample esti
mates can still be calculated but they tend to be unstable and they lose their 
meaning (i.e., the sample mean no longer converges to a population mean as 
the sample size increases). 

One common example that illustrates this point is the standard Cauchy 
distribution. Given a sample size n from a standard Cauchy distribution, the 
sample mean is also standard Cauchy. So no matter how large we take n to 
be, we cannot reduce the variability of the sample mean. 

Unlike the Gaussian or exponential distributions that have finite first and 
second moments and have sample means that converge in probability to the 
population mean, the Cauchy has a sample mean that does not converge in 
probability. 

For distributions like the Cauchy, the sample median does converge to 
the population median as the sample size tends to infinity. Hence for such 
cases the sample median is a more useful estimator of the center of the 
distribution since the population median of the Cauchy and other heavy
tailed symmetric distributions best represents the "center" of the 
distribution. 

If we know nothing about the population distribution at all, we may want 
to estimate the median since the population median always exists and is con
sistently estimated by the sample median regardless of whether or not the 
mean exists. 

How does the bootstrap fit in when estimating a location parameter of a 
population distribution? In the case of Gaussian or the exponential distribu
tions, the sample mean is the maximum likelihood estimate, is consistent for 
the population mean, and is the minimum variance unbiased estimate. How 
can the bootstrap top that? 

In fact it cannot. In these cases the bootstrap could be used to estimate the 
mean but we would find that the bootstrap estimate is nothing but the sample 
mean itself, which is the average of all bootstrap samples, and the Monte Carlo 
estimate is just an approximation to the sample mean. It would be silly to 
bootstrap is such a case. 
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Nevertheless, for the purpose of developing a statistical theory for the 
bootstrap, the first asymptotic results were derived for the estimate of the 
mean when the variance is finite (Singh, 1981; Bickel and Freedman, 1981). 

Bootstrapping was designed to estimate the accuracy of estimators. This is 
accomplished by using the bootstrap samples to estimate the standard devia
tion and possibly the bias of a particular estimator for problems where such 
estimates are not easily derived from the sample. In general, bootstrapping is 
not used to produce a better point estimate. 

A notable exception was given in Section 2.1, where bias correction to the 
apparent error rate actually produced a better point estimate of the error rate. 
This is, however, an exception to the rule. 

In the remainder of the book, we will learn about examples for which esti
mators are given, but we need to estimate their standard errors or construct 
confidence regions or test hypotheses about the corresponding population 
parameters. 

For the case of distributions with heavy tails, we may be interested in robust 
estimates of location (the sample median being one such example). The robust 
estimators are given (e.g., Winsorized mean, trimmed mean, or sample 
median). 

However, the bootstrap becomes useful as an approach to estimating the 
standard errors and to obtain confidence intervals for the location parameters 
based on these robust estimators. Some of the excellent texts that deal with 
robust statistical procedures are Chatterjee and Hadi (1988), Hampel, Ron
chetti, Rousseeuw, and Stahel (1986), and Huber (1981). 

2.2.2. Standard Errors and Qnartiles 

The standard deviation of an estimator (also referred to as the standard error 
for unbiased estimators) is a commonly used estimate of an estimator's vari
ability. This estimate only has meaning if the distribution of the estimator of 
interest has a finite second moment. In examples for which the estimator's 
distribution does not have a finite second moment, the interquartile range (the 
75th percentile minus the 25th percentile of the estimator's distribution) is 
often used as a measure of the variability. 

Staudte and Sheather (1990, pp. 83-85) provide an exact calculation for 
the bootstrap estimate of the standard error of the median [originally 
derived by Maritz and Jarrett (1978)] and compare it to the Monte Carlo 
approximation for cell lifetime data (obtained as the absolute differences 
of seven pairs of independent identically distributed exponential random 
variables). 

We shall review Staudte and Sheather's development and present their 
results here. For the median, they assume for convenience that the sample size 
n is odd (i.e., n =2m + 1, form an integer). This makes the exposition easier 
but is not a requirement. 
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Maritz and Jarrett (1978) actually provide explicit results for any n. It is 
just that the median is defined as the average of the two "middle" values when 
n is even and as the unique "middle" observation m + 1 when n is odd. 

The functional representing the median is just T(F) = r\112), where F is 
the population cumulative distribution and r 1 is its inverse function. The 
sample median is just X(m+l), where X(i) denotes the ith-order statistic (i.e., the 
ith observation when ordered from smallest to largest). 

An explicit expression for the variance of median of the bootstrap distribu
tion can then be derived based on well-known results about order statistics. 
Let X~), ... , X~) denote the ordered observations from a bootstrap sample 
taken from X 1 , ••• , Xn. Let x(i) denote the ith smallest observation from the 
original sample. Let N'( = #{j: x; = xuJL i = 1, ... , n). 

k 

Then it can be shown that I, N;* has the binomial distribution with 
i=1 

parameters nand p, where p =kin. Let P* denote the probability under boot
strap sampling. It follows that 

* . { k * } n (n)(k)f (n-k)n-j P*{Xrm+l)>x(kl)=P* I,N, sn =I, . -- . 
1=l 1-o 1 n n 

Using well-known relationships between binomial sums and the incomplete 
beta function, Staudte and Sheather (1990) find, letting wk = P*{X{;,l = x(k)), 
that 

- n! rk!n (1 )m md 
wk- (m!)2 J(k-1)/n - Y Y Y 

and then by simple probability calculations the bootstrap variance of 
X * . 

(m+l) IS 

This result was first obtained by Maritz and Jarrett (1978) and later inde
pendently by Efron (1978). Taking the square root of the above expression, 
we have explicitly obtained, using properties of the bootstrap distribution for 
the median, the bootstrap estimate of the standard deviation of the sample 
median without doing any Monte Carlo approximation. 

Table 2.8, taken from Staudte and Sheather (1990, p. 85), shows the results 
required to compute the standard error for the "sister cell" data set. In the 
table, Pk plays the role of wk and the above equation using Pk gives. 

SEsoOT = 0.173. However, if we replace Pk with Pk, we get 0.167 for a Monte 
Carlo approximation based C!n 500 bootstrap samples. 



50 ESTIMATION 

Table 2.8 Comparison of Exact and Monte Carlo Bootstrap Distributions for the 
Ordered Absolute Differences of Sister Cell Lifetimes 

K 1 2 3 4 5 6 7 

Pk 0.0102 0.0981 0.2386 0.3062 0.2386 0.0981 O.Q102 

0.01 0.128 0.548 0.208 0.098 0.008 
Pk 

X(k) 0.3 0.4 0.5 0.5 0.6 0.9 1.7 

Source: Staudte and Sheather ( 1990, p. 85), with permission from John Wiley & Sons, Inc. 

For other estimation problems the Monte Carlo approximation to the boot
strap may be required, since we may not be able to provide explicit calcula
tions as we have just d9ne for the median .. The Monte Carlo ~~pproximation 
is straightforward. Let e be the sample estimate of e and let e; be the boot
strap estimate of for the ith bootstrap sample. Given k bootstrap samples, the 
bootstrap estimate of the standard deviation of the estimator e is, according 
to Efron (1982a), 

2 }1/2 1 k * -svb {-I.[e; -e* J , 
k-1 i=l 

where e* is the average of the bootstrap samples. Instead of e*, one could 
equally well use iJ itself. The choice of k - 1 in the denominator was made as 
the analog to the unbiased estimate of the standard deviation for a sample. 
There is no compelling argument for using k - 1 instead of k in the formula. 

For the interquartile range, one straightforward approach is to order the 
bootstrap sample estimates from smallest to largest. The bootstrap sample 
observation that equals the 25th percentile (or an appropriate average of the 
two bootstrap sample estimates closest to the 25th percentile) is subtracted 
from the bootstrap sample observation that equals the 75th percentile (or an 
appropriate average of the two bootstrap sample observations closest to the 
75th percentile). Once these bootstrap sample estimates are obtained, boot
strap standard error estimates or other measures of spread for the interquar
tile range can be determined. 

Other estimates of percentiles from a bootstrap distribution can be used to 
obtain bootstrap confidence intervals and test hypotheses as will be discussed 
in Chapter 3. Such methods could be applied to get approximate confidence 
intervals for standard errors, interquartile ranges, or any other parameters 
that can be estimated from a bootstrap sample (e.g., medians, trimmed means, 
Winsorized means, M-estimates, or other robust location estimates). 
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2.3. HISTORICAL NOTES 

For the error rate estimation problem there is a great deal of literature. For 
developments up to 1974 see the survey article by Kanal (1974) and see the 
extensive bibliography by Toussaint (1974). In addition, for multivariate 
Gaussian features McLachlan has derived the asymptotic bias of the apparent 
error rate (i.e., the resubstitution estimate) in McLachlan (1976) and it is not 
zero! 

The bias of plug-in rules under parametric assumptions is discussed in Hills 
(1966). A collection of articles including some bootstrap work can be found 
in Choi (1986). 

There have been a number of simulation studies showing the superiority of 
versions of the bootstrap over cross-validation when the training sample size 
is small. Most of the studies have considered linear discriminant functions 
(although Jain, Dubes, and Chen consider quadratic discriminants). Most 
consider the two-class problem with two-dimensional feature vectors. 

However, Efron (1982a, 1983) and Chernick, Murthy, and Nealy (1985, 
1986, and 1988a) considered five-dimensional feature vectors as well. Also, in 
Chernick, Murthy, and Nealy (1985, 1986, 1988a) some three-class problems 
were considered. Chernick, Murthy, and Nealy (1988a,b) were the first to 
simulate the performance of these bootstrap estimators for linear discriminant 
functions when the populations were not Gaussian. Hirst (1996) proposes 
a smoothed estimator (a generalization of the Snapinn and Knoke 
approach) for cases with three or more classes and provides detailed simula
tion studies showing the superiority of his method. He also compares .632 
with the smoothed estimator of Snapinn and Knoke (1985) in two-class 
problems. 

Chatterjee and Chatterjee (1983) considered only the two-class problem, 
doing only one-dimensional Gaussian simulations with equal variance. They 
were, however, the first to consider a variant of the bootstrap which Efron 
later refers to as e0 in Efron (1983). They also provided an estimated standard 
error for their bootstrap error rate estimation. 

The smoothed estimators have also been compared with cross-validation 
by Snapinn and Knoke (1984, 1985a). They show that their estimators have 
smaller mean square error than cross-validation for small training samples 
sizes, but unfortunately not much has been published comparing the smoothed 
estimates with the bootstrap estimates. We are aware of one unpublished 
study, Snapinn and Knoke (1985b ), and some results in Hirst (1996). 

In the simulation studies of Efron (1983), Chernick, Murthy, and Nealy 
(1985, 1986), Chatterjee and Chatterjee (1983), and Jain, Dubes, and Chen 
(1987), only Gaussian populations were considered. 

Only Jain, Dubes, and Chen (1987) considered classifiers other than linear 
discriminants. They looked at quadratic and nearest-neighbor rules. Perfor
mance was measured by mean square error of the conditional expected error 
rate. 
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Jain Dubes and Chen (1987) and Chatterjee and Chatterjee (1983) also 
consid~red cotilidence intervals and the standard error of the estimators, 
respectively. Chernick, Murthy, and Nealy (1988a,b!, Hirst (199.6) and Snapinn 
and Knoke (1985b) considered certain non-Gaussian popu~at1ons. The most 
recent results on the .632 estimator and an enhancement of It called .632+ are 
given in Efron and Tibshirani (1997a). . . 

McLachlan has done a lot of research in discriminant analysis and particu
larly on error rate estimation. His survey article (McLachlan, 1986) provides 
a good review of the issues and the literatu~e in.cluding bootstra~ results up 
to 1986. Some of the developments discussed m this chapter appear m McLach
lan (1992), where he devotes an entire chapter, (Chapter 10) to the estimation 
of error rates. It includes a section on bootstrap (pp. 346-360). 

An early account of discriminant analysis methods is given in .Lachen_bruch 
(1975). Multivariate simulation methods such as those used m studies by 
Chernick, Murthy, and Nealy are covered in Johnson (1987). 

The bootstrap distribution for the median is also discussed in Efron (1982a, 
Chapter 10, pp. 77-78). Mooney and Duval (1993) discuss the problem of 
estimating the difference between two medians. . . . 

Justification (consistency results) for the bootstrap approach to mdlVl~ual 
bioequivalence came in Shao, Kubler, and Pigeot (2000). The surve~ article 
by Pigeot (2001) is an excellent reference for the advantages and .d~sadvan
tages of the bootstrap and the jackknife in biomedical research, and It mcludes 
coverage of the individual bioequivalence application. 

CHAPTER3 

Confidence Sets and 
Hypothesis Testing 

Because of the close relationship between tests of hypotheses and confidence 
intervals, we include both in this chapter. Section 3.1 deals with "nonparamet
ric" bootstrap confidence intervals (i.e., little or no assumptions are made 
about the form of the distribution being sampled). 

There has also been some work on parametric forms of bootstrap confi
dence intervals and on methods for reducing or eliminating the use of Monte 
Carlo replications. We shall not discuss these in this text but do include refer
ences to the most relevant work in the historical notes (Section 3.5). Also, the 
parametric bootstrap is discussed briefly in Chapter 6. 

Section 3.1.2 considers the simplest technique, the percentile method. This 
method works well when the statistic used is a pivotal quantity and has a sym
metric distribution [see Efron (1981c, and 1982a)]. 

The percentile method and various other bootstrap confidence interval 
estimates require a large number of Monte Carlo replications for the intervals 
to be both accurate (i.e., be as small as possible for the given confidence level) 
and nearly exact (i.e., if the procedure were repeated many times the percent
age of intervals that would actually include the "true" parameter value is 
approximately the stated confidence levels). 

This essentially states for exactness that the actual confidence level of the 
interval is approximately the stated level. So, for example, if we construct a 
95% confidence interval, we would expect that our procedure would produce 
intervals that contain the true parameter in 95% of the cases. Such is the defi
nition of a confidence interval. 

Unfortunately for "nonparametric" intervals, we cannot generally do this. 
The best we can hope for is to have approximately the stated coverage. Such 
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