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We revisit the apparent historical success of technical trading rules on daily prices of

the Dow Jones Industrial Average index from 1897 to 2011, and we use the false

discovery rate (FDR) as a new approach to data snooping. The advantage of the FDR over

existing methods is that it selects more outperforming rules, which allows diversifying

against model uncertainty. Persistence tests show that, even with the more powerful

FDR technique, an investor would never have been able to select ex ante the future

best-performing rules. Moreover, even in-sample, the performance is completely offset

by the introduction of low transaction costs. Overall, our results seriously call into

question the economic value of technical trading rules that has been reported for early

periods.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Whether technical trading rules can consistently gener-
ate profits, as opposed to just being lucky every now and
then, is the subject of an ongoing debate. Practitioners have
devoted significant resources to technical trading, which
uses past price and volume data to infer future prices.
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long been skeptical about the merits of technical analysis.
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They argue that it is inconsistent with the theory of market
efficiency, which states that all available information must
be reflected in security prices. In hopes of resolving this
conflict, researchers have undertaken numerous empirical
studies of technical trading rules. Some have found results
in favor of the ability of trading rules to deliver superior
returns, e.g., Neftci (1991), Brock, Lakonishok, and LeBaron
(BLL, 1992) Neely, Weller, and Dittmar (1997), Sullivan,
Timmermann, and White (STW, 1999) Lo, Mamaysky, and
Wang (2000), and Kavajecz and Odders-White (2004). Other
studies conclude that trading rules cannot be used to predict
future prices. For example, Fama and Blume (1966),
Bessembinder and Chan (1998), Allen and Karjalainen
(1999), and Ready (2002) show that transaction costs out-
weigh the predictive power of trading rules. In addition to
the impact of transaction costs, researchers have warned
against the danger of data snooping which raises the
possibility that the reported results are spurious. Menkhoff
and Taylor (2007) provide an extensive review of the
literature on the use of technical analysis in foreign
exchange markets.

In this paper, we revisit the apparent historical success
of trading rules during early time periods found in
previous studies, including studies reaching an overall
negative conclusion such as Ready (2002). In particular
we examine the performance of the 7,846 trading rules of
STW on daily prices of the Dow Jones Industrial Average
(DJIA) index between January 1897 and July 2011. The
first contribution is to apply the false discovery rate (FDR)
methodology developed by Barras, Scaillet, and Wermers
(2010) in the context of mutual funds selection, as a new
approach to select outperforming rules while accounting
for data snooping. We show that the FDR approach has
numerous advantages compared with existing methods.
The second contribution is to perform a rigorous analysis
of the economic value of the trading rules. We focus on
two issues that have been only partly addressed in the
literature: the impact of transaction costs and the ques-
tion of whether investors could have reasonably selected
the future outperforming rules without the benefit of
foresight. Equipped with the more powerful FDR
approach to detect rules with true predictive ability and
accounting for transaction costs ex ante, we perform
persistence tests in which we measure the out-of-sample
performance of the selected rules. We are the first to carry
out such a comprehensive persistence analysis of trading
rules. Only by combining all these relevant factors can the
economic value of the strategies be truly assessed.

To illustrate the problem of data snooping, imagine you
put enough monkeys on typewriters and that one of the
monkeys writes The Iliad in ancient Greek. Because of the
sheer size of the sample, you are likely to find a lucky
monkey once in a while. Would you bet any money that he
is going to write The Odyssey next? The same principle
applies to trading rules. By looking long enough and hard
enough on a given set of data, an investor always finds a
trading rule parameterization that works, even if it does not
genuinely possess predictive power. For a discussion of the
dangers of data snooping, see Lo and MacKinlay (1990),
White (2000), and the references therein. Diebold (2006)
also warns against the danger of in-sample overfitting.
Kosowski, Naik, and Teo (2007) study the impact on detect-
ing hedge fund performance.

In this paper we propose a new methodology to select
superior trading rules while accounting for data snooping
based on the FDR. We employ the FDRþ and the FDR� ,
developed by Barras, Scaillet, and Wermers (2010). The
FDRþ /� gives the proportion of false discoveries—rules
with no genuine performance, separately among the rules
selected as delivering statistically significant positive and
negative performance. As we show in a Monte Carlo
experiment, the FDR approach has advantages compared
with statistical methods used in previous studies, e.g., the
bootstrap reality check (BRC) of White (2000) employed
by STW, and its stepwise extension by Romano and Wolf
(RW, 2005). The BRC indicates only whether the rule that
performs best in the sample beats the benchmark, after
accounting for data snooping. It provides no information on
the other strategies. In practice, investors prefer not to base
their investment decision on a single strategy. Though
potentially able to detect further outperforming rules, the
RW method relies on the conservative familywise error rate
(FWER), which results in a lack of power; see Romano,
Shaikh, and Wolf (2008b) for a discussion. One further
problem with methods derived from the BRC such as the
RW method is that they do not select further strategies once
they find a rule whose performance is due to luck, even if
there remain an important number of true outperforming
rules in the population. The FDR approach by tolerating a
certain (small) proportion of false discoveries, does not
suffer from the problem. We run a Monte Carlo study
calibrated to the setting of our empirical work and taking
into account the cross-sectional dependence of trading
strategies. The Monte Carlo simulations illustrate that
situations in which a rule with no genuine predictive power
achieves one of the highest performance are common in
practice. They also show that the FDR approach greatly
improves the chances of detecting all true outperforming
rules and behaves well even if the rules are not indepen-
dent. Using the FDR method, an investor can construct a
portfolio of rules on which to base his investment decision
and, hence, diversify against model risk.

With the help of our new more powerful rules selec-
tion approach, we investigate whether the trading rules
can make money. BLL show examples of historical per-
formance and consider them as proof of the usefulness of
the trading rules. STW argue that the findings of BLL are
not spurious as the best rule passes the BRC data snooping
test. However, although it can be the case that we are able
to find rules that perform well historically, no indication
exists that we can select these rules ex ante. Another
important issue not addressed ex ante in BLL and STW is
the impact of transaction costs. The rules selected before
transaction costs produce very frequent trading signals,
and their predictive power is likely to be offset by
transaction costs. Previous studies do not treat transac-
tion costs as endogenous to the selection process. Hence,
the relevant question is: Could investors reasonably have
anticipated which rules would generate performance out-
weighing transaction costs? To answer this question, we
perform persistence tests, adding a transaction cost each
time a buy or sell signal is generated. Specifically, we
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measure the out-of-sample performance of a portfolio of
rules selected using our new FDR approach and updated
every month using data from the previous month. Reba-
lancing the portfolio monthly has the further advantage of
being closer to what is done in practice than previous
studies. Investors never get the chance to trade over
multiple-year periods before being evaluated, and they
update their trading rules regularly in an attempt to adapt
to the changing economic environment. The persistence
analysis is a major contribution of this paper. STW qualify
as out-of-sample the results for the period after the
original BLL study but, in fact, they always measure
performance in-sample. Persistence analysis has been
applied to mutual funds, e.g., Carhart (1997). To our
knowledge, however, this is the first time this type of
persistence tests are performed on technical trading rules.
Jacquier and Yao (2002) implement another approach to
persistence analysis also inspired by the mutual fund
literature. They follow Brown and Goetzmann (1995)
and estimate the probability that a trading rule beats
the benchmark over consecutive periods. Their study is
limited to the ten moving average rules of BLL and finds
that the performance is not persistent at horizons shorter
than five years.

Our tests show that, even with our new FDR rule
detection approach, the reason for choosing the rules with
future superior performance is clear only to researchers
examining the price data ex post. Contrary to the mutual
fund literature, we conclude that there is no hot hands
phenomenon. In addition, even the in-sample historical
performance is canceled already with the inclusion of low
(conservative) transaction costs. Again, it is only by con-
sidering all the relevant aspects—performance persistence,
transaction costs, and data snooping—together that we can
correctly assess the economic value of the strategies. Our
study confirms the results of Ready (2002) and Allen and
Karjalainen (1999), who also deal with data snooping and
rule selection, though in a very different fashion based on a
genetic algorithm.

Our analysis indicates that the past period of predict-
ability reported by numerous studies is not really a
puzzle. The BLL results should be viewed as a statistical
anomaly, discovered ex post by extensive data snooping.
In any case, they should not be viewed as an episode of
market inefficiency, as the hypothetical predictability
could not have been exploited. Although we provide
evidence against the usefulness of the simple trading
rules of STW to deliver superior returns when applied in
a blue-chip investment environment (DJIA index), our
results say little about the existence of profitable trading
strategies in other markets or using different trade fre-
quencies. The growing number of institutions getting
involved in high-frequency trading hints that profitable
algorithmic strategies can be found. Our results do, how-
ever, indicate that investors should be wary of the
common technical indicators present on any investment
website or professional information system and adver-
tised as obvious money-making tools.

Section 2 reviews existing methods to account for data
snooping and presents the FDR based approach. Section 3
describes the universe of 7,846 technical trading rules, the
performance measurement, and the data. Section 4 illus-
trates the advantage of the FDR approach by applying it in
the same framework as STW. Section 5 presents the
persistence analysis, while simultaneously accounting
for transaction costs. It also investigates the impact of
short sale constraints. Section 6 gathers concluding
remarks. Appendices contain technical details on the
implementation of the FDR approach and results of Monte
Carlo experiments showing the advantages of the FDR
method. We also review the literature on gauging total
transaction costs and their evolution over time, and we
provide up-to-date data for current market conditions. An
Appendix with supplementary empirical and simulation
results as well as files with the data set and programs
used in the paper are posted on the Journal of Financial
Economics web page.

2. Data snooping measures

In Section 2.1, we review existing data snooping
methods. We present our new approach based on the
false discovery rate in Section 2.2, before discussing in
Section 2.3 how we can use it to construct a portfolio of
trading rules.

2.1. Existing data snooping methods

Data snooping is widely recognized to be a significant
issue in the finance literature. Standard methods such as
the Bonferroni correction—in which individual tests are
performed at the a=l level of significance to guarantee
that the significance level of the simultaneous test of all l

strategies does not exceed a—are too conservative. A first
solution exploiting the dependence structure of the indi-
vidual test statistics is provided by the bootstrap reality
check of White (2000). The BRC provides a procedure to
test whether the best rule in the sample has genuine
predictive power after accounting for the effects of data
snooping. Formally, the BRC tests the null hypothesis
that the performance of the best technical trading rule is
no better than the performance of the benchmark: H0 :
maxk ¼ 1,...,ljkr0, where jk is the performance measure
of the kth rule and is equal to zero when rule k does not
generate abnormal performance. The BRC is the data
snooping measure used in the study of STW. However, it
is not able to identify further strategies that generate true
performance. In practice, investors prefer to get a con-
firmation from multiple strategies. A first attempt to
tackle this issue is the stepwise multiple testing method
of Romano and Wolf (2005). The RW algorithm uses
a modified BRC as a first step and can detect further
outperforming strategies in subsequent steps. The RW
method controls for the familywise error rate, which is
defined as the probability of erroneously selecting one or
more trading rules as significant, when in reality they are
simply lucky. The FWER is a conservative criterion,
resulting in a low power to detect superior performance,
especially when the universe of rules is large. Our Monte
Carlo study shown in Appendix G illustrates the weakness
of the RW method (and of the BRC) in terms of power.
Hansen (2005) offers some improvements over the BRC.
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Being less sensitive to the influence of poor and irrelevant
strategies, his method is more powerful. However, like the
BRC, Hansen’s method addresses only the question of
whether the strategy that appears best in the observed
data really beats the benchmark. Hsu and Kuan (2005)
utilize the test of Hansen to reexamine the profitability of
technical analysis and conclude that there are no profit-
able trading rules in mature markets [i.e., DJIA and
Standard & Poor’s (S&P) 500]. Hsu, Hsu, and Kuan (2010)
introduce a stepwise extension of the method of Hansen.
Using their new test, they find that technical rules have
predictive power on growth and emerging markets
indices, at least until corresponding exchange traded
funds (ETF) are introduced.

2.2. False discovery rate

We now present our new approach based on the false
discovery rate to select trading rules while accounting for
data snooping. The FDRþ /� methodology we use has been
developed by Barras, Scaillet, and Wermers (2010) in the
context of mutual funds selection. However, our paper is
the first to propose the FDR as a tool to account for data
snooping.

In practice, investors do not consider the signal of one
trading rule at a time but typically combine the signals of
multiple strategies. A nontrivial fraction of strategies
might possess genuine predictive power, and the goal is
to identify a large number of them to diversify against
model risk. Benjamini and Hochberg (1995) argue that in
such a case the control of the FWER is not necessary.
Guarding against any single erroneous detection is much
too strict and leads to many missed findings. To identify
as many outperforming rules as possible without includ-
ing too many false positives, Benjamini and Hochberg
(1995) propose a more tolerant error measure, the FDR.
The basic idea is simple. By allowing a certain (small)
proportion of false discoveries, the FDR significantly
improves the power of detecting the outperforming rules.

The original FDR paper of Benjamini and Hochberg
(1995) assumes that the multiple hypotheses (e.g., trading
rules) are independent. Some strategies in our sample are
only minor variations of themselves, e.g., moving averages
with only slightly different parameters, and are therefore
highly correlated. Efforts have been made to generalize
the FDR methodology under dependence. For example,
Benjamini and Yekutieli (2001) show that we can work
under certain dependence conditions, such as positive
regression dependency. This covers multivariate normal test
statistics with positive correlation and multivariate student
test statistics. Storey (2003), Storey and Tibshirani (2003),
and Storey, Taylor, and Siegmund (2004) show that when
the number of tests l is large the FDR approach holds under
‘‘weak dependence’’ of the p-values (or test statistics). In the
multiple testing literature, it is natural to think about large l

asymptotics, i.e., to have an increasing number of tests; see,
e.g., Finner and Roters (2002). When the number l of tests
cannot be taken large, Romano, Shaikh, and Wolf (2008a)
show that resampling procedures incorporating information
about the dependence structure are better able to detect
false null hypotheses.
Farcomeni (2007) and Wu (2008) give several examples
illustrating that the notion of weak dependence is general
enough to cover many problems of practical interest. Weak
dependence can loosely be described as any form of
dependence whose effect becomes negligible as the number
of tests increases to infinity. The more local the dependence,
i.e., the faster dependencies disappear for distant p-values,
the more likely it is to satisfy the weak dependence
criterion. In our empirical study, the trading rules behave
dependently in small groups, with each group being essen-
tially independent of the others. For example, a two-day
moving average rule with a 0.01 band is highly correlated to
a two-day moving average rule with a 0.015 band. However,
the performance of a two hundred-day moving average rule
is going to be very different, let alone a filter or a support
and resistance rule. Such form of dependence is called block
dependence and satisfies the weak dependence conditions.
Figs. 2 and 3 in Section 4 illustrate the presence of blocks of
similar strategies, with each block behaving differently.
Hence, we can safely apply the methods we use to estimate
the various parameters of the FDR procedure. In addition,
the Monte Carlo simulations that we run in Appendix G
confirm the good behavior of our FDR method under cross-
sectional dependences.

Elaborating on the FDR, Barras, Scaillet, and Wermers
(2010) introduce the FDRþ /� , which allows to estimate
separately the proportion of false discoveries among
technical rules that perform better or worse than the
benchmark. We call a trading rule significantly positive if
its abnormal performance is both significant (i.e., H0k :

jk ¼ 0 is rejected in favor of the alternative HAk : jk4
0 or jko0, where jk is a performance measure for rule

k) and positive. Let Rþ denote the number of trading rules

selected as significantly positive. Among them, Fþ do not
truly generate abnormal performance but have been
selected erroneously. The FDR among the rules yielding
positive returns, denoted by FDRþ , is defined as the
expected value of the proportion of erroneous selections
among the rules selected as outperforming. The FDRþ can

be estimated as dFDR
þ

¼ bF þ =bRþ , where bF þ and bRþ are

estimators of Fþ and Rþ . Similarly, an estimator of the
FDR among the rules yielding negative returns, denoted

by FDR �, can be written as dFDR
�

¼ bF�=bR�. An FDRþ of
10% means that among the rules selected as outperform-
ing, on average 10% do no generate genuine positive
performance. An FDRþ of 100% shows that no rule is able
to deliver positive returns and that the apparent perfor-
mance is purely due to luck, i.e., data snooping. An FDRþ of
0% indicates that all selected strategies do genuinely gen-
erate positive performance. The FDR approach also allows

for estimating the proportions pþA and p�A of, respectively,

positive and negative trading rules in the population.
In our application, the FDR offers a sensible balance

between true positives and erroneous elections. It is much
less conservative than the FWER and leads to a significant
increase in power. The FDR approach has received much
recent attention in the statistics literature; see Abramovich,
Benjamini, Donoho, and Johnstone (2006) for applications of
the FDR and for an extensive discussion of the advantages of
using the FDR over the FWER in the field of multiple testing.
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Romano, Shaikh, and Wolf (2008b) review a number of
recent proposals to account for multiple tests, and they
discuss how these procedures apply to the problem of
model selection. In addition to its less conservative nature,
the FDR approach is able to detect the outperforming rules,
even if the performance of the best rule in the sample is due
to luck, contrary to the RW method and the BRC.

In Appendix G, we design a Monte Carlo experiment
replicating the environment of our empirical study, in
particular the serial and cross-sectional dependencies.
Barras, Scaillet, and Wermers (2010) run an extensive
Monte Carlo study that illustrates the good statistical
properties of the FDR method in a mutual fund perfor-
mance measurement setting. Their design covers depen-
dent test statistics, where dependencies come from both
the factor structure explaining mutual fund returns and
some residual cross-sectional correlations in the error
terms. We show in our simulations that the proportions
of outperforming and underperforming rules are esti-
mated very accurately by the FDR method for correlated
test statistics when l is large. This confirms the behavior
predicted by asymptotic theory when l goes to infinity.
More important, the FDR approach allows for detecting
almost all outperforming rules, while keeping the amount
of false discoveries at the desired level. The simulations
highlight the lack of power of the RW method and the
advantage of the new FDR approach. They illustrate that
one reason explaining the low power of the RW method is
that its algorithm stops once it encounters a lucky rule.
They also show that a situation in which a rule with no
genuine predictive power achieves one of the highest
performance by luck is not uncommon. At worst, the RW
method (and the BRC) selects no single rule if the
performance of the best rule in the sample is due to luck.
This comes from the stepwise nature of the algorithm
controlling the conservative FWER criterion.

Another virtue of the FDR approach is its simplicity. Once
the p-values corresponding to the individual tests have been
calculated, the estimation of the FDRþ /� is straightforward.
The FDR approach requires only p-values from a two-sided
test. For each rule k, 1rkr l, we test the null hypothesis
H0k of no abnormal performance, versus the alternative
HAk of the presence of abnormal performance, positive
or negative: H0k : jk ¼ 0,HAk : jk40 or jko0. The single
parameter to be estimated is the proportion p0 of rules in
the population satisfying the null hypothesis j¼ 0. We
obtain the individual p-values using the same resampling
technique as STW. All relevant estimation procedures to getdFDR

þ

, dFDR
�

, bpþA , and bp�A , as well as the stationary boot-
strap used to obtain the individual p-values, are detailed in
the Appendices. We also describe how to determine the
standard deviation of the estimators for p0, pþA , and p�A
under dependent p-values. These new results extend the
asymptotic properties provided by Barras, Scaillet, and
Wermers (2010) for independent p-values when l goes to
infinity.

2.3. FDR portfolio in practice

Our criterion to construct a portfolio of trading rules setsdFDR
þ

equal to 10%. Just as when choosing the significance
level of a statistical test, the choice of the FDR level defines
the balance between wrongly including underperforming
trading rules and leaving out truly outperforming ones. Our
experiments with real data and in our Monte Carlo study
indicate that a target of 10% achieves a good trade-off.
Results are qualitatively stable for values ranging from 5% to
20%. Another approach useful when we do not know which
FDR level to choose is to first fix the rejection region, before
computing the corresponding proportion of false discov-
eries. For example, we select strategies generating positive
performance and having a p-value inferior to the threshold
g¼ 0:01 in a first step. Then, we compute the resultingdFDR

þ

.
We use the algorithm described in the Appendix to pick

the corresponding trading rules. We denote the resulting
portfolio the 10%-FDRþ portfolio. Ninety percent of the
rules included in the portfolio possess genuine predictive
power. After pooling the signals of the selected rules with
equal weight, we invest a proportion of the wealth corre-
sponding to the neutral signals in the risk-free rate and go
long or short the market with the remaining money. For
example, imagine the 10%-FDRþ portfolio contains 60
rules, of which 40 generate a buy signal, 10 generate a
neutral signal, and 10 generate a sell signal. After pooling,
we obtain 30 buy signals and 20 neutral signals. Hence, we
invest 60% of the wealth in the index and the remaining 40%
in a savings account. Our portfolio approach is equivalent to
averaging the forecasts of the selected rules with equal
weights and no prior. Setting more weight on the better
rules has an effect very similar to reducing the FDR target
level to keep fewer rules. Such a forecast combinations
approach that diversifies against model uncertainty is dis-
cussed in Elliott and Timmermann (2008).

In theory, we could construct a universe containing all
the possible combinations of trading rules and use the
BRC to select the best candidate. However, this approach
is not feasible in practice as there are 27846

�1 possible
rules combinations, a number with more than two thou-
sand digits. Our FDR portfolio methodology allows us to
circumvent this computational hurdle.

3. Trading rules, data, and performance measurement

We describe the universe of trading rules and the data
in Section 3.1, and explain how we measure performance
in Section 3.2.

3.1. Universe of trading rules and data

When applied to a series of past prices, a trading rule
indicates whether a long position (buy), a neutral position
(out of the market), or a short position (sell) should be
taken in the next time period. To examine whether the
apparent success reported in BLL and STW is spurious, i.e.,
the result of extensive tweaking of the parameters of
popular rules, we need to specify a universe of trading
rules from which investors could have drawn their stra-
tegies. To allow for comparison, we stick to the universe
of STW, which consists of l¼7,846 rules divided into the
following five categories. The technical indicators corre-
sponding to these strategies are very common in practice.
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They are available on professional information systems
and advertised on popular finance websites.

Filter rules: An investor following a filter rule buys and
sells a stock if its price movement reverses direction by a
sufficiently high amount. Moves less than a certain
percentage in either direction are ignored. The filter rule
is supposed to permit investors to participate in a secur-
ity’s major price trends without being misled by small
fluctuations.

Moving averages: Investors frequently use moving
averages to discover trends in stock prices. For example,
in an uptrend, long commitments are retained as long as
the price remains above the moving average.

Support and resistance rules: Support and resistance is
the concept in technical trading that the movement of the
price of a security tends to stop and reverse at certain
predetermined price levels. The idea is that the price is
more likely to bounce off a support level rather than break
through it. However, once the price has passed this level,
it is likely to continue dropping until it finds another
support level. A resistance level is the opposite of a
support level.

Channel breakouts: A price channel is a pair of parallel
trend lines that form a trending chart pattern for a security.
When the price passes through a trend line, the trend is
broken and the breakout generates a buy or sell signal.

On-balance volume averages (OBV): The total volume for a
given day is assigned a positive or negative value depending
on the close being higher or lower than the previous day,
and it is added to the OBV of the previous day. The OBV is
generally used to confirm price moves. The intuition is that
volume is higher on days when the price move is in the
dominant direction. Therefore, technical traders consider
greater volume on rising prices bullish. Conversely, greater
volume on falling prices is considered bearish.

We refer to STW for the exact parameterizations of the
trading rules. Apart from the support and resistance rules,
which can be considered as contrarian strategies, the other
categories of rules are momentum or trend-following stra-
tegies. As in STW, we apply the nearly 8,000 trading rules to
daily closing prices on the DJIA index. STW consider the
sample from January 1897 to December 1996, divided into
five subperiods. We add one period for the new data
between January 1997 and July 2011. STW also run the
strategies on the one hundred-year period from the incep-
tion of the DJIA index. Results for this latter sample should
be viewed with caution, as market conditions have evolved
dramatically in the last one hundred years. Furthermore,
managers never get to trade for one hundred years before
their performance is evaluated. It can be argued that, in the
early periods, it was impossible to trade stock indices
frequently without incurring significant transaction costs.
With the introduction of exchange-traded funds, e.g., the
Diamonds Trust, which tracks the DJIA index, and index
futures, it is realistic to assume that investors apply techni-
cal rules directly to a stock market index.

3.2. Performance measurement

Each rule k, 1rkr l, generates an investment signal
sk,t�1 for each prediction period t, LrtrT . sk,t�1 equals 1
for a long position, 0 for a neutral position, and �1 for a
short position. An alternative that leads to the same
conclusions on the performance of trading rules is to
translate a buy signal into borrowing money at the risk-
free rate and doubling the investment in the stock index, a
neutral signal into simply holding the index, and a sell
signal into exiting the market.

For each rule, we compute a test statistic jk, which
measures the performance of the rule relative to a bench-
mark. The statistic is defined in such a way that jk ¼ 0
under the null hypothesis that rule k does not generate
abnormal performance relative to the benchmark. Follow-
ing STW, our benchmark is to be out of the market and to
earn the risk-free rate, which corresponds to testing
whether the trading rules are able to generate absolute
returns. Alternatively, we could compare the performance
of the trading rules with a buy-and-hold strategy that is
fully invested in the index over the entire sample. A
further possibility is to compare the returns of the trading
rules with an average of the average returns on the index
and on bonds over the period, weighted by the fraction of
days the strategy is invested in, respectively, the index
and bonds. This allows to test if the trading rule chooses
relatively better days to be invested in the index; see
Ready (2002).

In their study, STW use two simple performance
criteria: the mean return and the Sharpe ratio. We focus
our analysis on the Sharpe ratio, which measures the
average excess return per unit of total risk. We compute
the return in excess of the risk-free rate. This implies that
trading rules earn the risk-free rate on days when a
neutral signal is generated. We use the same risk-free
rate as STW, i.e., the daily federal funds rate after July
1954. We are grateful to A. Timmermann for providing us
the DJIA index and risk-free rate series for early periods.

Let yt be the (arithmetic) period t return on the price
series on which the strategies are applied. As in STW, we

denote by f e
k,t ¼ 1fsk,t�1a0gðsk,t�1yt�rf ,tÞ the period t excess

return of rule k, where rf ,t is the risk-free rate, and

1fsk,t�1a0g ¼ 1 if a buy or sell signal is generated and 0 if

the signal is neutral. The mean excess return can be

written as f
e

k ¼ ð1=NÞ
PT

t ¼ L f e
k,tþ1, and the standard devia-

tion as se
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ðN�1ÞÞ

PT
t ¼ Lðf

e
k,tþ1�f

e

kÞ
2

q
, where N¼

T�Lþ1 is the number of prediction periods. Then, the
test statistic for the Sharpe ratio is simply jk ¼

SRk ¼ f
e

k=se
k. Results for the mean return, which measures

the absolute performance, are qualitatively similar, and
we do not report them here. They are available in the
online Appendix.

As in the available literature, the Sharpe ratios we use
for appraising the performance of the trading rules are
unconditional, i.e., they involve unconditional risk esti-
mates. The trading rules generate a signal to be either in
the market and get market volatility, or out of the market
and get a volatility close to zero. The unconditional
Sharpe ratio favors rules that are more often out of the
market as their denominator is automatically deflated.
Taking into account such volatility patterns would likely
alter the classification of trading rules. To our knowledge,
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this issue is not addressed in the literature. Tackling this
issue is not trivial, as the expected value of the conditional
Sharpe ratios is not equivalent to the unconditional
Sharpe ratio because of Jensen’s inequality. This point is
less of an issue when assessing the performance of a
portfolio of trading rules, which results in being at least
partially invested in the index most of the time, as it is the
case in our study.

Although it has become a standard in the literature
and in the industry, measuring performance with the
Sharpe ratio has many drawbacks. The Sharpe ratio does
not take into account higher moments and recent studies
have shown that incorporating skewness and kurtosis
into the portfolio decision causes major changes in the
optimal portfolio; see Jondeau and Rockinger (2006) and
the references therein. One possible performance measure
that can take into account more elaborate utility functions
is the certainty equivalent of wealth (CE). The certainty
equivalent is that amount of wealth such that the investor
is indifferent between receiving it for sure at the horizon
and having his current wealth today and the opportunity
to invest it up to the horizon; see Brennan, Schwartz, and
Lagnado (1997) and Blanchet-Scalliet, Diop, Gibson, Talay,
and Tanr (2007). The downside with such an approach is
that it requires making an assumption on the stochastic
process underlying the index.
4. Long-term in-sample performance

For each of the sample periods, the columns on the
right-hand side of Table 1 display the in-sample perfor-
mance of the best rule in the sample and the correspond-
ing BRC p-value, as reported in STW. The columns on the
Table 1
Performance indicators from existing studies under the Sharpe ratio

criterion and with no transaction costs.

This table presents long-term performance results of rules chosen

according to the Sharpe ratio criterion, across the different sample

periods. The table reports the annualized Sharpe ratio and size of the

portfolio obtained with the method of Romano and Wolf (RW, 2005), the

annualized Sharpe ratio and corresponding bootstrap reality check (BRC)

p-value of the best rule in the sample, and the annualized Sharpe ratio of

the buy-and-hold strategy for the Dow Jones Industrial Average index

(DJIA). If the portfolio size is zero, the Sharpe ratio is not reported (–).

Sample

period

RW portfolio Best rule DJIA

Sharpe

ratio

Portfolio

size

Sharpe

ratio

BRC p-

value

Sharpe

ratio

1: 1897–

1914

1.24 45 1.18 0.00 �0.12

2: 1915–

1938

– 0 0.73 0.11 0.06

3: 1939–

1962

1.49 62 2.34 0.00 0.41

4: 1962–

1986

1.52 15 1.45 0.00 �0.16

5: 1987–

1996

– 0 0.84 0.93 0.66

6: 1997–

2011

– 0 0.48 1.00 0.12

1897–

1996

0.70 88 0.82 0.00 0.12
left-hand side present the performance and size of the
portfolio obtained using the RW method to control the
FWER at the 5% level. Based on such in-sample evidence
discovered ex post, BLL and STW conclude that technical
rules can be used to generate profits. These results have
no economic value and are merely a test of predictability.
They do not take into account transaction costs, and a
high historical performance is no indication that an
investor could have selected the future best-performing
rules in advance. Moreover, in practice, investor perfor-
mance is evaluated over much shorter periods. Investors
update their strategies more frequently, in an attempt to
adapt to the changing economic environment. The long-
run averages presented in STW tend to mask substantial
variability in the rules performance within each period.

For the same sample periods, Fig. 1 shows the propor-
tions of outperforming ðpþA Þ, null ðp0Þ, and underperform-
ing ðp�A Þ strategies, estimated using the FDR approach.
Results in Fig. 1 are subject to the same criticisms as those
in Table 1. However, they illustrate the advantage of our
new methodology. For example, in subperiod 2 (1915–
1938), the BRC p-value indicates that the performance of
the best rule in the sample is not significant after
accounting for data snooping. As a consequence, the RW
portfolio is empty. However, the FDR analysis reveals that
more than 20% of the rules deliver true performance. This
example highlights a major problem of the RW method,
which is not able to select further rules with genuine
performance as soon as it encounters a rule whose
performance is due to luck. As illustrated in our Monte
Carlo experiments (Appendix G), the event that a rule
without true predictive power delivers one of the highest
returns by luck is not unlikely.

Fig. 1 indicates that until the 1960s an important
proportion of the rules exhibited a significant predictive
power. However, predictive power does not imply profit-
ability. An important proportion of the rules that perform
best before transaction costs use very short windows of
data, generate very frequent trading signals, and, hence,
are likely to generate substantial transaction costs. As
reported in, e.g., STW or Ready (2002), the rules did poorly
in more recent periods. The presence of true underper-
forming rules before transaction costs, e.g., subperiods 4
(1962–1986), 5 (1987–1996), and 6 (1997–2011), looks
counterintuitive at first sight. One might wish to reverse
the corresponding signals of when to go in or out of the
market. However, most of the systematically negative
performance stems from subtracting the risk-free rate
from alternating returns of very small magnitude. The
trend of poor performance is confirmed by the new data
now available for subperiod 6 (1997–2011). As discussed
in Ready (2002), one explanation for this drop in perfor-
mance is that the positive returns of the earlier periods is
a statistical anomaly, discovered ex post by extensive data
snooping. Another explanation is that an episode of
relative market inefficiency did exist, but the predictabil-
ity was discovered only during more recent periods and
became possible to exploit only with lower transaction
costs and increased liquidity. Another possible factor is
that investors have become more sophisticated and have
traded away these opportunities. Friedman (1996) shows
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Fig. 1. Proportions of outperforming ðpþA Þ, null ðp0Þ, and underperforming ðp�A Þ rules, under the Sharpe ratio criterion and with no transaction costs. This

figure displays estimates of pþA , p0, and p�A , across the different sample periods.

Table 2
Transaction costs (TC) such that the long-term in-sample performance

disappears under the Sharpe ratio criterion.

This table presents one-way transaction costs in basis points (bps)

such that bp þA becomes zero, across the different sample periods. It also

displays the corresponding bp�A . An asterisk (n) indicates that p�A is

estimated with zero transaction costs. If bp þA is already zero before TC,

TC are not reported (–).

Sample period TC such that Corresponding

bp þA ¼ 0 bp�A
1: 1897–1914 16 bps 0%

2: 1915–1938 35 bps 15%

3: 1939–1962 70 bps 36%

4: 1962–1986 – 49%n

5: 1987–1996 – 13%n

6: 1997–2011 – 26%n
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that aggregate institutional ownership increases from less
than 10% in 1950 to over 50% in 1994. Gompers and
Metrick (2001) find that large institutional investors
nearly double their share of the stock market from 1980
to 1996. Their increased number does not mean that
institutional investors are more sophisticated.

Before we tackle the issue of ex ante rules selection in
the next section, we show that the in-sample predictability
could not have been turned into profits as the generated
returns are not sufficient to outweigh transaction costs.
Table 2 reports the minimum transactions costs such that
our FDR method does not detect outperforming rules any
more. In the first three subperiods (1897–1962), propor-
tional one-way transaction costs as low as 16, 35, and 70
basis points (bps) are sufficient to bring bpþA to zero.
Transaction costs are difficult to measure precisely and have
declined over time. Nevertheless, studies presented in
Appendix H indicate that one-way transaction costs below
50 bps can be considered as conservative starting in the
early 1990s and that the costs were significantly higher
before the sharp decline triggered by the deregulation of
commissions in 1975. Ready (2002) uses one-way transac-
tion costs of 13 bps for the period from 1962 to 1999. Allen
and Karjalainen (1999) consider three different one-way
transaction costs: 10 bps, 25 bps, and 50 bps, for the period
from 1928 to 1995.

The rules selected before transaction costs produce
many trading signals, and their performance is canceled
once we take into account the costs. In the three most
recent sample periods (1962–2011), we do not detect any
positive performance (bpþA ¼ 0) already under zero trans-
action costs. The effective transaction costs depend on a
number of factors including the type of trading strategy.
For example, a short-term contrarian trading rule will,
almost by definition, have a lower price impact than a
trend-following strategy. Among the five categories in the
STW universe, only the support and resistance rules are
contrarian strategies. The other types correspond to
momentum or trend-following strategies. As a robustness
check, we perform our computations with transaction
costs 20% lower for support and resistance rules. The
impact on the above results is marginal.

Table 3 illustrates that, once we include transaction
costs, the successful rules trade on longer-term price
movements. Even if transaction costs have been declining
over time, for the sake of comparison we use the same
low (i.e., conservative) value of 12.5 basis points across all
sample periods. For example, during sample period 3
(1939–1962), if we omit transaction costs, the best rule
in the sample uses a window of only two days of data.
When transaction costs are taken into account, the best
rule needs 250 days, or 12 months of data.

The detailed analysis of the impact of transaction costs,
continued in Section 5, is an important contribution of our
paper. Although previous studies including BLL and STW call
for careful consideration of transaction costs, none provides a
satisfactory analysis while simultaneously accounting for
data snooping. STW partly address the issue by using price
data on the S&P 500 index futures. When trading futures
contracts, transaction costs are easy to control, and it is not
difficult to take a short position (see Appendix H). However,
futures contracts started trading only in 1984, thus limiting
the interest of this approach in our one hundred-year sample.



Table 3
Best in-sample technical trading rules under the Sharpe ratio criterion.

This table reports the historically best-performing trading rule chosen with respect to the Sharpe ratio criterion,

in each sample period, and for either zero or 12.5 basis points (bps) one-way transaction costs. An asterisk (n)

indicates that, according to the bootstrap reality check, the performance of the rule remains significant after

accounting for data snooping.

Sample period Costs Best trading rule

1: 1897–1914 Zero 5-Day channel rule, 0.02 width, 5-day holding period, 0.005 bandn

12.5 bps 20-Day channel rule, 0.1 width, 5-day holding period

2: 1915–1938 Zero 5-Day moving average, 0.001 band

12.5 bps 25-Day support & resistance, 5-day delay, 50-day holding period

3: 1939–1962 Zero 2-Day moving average, 0.001 bandn

12.5 bps 75- and 250-day on-balance volume, 0.01 band

4: 1962–1986 Zero 2-Day moving average, 0.001 bandn

12.5 bps 20-Day channel rule, 0.03 width, 10-day holding period, 0.01 band

5: 1987–1996 Zero 50-Day support and resistance, 0.01 band

12.5 bps 40- and 75-Day on-balance volume, 0.03 band

6: 1997–2011 Zero Filter rule, 0.01 position initiation, 25-day holding period

12.5 bps 75- and 250-day on-balance volume, 0.01 band
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Fig. 2. Break-even transaction costs for the 7,846 trading rules in sample period 3 (1939–1962). Values are given in basis points (bps). Negative values
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are displayed in the following order: filter rules, moving averages, support and resistance rules, channel breakouts, and on-balance volume averages.
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Some studies, e.g., STW and Bessembinder and Chan (1998),
compute a break-even transaction cost, which corresponds to
the level of transaction costs that exactly offsets the profits
from using a given technical trading rule. We also examine
break-even costs for each strategy, to see if there is any
variation over time or across types of strategies. We do not
report the detailed results but Figs. 2 and 3 provide an
example of the differences across the various blocks of
trading rules and between period 3 (1939–1962) and period
4 (1962–1986). In period 3, 75% of the rules deliver positive
in-sample performance before costs, and transaction costs
below 25 basis points are sufficient to prevent the vast
majority from breaking even. In period 4 the proportion of
rules with positive in-sample performance before costs drops
to 44%, and most of these rules require costs below 10 basis
points to break even. Individual break-even transaction costs
are informative. However, it is difficult to use break-even
costs in a rules selection process because they are computed
ex post, once the trading rules have already been selected. It
does not make sense to first select a portfolio of trading rules
using the RW method or our FDR approach and then
compute the portfolio break-even costs. Trading rules that
survive the inclusion of transaction costs are often not among
those that perform best before costs. Transaction costs must
be treated as endogenous and not exogenous to the selection
process. The results of Table 2 and of Section 5 do not suffer
from this exogeneity problem. They are obtained by treating
transaction costs as endogenous to the selection process, i.e.,
by increasing transaction costs until the FDR approach is not
able to detect any positive performance. They can be viewed
as break-even transaction costs computed ex ante. Our
approach of computing ex ante break-even costs removes
the need to set a level of costs in advance that would be
dependent on many factors, such as volume (see Appendix H
for a discussion of the price impact as a function of the traded
volume).
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Fig. 3. Break-even transaction costs for the 7,846 trading rules in sample period 4 (1962–1986). Values are given in basis points (bps). Negative values
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5. Persistence analysis

The question addressed in this section is simple but
essential to evaluate the economic value of the trading
rules: Could investors reasonably have anticipated which
rules would generate superior returns after transaction
costs? It is important to ask what information could have
been used to select the outperforming rules. If the answer
is that the prediction could have been made based on an
analysis of investment flows, fiscal policy, or market
psychology, then price data alone are not sufficient to
reject the assertion. Considering that the trading rules we
investigate are purely based on the price action, however,
it makes sense to test if the future outperforming rules
could have been selected using only past price data. We
do so by performing a persistence analysis of the trading
rules. Every month, we construct a portfolio of rules using
price data of the previous month. We then measure the
out-of-sample performance of the selected rules over the
following month. It is important to note that to rebalance
the portfolio, we use only information that would have
been readily available to an investor. Such a persistence
analysis of the performance of a large number of trading
rules has never been carried out in the literature. STW
qualify as out-of-sample the results for the period after
the sample of the original BLL study. However, and
despite the term, STW always measure the performance
in-sample. In our persistence test, rules are selected
ex ante and evaluated genuinely out-of-sample. Rebalan-
cing the portfolio monthly as opposed to evaluating the
rules over multiple-year periods as is done in all previous
studies also allows for selecting different rules depending
on the changing economic environment. Compared with
existing studies, such setting is much closer to what is
done in practice, where investors are evaluated over
relatively short time horizons. The one-month period is
chosen to correspond to the typical length of a trend in
financial markets; see Jegadeesh (1990) and Huang, Liu,
Rhee, and Zhang (2010), who find a reversal in stock
returns after one month. Results are similar when the
rules are updated every six months and are reported in
the online Appendix.

Table 4 reports results of the persistence analysis
under zero transaction costs, for the same sample periods
as previously. It shows the out-of-sample performance for
the different rules selection criteria we use, i.e., the 10%-
FDRþ portfolio, the RW portfolio, the 50 best-performing
rules, and the best rule in the sample. It also displays the
median size and the in-sample performance of the
monthly rebalanced portfolios. As explained in Section
2.3, we pool the signals of the rules in the portfolio, which
results in getting long or short the index with a propor-
tion of the wealth and investing the remaining money at
the risk-free rate. The in-sample performance when we
update the rules monthly is significantly higher than what
we can achieve if we have to keep the same rules over
multiple-year periods. However, the out-of-sample per-
formance is negative in most cases throughout the recent
periods. Even equipped with the more powerful FDR
method, investors could not have reasonably anticipated
which rules would generate positive returns, and this
even in the unrealistic case of zero transaction costs.
Hence, there is no hot hands phenomenon. Other signs
show that the reason for choosing the outperforming
rules is clear only to researchers examining the price data
ex post. The number of selected rules varies greatly from
month to month. A study of the portfolio turnover shows
that, on average, less than 5% of the rules remain in the
portfolio after the first rebalancing. After two rebalan-
cings the portfolio consists of almost exclusively new
rules. Although it can be the case that we are able to find
ex post technical rules with apparent predictive power,
our persistence tests indicate that it is not possible to
select these rules ex ante. Our results show that the



Table 4
Performance persistence analysis under the Sharpe ratio criterion and with no transaction costs.

This table displays the in-sample (IS) and the out-of-sample (OOS) annualized Sharpe ratio of trading rules selected according to the following criteria

and updated monthly across the different sample periods: the 10%-FDRþ portfolio, the Romano and Wolf (RW, 2005) portfolio, the 50 best rules in-

sample, and the best rule in-sample. The table also reports the median size of the false discovery rate (FDR) and RW portfolios across the different

rebalancings. If the RW portfolio is always empty, IS performance and OOS performance are not reported (–).

Sample period FDR portfolio RW portfolio 50 best rules Best rule

IS OOS Median size IS OOS Median size IS OOS IS OOS

1: 1897–1914 3.41 0.47 14 1.31 0.51 0 5.79 0.50 6.34 0.03

2: 1915–1938 4.62 0.01 13 0.90 0.17 0 5.39 �0.03 5.98 0.09

3: 1939–1962 4.77 0.55 15 1.85 0.09 0 5.78 0.43 6.70 0.12

4: 1962–1986 5.34 �0.31 13 1.36 0.14 0 6.17 �0.18 6.95 �0.59

5: 1987–1996 4.52 �0.34 12 – – – 5.44 �0.37 6.07 0.08

6: 1997–2011 4.55 �0.74 12 0.78 0.07 0 5.22 �0.51 5.97 �0.27

Table 5
Transaction costs (TC) such that out-of-sample (OOS) performance disappears under the Sharpe ratio criterion.

This table reports the level of one-way transaction costs in basis points (bps) for which the OOS performance of different portfolios of trading rules

becomes zero. As in Table 4, the rules are selected according to the following criteria and updated monthly across the different sample periods: the 10%-

FDRþ portfolio, the Romano and Wolf (RW, 2005) portfolio, the 50 best rules in-sample, and the best rule in-sample. The table also displays the median

size of the false discovery rate (FDR) and RW portfolios across the different rebalancings. If OOS performance is already zero before TC, TC are not

reported (–).

Sample period FDR portfolio RW portfolio 50 best rules Best rule

TC such that Median TC such that Median TC such that TC such that

OOS performance¼0 portfolio size OOS performance¼0 portfolio size OOS performance¼0 OOS performance¼0

1: 1897–1914 30–35 bps 1 50–55 bps 0 2-0-25 bps 0–5 bps

2: 1915–1938 0–5 bps 12 30–35 bps 0 – 5–10 bps

3: 1939–1962 0–5 bps 7 5–10 bps 0 15–20 bps 0–5 bps

4: 1962–1986 – – 25–30 bps 0 – –

5: 1987–1996 – – – – – 5–10 bps

6: 1997–2011 – – 20–25 bps 0 – –
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examples of in-sample predictability reported ex post by
BLL and STW have no economic value.

Table 4 also displays the advantages of using the FDR
approach. The FDR approach efficiently avoids the lucky
rules with no genuine performance, as illustrated by the
higher out-of-sample returns of the 10%-FDRþ portfolio
compared with the performance of the portfolio of the 50
previously best-performing rules. The median size of the
different portfolios shows the power advantage of the FDR
method, when the RW portfolio is empty most of the
times. As explained above and illustrated in the Monte
Carlo study (Appendix G), the lack of power of the RW
method (and simultaneously of the BRC) comes from the
very conservative criteria underlying that method, which
prevents it from selecting further rules as soon as it
encounters one whose performance is due to luck.

The results of Table 4 show that the performance of
trading rules is not persistent and that knowing which
rules are going to perform best can be clear only to a
person observing the returns ex post. Not to leave any
argument in favor of trading rules, we now show that
even the smallest transaction costs are sufficient to erase
the apparent positive out-of-sample performance still
remaining in the early sample periods. Table 5 reports
the minimum level of transaction costs so that the out-of-
sample performance disappears. As before, we treat the
transaction costs as endogenous to the selection process,
and we can view the reported levels as break-even
transaction costs computed ex ante. Even during the early
periods, one-way transaction costs of less than 5–35 basis
points suffice to offset any out-of-sample performance. As
pointed out in Appendix H, transaction costs were sig-
nificantly higher in the prevailing periods. Hence, even if
the in-sample performance looks attractive, the persis-
tence analysis shows that an investor cannot realistically
select the future outperforming rules.

A further source of friction arises from the lending fees
when taking a short position. The 10%-FDRþ portfolio
results in short positions in more than 20% of the days.
Table 6 displays the minimum level of short-selling costs
that make the out-of-sample performance disappear. In
the first three sample periods (1897–1962), with yearly
lending fees only between 5 and 20 basis points (see
Appendix H for studies on lending fees in the equity loan
market), we are not able to select rules with positive out-
of-sample performance, and this while keeping one-way
transaction costs at zero. In later periods, out-of-sample
performance is already negative before costs.

We have just shown that it is impossible to select the
future best-performing rules by looking solely on their
past performance. As a robustness check, we test whether
other variables can help to predict which trading rules are
going to outperform in the future. For example, we test
whether certain trading rules perform better within a



Table 6
Lending fees such that the out-of-sample (OOS) performance disappears

under the Sharpe ratio criterion.

This table reports the level of yearly lending fees in basis points (bps)

such that the OOS performance of the 10%-FDRþ portfolio rebalanced

monthly across the different sample periods disappears. It also displays

the corresponding median portfolio size across the different rebalan-

cings. If OOS performance is already zero before lending fees, lending

fees are not reported (–).

Sample period Lending fees such that Median

OOS performance¼0 portfolio size

1: 1897–1914 10–15 bps 10

2: 1915–1938 0–5 bps 13

3: 1939–1962 15–20 bps 9

4: 1962–1986 – –

5: 1987–1996 – –

6: 1997–2011 – –
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particular economic environment, using business cycle
data from the National Bureau of Economic Research. Our
analysis shows that even knowing the state of the busi-
ness cycle ex ante would not help an investor selecting
the future outperforming rules. We also investigate the
predictability of the trading rules conditional on the
market environment. For some subperiods, the FDRþ

portfolio has a return profile similar to a straddle on the
index, i.e., the selected rules perform only when the DJIA
index exhibits strong negative or positive returns. Such a
pattern has been observed for hedge funds; see Fung and
Hsieh (1997). However, the relation is present only in a
few sample periods.

6. Conclusion

Previous studies, e.g., BLL and STW, have reported
examples of technical trading rules generating superior
returns, at least during early time periods. Based on such
results observed ex post, they have concluded that trading
rules were useful to deliver profits. In our paper, we
reassess this apparent historical success.

First, we propose a new approach to select outperform-
ing rules while accounting for data snooping based on the
false discovery rate. The FDR method is designed to control
false positives, i.e., conclusions that something is statistically
significant when it is entirely random. Our Monte Carlo
simulations calibrated to our empirical study and taking
into account serial and cross-sectional dependencies con-
firm that the FDR approach is more powerful and better
suited than statistical methods used in previous studies. It
allows for selecting more rules and diversifying against
model uncertainty. Methods derived from the BRC are by
construction unable to select further rules once they find a
rule whose performance is due to luck. As our simulations
illustrate, it is very likely that a rule with no real predictive
power achieves by luck a performance better than the
majority of the true outperforming rules.

Second, we test whether the trading rules can be used to
make money. Because the strategies selected by BLL and
STW generate frequent trading signals, return forecastability
might not imply superior returns once transaction costs are
considered. Another important question is how an investor
could have selected the rules able to deliver future returns
outweighing transaction costs, without the benefit of hind-
sight. We address these issues by performing persistence
tests of the performance of rules selected with the FDR
approach and adding a transaction cost each time a buy or
sell signal is generated. Our results show that, in reality, an
investor could not have extracted economic value from the
simple trading rules of STW in the liquid investment
environment (blue-chip index) we consider, even in early
sample periods. Even with the help of the more powerful
FDR approach, we are not able to select rules whose
performance is persistent and not canceled by transaction
costs. The rules in the STW universe originate from the Dow
Theory of the late 19th century; see Brown, Goetzmann, and
Kumar (1998). They are nowadays displayed interactively on
popular finance websites and quoted routinely by analysts.
They are part of standard packages provided by online
brokerage houses and data or news vendors. They can be
considered as publicly available, and, in that sense, our
results are in favor of the weak efficient-market hypothesis.

However, our results say little about the existence of
profitable trading strategies in other markets, using differ-
ent frequencies or more sophisticated rules. The recent
growing number of institutions getting involved in high-
frequency trading hints that profitable algorithmic strate-
gies can be found. The same remark applies to the success of
statistical arbitrage trading strategies used by several pro-
prietary trading desks and hedge funds in the 1980s and
1990s; see Gatev, Goetzmann, and Rouwenhorst (2006). Our
results indicate only that investors should be wary of the
common technical indicators present on any investment
website or professional information system and advertised
as obvious money-making tools.

Appendices

We summarize here results from Barras, Scaillet, and
Wermers (2010) and STW, and we present the results of
our Monte Carlo experiment showing the better ability of
the FDR approach to select the outperforming rules. We
also review the literature on transaction costs and short-
selling constraints and provide guidelines about which
level can be regarded as low (conservative).

Appendix A. Stationary bootstrap

For each trading rule, we test the null hypothesis of no
abnormal performance. To obtain the individual p-values,
we follow STW and apply the stationary bootstrap of
Politis and Romano (1994). This resampling technique is
chosen due to the weak correlation in the daily returns.
We describe the algorithm that generates a resampled
time series of returns. The notation corresponds to that of
the text and of STW. Let ff t ,t¼ L, . . . ,Tg denote the original
series of returns. For b¼ 1, . . . ,B, with q 2 ½0;1� a smooth-
ing parameter, the bootstrapped series of returns
ff b

t ,t¼ L, . . . ,Tg are obtained as follows.
1.
 Set t¼ L. Draw the index yðtÞ at random, indepen-
dently and uniformly from fL, . . . ,Tg. Set f b

t ¼ f yðtÞ.
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2.
Fig.
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Set t¼ tþ1. If t4T, stop. Otherwise, draw a random
variable U from the standard uniform distribution.
(a) If Uoq, draw yðtÞ at random, independently and

uniformly from fL, . . . ,Tg.
(b) If UZq, set yðtÞ ¼ yðt�1Þþ1. If yðtÞ4T , set yðtÞ ¼ L.
A1.
cted

ch in

rate
Set f b
t ¼ f yðtÞ.
3.
 Repeat step 2.

The stationary bootstrap resamples blocks of varying
length from the original data. The average block length
equals 1=q. The parameter q has to be chosen according to
the dependence exhibited by the data. We follow STW,
who set the average block length to 10 (i.e., q¼ 0:1). STW
show that the results are robust to the choice of q.

For each simulated series of return, we compute the
corresponding performance measure jb, b¼ 1, . . . ,B. The
p-value is obtained by comparing the original perfor-
mance j with the quantiles of jb�j, b¼ 1, . . . ,B. We
set B¼ 1;000 for the number of bootstrap iterations.

Appendix B. Estimation of the FDRþ and the FDR�

Suppose that we test the null hypothesis of no abnormal
performance for each trading rule and obtain the l corre-
sponding p-values. We call a trading rule significant (i.e.,
reject the null hypothesis) when its p-value is less than or
equal to some threshold g. Because the null hypothesis we
test is two-sided with equal tail significance g=2 (see Section
2.2), the false discoveries are spread evenly between out-
performing and underperforming trading rules. Based on
that observation and following Storey (2003), Barras,
Scaillet, and Wermers (2010) propose the following estima-
tors for the FDR separately among the rules yielding positive
and negative performance:

dFDR
þ

ðgÞ ¼
bF þ
bRþ ¼

1
2
bp0lg

#fpkrg,jk40; k¼ 1, . . . ,lg
ð1Þ
0 0.2 0.4
0

500

1,000

1,500

2,000

2,500

p−

Fr
eq

ue
nc

y

Density histogram of the 7,846 p-values [sample period 3 (1939–1962

for the p-values in [0,1] if all rules were truly null (i.e., did not generat

dicates that there are mostly null p-values in this region. The dotted l

abnormal performance (i.e., bp0).
and

dFDR
�

ðgÞ ¼
bF�
bR� ¼

1
2
bp0lg

#fpkrg,jko0; k¼ 1, . . . ,lg
: ð2Þ

bp0 is an estimate of p0 � l0=l, the proportion of rules in the
population generating no abnormal performance. Hence,
measuring the FDRþ /� boils down to the estimation of p0,
which we describe in Appendix C.

Appendix C. Estimation of p0

To estimate p0, Storey (2002) proposes a method
exploiting the fact that, for a two-sided test, null p-values
are uniformly distributed over ½0;1�, whereas p-values of
alternative models tend to be close to zero. Fig. A1 shows
the histogram density of p-values corresponding to our
l¼7,846 trading rules. We see that, beyond 0.6, the
histogram looks fairly flat, which indicates that there are
mostly null p-values in this region. The height of this flat
portion gives a conservative estimate of the overall
proportion of null p-values:

bp0ðlÞ ¼
#fpk4l; k¼ 1, . . . ,lg

lð1�lÞ
, ð3Þ

which involves the tuning parameter l. It is possible to
automate the selection of l. However, as bp0 is not
sensitive to the choice of l when the number of rules is
high, we set l¼ 0:6 by visually examining the histograms.
The automated method described in Storey (2002) pro-
duces almost identical estimates of p0.

Appendix D. Estimation of pþA and p�A

Appendix C shows how to estimate p0, from which we
can deduce pA ¼ 1�p0, the proportion of rules with
abnormal (i.e., nonzero) performance in the population.
It is useful to split pA into the proportions of rules with
0.6 0.8 1
values

λ

), Sharpe ratio criterion]. The dashed line is the density histogram to be

e abnormal performance). Beyond l¼ 0:6, the histogram looks fairly flat,

ine is at the height of the estimate of the proportion of rules that do not
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positive ðpþA Þ and negative abnormal performance ðp�A Þ,
which can be written as

pþA ¼
T þ ðgÞþAþ ðgÞ

l
, p�A ¼

T�ðgÞþA�ðgÞ
l

: ð4Þ

T þ ðgÞ denotes the number of alternative models with
positive performance and a p-value smaller than g. Aþ ðgÞ
denotes the number of alternative models with positive
performance that are not rejected by the hypothesis test
(i.e., with a p-value greater than g). T�ðgÞ and A�ðgÞ are
defined accordingly for negative performance.

Using the same approach as in Appendix B, we esti-
mate T þ ðgÞ and T�ðgÞ with

bT þ ðgÞ ¼ bRþ ðgÞ�bF þ ðgÞ ¼ fpkrg,jk40; k¼ 1, . . . ,lg�1
2
bp0lg
ð5Þ

and

bT�ðgÞ ¼ bR�ðgÞ�bF�ðgÞ ¼ fpkrg,jko0; k¼ 1, . . . ,lg�1
2
bp0lg:
ð6Þ

As we increase g, Aþ ðgÞ and A�ðgÞ tend to zero, while
T þ ðgÞ and T�ðgÞ increase. Hence, by taking a sufficiently
high value gn, we can estimate pþA and p�A with

bpþA ¼ bT
þ

ðgnÞ
l

, bp�A ¼ bT
�

ðgnÞ
l

, ð7Þ

as explained in Barras, Scaillet, and Wermers (2010). We
set gn ¼ 0:4, which corresponds to the value for which bpþA
and bp�A become constant.

Appendix E. Controlling the portfolio FDRþ level

Storey, Taylor, and Siegmund (2004) show that the FDR
point estimates can be used to define valid FDR controlling
procedures under weak dependence. Hence, we can derive
the following algorithm that allows the construction of a
portfolio of trading rules with a FDRþ level fixed at
predetermined target rate. The algorithm starts with the
rule having the smallest p-value (and a positive perfor-
mance). Then, the rule corresponding to the next p-value is
added and the FDRþ recomputed. This process is repeated
until we reach the desired FDRþ target.

Appendix F. Determining the standard deviation of the
estimators under dependence

Barras, Scaillet, and Wermers (2010) have derived the
asymptotic properties of the estimators for p0, pþA and p�A
under independent p-values. They use the large sample
theory proposed by Genovese and Wasserman (2004). Here
we use the results of Farcomeni (2007), who extends the
results of Genovese and Wasserman (2004) to the depen-
dent case; see also Wu (2008). The idea is to directly exploit
the convergence of the empirical process associated to the
p-values. In this appendix, we assume that the test statistics
are totally ordered. Let us introduce the cdf GðlÞ ¼ P½pkrl�
and its empirical counterpart bGðlÞ ¼ ]fpkrl; k¼ 1, . . . ,lg=l,
l 2 ð0;1Þ. Farcomeni (2007) shows that, when l-þ1, the
empirical process

ffiffi
l
p
ðbGðlÞ�GðlÞÞ converges to a centered

Gaussian random process whose covariance kernel is
Kðl1,l2Þ ¼ Gðminðl1,l2ÞÞ�Gðl1ÞGðl2Þþ2

P1
j ¼ 2ðGjðl1,l2Þ
�Gðl1ÞGðl2ÞÞ, where Gjðl1,l2Þ ¼ P½p1rl1,pjrl2�. That
result holds true under a wide range of dependence struc-
tures such as association, latent factor model, block depen-
dence, and mixing. Mixing refers here to spatial mixing and
not temporal mixing used in the time series literature. This
requires viewing the p-values corresponding to the test
statistics as a spatial process on [0,1] such that the mixing
conditions make the p-values located in the subintervals
close to zero sufficiently independent from the p-values
located in the subintervals close to one. The infinite sum
in the covariance kernel corresponds to the contribution

coming from dependence. We can estimate it by 2
Pal

j ¼ 2

ðbGjðl1,l2Þ�
bGðl1Þ

bGðl2ÞÞ, where bGjðl1,l2Þ ¼ ]fpirl1, piþ j

rl2; i¼ 1, . . . ,l�jg=ðl�jÞ, with al-þ1 such that al=l-0.
Hence, we deduce that an estimate of the standard devia-

tion of bp0ðlÞ ¼ ð1�bGðlÞÞ=ð1�lÞ under dependence is

bsbp0ðlÞ
¼ fbGðlÞð1�bGðlÞÞþ2

Pal

k ¼ 2ð
bGkðl,lÞ�bGðlÞ2Þg1=2=ðð1�lÞ

ffiffi
l
p
Þ.

Now look at the estimator of pþA (the treatment for p�A
is similar). We recognize that, in bpþA ¼ bGþ ðgnÞ�ðgn=2Þ

bp0ðlÞ, the first term bGþ ðgnÞ ¼ bRþ ðgnÞ=l¼ ]fpkrgn,jk40;

k¼ 1, . . . ,lg=l is an estimate of the probability of the event

fpkrgng \ fjk40g. Hence, we can estimate its standard

deviation with bsbG þ ðgnÞ ¼ fbG
þ

ðgnÞð1�bG þ ðgnÞÞþ2
Pal

k ¼ 2 ð
bGþk ðgn,

gnÞ�bGþ ðgnÞ2Þg1=2=
ffiffi
l
p

, where bGþj ðl1,l2Þ ¼ ]fpirl1,piþ j

rl2,ji40,jiþ j40; i¼ 1, . . . ,l�jg=ðl�jÞ. Combining the

two results, we deduce that an estimate of the standard

deviation of bpþA is bsbp þA ¼ fbsbG þ ðgnÞ2þðgn=2Þ2bs2bp0ðlÞ
þ 2ððgn=

2Þ=ð1�lÞÞbsbG þ ðgnÞ,bGðlÞg1=2=
ffiffi
l
p

, with the covariance term esti-

mated by bsbG þ ðgnÞ,bGðlÞ ¼ bGþ ðgnÞð1�bGðlÞÞþ2
Pal

k ¼ 2 ð
bGþk

ðgn,gnÞ�bGþ ðgnÞbGðlÞÞ.
Appendix G. Monte Carlo experiments

We perform a simulation study showing that the FDR
method correctly estimates the proportions of outperforming,
underperforming, and nonperforming trading rules and that
it is more powerful than the RW method. The simulations
also illustrate that one explanation of the lack of power of the
RW method is that it does not select further rules once it
encounters a lucky rule. As the RW method is an extension of
the BRC, our results simultaneously show the advantage
compared with the BRC. We design the Monte Carlo simula-
tions to match the historical performance of strategies and
their empirical properties. In particular, we preserve both the
time-series and the cross-sectional dependences among
trading rules. By maintaining the clusters of similar strategies,
e.g., filter rules or moving averages with only slightly
different parameters, our Monte Carlo study illustrates the
good behavior of the FDR approach even under the weak
dependence structure relevant to our empirical study.

We simulate 126-day trajectories, corresponding to a
six-month period, for l¼7,846 strategies as in the empiri-
cal study. We set 20% of the simulated strategies to
outperform the benchmark, 50% to generate no significant
abnormal returns, and 30% to deliver negative performance.
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The original sample used to generate the simulated paths
is a 126-day interval randomly chosen during subperiod 3
(1939–1962), to have a basis of strategies with positive
performance. To generate the simulated path, we apply the
stationary block bootstrap just as when computing the p-
values. We do not, however, resample blocks of returns
independently for each strategy. Instead, we draw l� b

matrices, where b is the random size of the block in the
time series dimension. This approach allows us to maintain
the cross-sectional relations among same-category strate-
gies. Because of the intrinsic properties of the stationary
block bootstrap, the new paths we obtain match the
empirical properties of the trading strategies, e.g., serial
correlation, cross-sectional dependence, skewness, and
time-varying volatility. Our simulation approach is non-
parametric because we use a nonparametric bootstrap to
generate the new trajectories.

To control which rules are respectively underperforming,
null, and outperforming, we start by computing the average
return for each simulated strategy and recenter the whole
trajectory. By construction, all paths have zero mean at this
step. We then select the underperforming, null, and out-
performing strategies, and we shift the trajectories of the
underperforming and outperforming rules, respectively, by
some negative and positive value. This type of vertical
parallel translation does not affect the other empirical
characteristics of the trajectories because only the mean is
adjusted; see Paparoditis and Politis (2003). We choose 30%
of underperforming and 20% of outperforming trading rules
within each of the five categories. For each category, the
outperforming rules are selected as the block of adjacent
rules with the highest average performance ranking in the
historical sample. Underperforming rules are chosen simi-
larly. The aim of this approach is to preserve adjacent pools
of outperforming and underperforming rules. It avoids a
situation in which strategies with only slightly different
parameters are suddenly either outperforming or under-
performing. The cross-sectional dependence among strate-
gies is maintained.
Table A1
Distribution of annualized mean excess returns corresponding to chosen Sharp

This table displays the quartiles of the distribution of annualized mean excess

levels by pairs in the Monte Carlo simulations for the outperforming and und

Monte Carlo simulations. Numbers in parentheses are standard deviations. The

rules having a positive annualized Sharpe ratio (SR) equal to 2, 3, or 4, and unde

�3, or �4. The proportions of outperforming ðpþA Þ, underperforming ðp�A Þ, and z

30%, and 50%.

Outperforming SR Quartile

�2

Outperforming Underperforming Outp

2 1st 3.8 (2.1) �3.2 (2.0)

2nd 8.0 (3.2) �7.5 (2.0)

3rd 12.7 (4.1) �13.3 (3.0)

3 1st 7.3 (2.1) �3.3 (2.0)

2nd 12.3 (3.4) �7.6 (2.0)

3rd 17.4(4.1) �13.3 (2.8)

4 1st 11.0 (2.3) �3.3 (2.0)

2nd 16.7 (3.6) �7.6 (2.0)

3rd 22.5 (4.4) �13.4 (3.0)
We set the values used to shift the trajectories of the
selected outperforming and underperforming rules such
as to match sensible levels of Sharpe ratios corresponding
to our empirical study. We choose three specific levels of
outperformance, namely a positive Sharpe ratio equal to
2, 3, or 4, and three specific levels of underperformance,
namely, a negative Sharpe ratio equal to �2, �3, or �4.
These values correspond to annualized Sharpe ratios
computed using daily returns; i.e., they are obtained by
multiplying the daily mean excess return over daily
standard deviation ratio by

ffiffiffiffiffiffiffiffiffi
252
p

. Hence, the annualized
Sharpe ratios of 2, 3, and 4 correspond to daily Sharpe
ratio values of only 0.13, 0.19, and 0.25. In our historical
sample, we observe daily Sharpe ratios as high as 0.23
ð3:6=

ffiffiffiffiffiffiffiffiffi
252
p

Þ for the outperforming rules and as low as
�0.30 ð�4:8=

ffiffiffiffiffiffiffiffiffi
252
p

Þ for the underperforming rules. The
positive daily Sharpe ratio of 0.13 corresponds to the 83th
percentile of the distribution of observed positive daily
Sharpe ratios in our sample. The negative daily Sharpe
ratio of �0.13 corresponds to the 64th percentile of the
distribution of observed negative daily Sharpe ratios. The
annualized Sharpe ratio levels we use remain conserva-
tive, and, in particular, the (2,�2) pair of outperformance
versus underperformance results in a challenging setting
for any rule selection method. We investigate the nine
resulting combinations of specific alternative hypotheses
of positive and negative Sharpe ratios, the null hypothesis
being a Sharpe ratio equal to zero. This broad set of
alternative hypotheses allows observing the behavior of
the RW and FDR methods for outperforming and under-
performing rules more or less distinguishable from rules
with no genuine performance. We shift the trajectories of
the different rules in such a way as to precisely obtain the
same chosen positive Sharpe ratio level for all outper-
forming rules and the same chosen negative Sharpe ratio
level for all underperforming rules. If we take as an
example the pair (2, �2) of Sharpe ratios for outperfor-
mance and underperformance, we construct 20% of
strategies sharing the same Sharpe ratio of 2 (same
e ratio levels.

returns (in percent) induced by setting positive and negative Sharpe ratio

erperforming strategies. The values correspond to averages over 1,000

different settings correspond to all the combinations of outperforming

rperforming rules having a negative annualized Sharpe ratio equal to �2,

ero performance ðp0Þ rules in the population are set to, respectively, 20%,

Underperforming SR

�3 �4

erforming Underperforming Outperforming Underperforming

3.7 (2.1) �6.8 (2.1) 3.8 (2.1) �10.5 (2.3)

7.9 (3.2) �11.9 (2.2) 8.0 (3.2) �16.2 (2.4)

12.5 (4.1) �18.1 (2.9) 12.7 (4.2) �23.0 (3.1)

7.4 (2.1) �6.8 (2.0) 7.4 (2.1) �10.4 (2.2)

12.5 (3.3) �11.8 (2.2) 12.5 (3.3) �16.2 (2.3)

17.7 (4.0) �18.0 (2.8) 17.7 (4.0) �23.0 (2.9)

10.9 (2.2) �6.9 (2.1) 10.9 (2.3) �10.4 (2.3)

16.6 (3.5) �11.9 (2.1) 16.7 (3.6) �16.2 (2.3)

22.3 (4.0) �18.2 (2.8) 22.5 (4.3) �23.1 (2.9)
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alternative hypothesis of positive performance) and 30%
of strategies sharing the same Sharpe ratio of �2 (same
alternative hypothesis of negative performance), the
remaining 50% having a zero Sharpe ratio (same null
hypothesis of zero performance). To provide an accurate
idea of the alternative hypotheses, Table A1 reports the
quartiles of the annualized mean excess return of the
outperforming and underperforming rules, for the nine
combinations of Sharpe ratios. For example, when we set
the Sharpe ratio of the outperforming and underperform-
ing rules to, respectively, 2 and �3, the annualized mean
excess return lies between 3.7% and 12.5% for the out-
performing rules and between �6.8% and �18.1% for the
underperforming rules. Furthermore, the volatility of
Table A2
Average estimates of the proportions of null, outperforming, and under-

performing rules, under the Sharpe ratio criterion.

This table presents the average over 1,000 Monte Carlo simulations of

the false discovery rate estimates of p0, pþA , and p�A . The true values are

set respectively to 50, 20 and 30 (in percent). Numbers in parentheses

correspond to standard deviations (in percent). The results are provided

for the nine combinations of outperforming rules annualized Sharpe

ratio (SR) set to 2, 3, or 4, and underperforming rules annualized Sharpe

ratio set to �2, �3, or �4.

Outperforming SR Proportions Underperforming SR

�2 �3 �4

2 p0 ¼ 50 70.5 (6.6) 62.0 (5.4) 58.9 (6.0)

pþA ¼ 20 9.8 (8.9) 9.8 (7.3) 10.0 (7.2)

p�A ¼ 30 19.7 (10.5) 28.2 (7.0) 31.1 (5.2)

3 p0 ¼ 50 65.5 (6.8) 57.4 (5.7) 53.6 (5.7)

pþA ¼ 20 15.3 (6.7) 15.6 (5.4) 15.7 (5.4)

p�A ¼ 30 19.2 (10.1) 27.1 (7.0) 30.7 (5.1)

4 p0 ¼ 50 62.3 (7.0) 54.9 (6.1) 51.6 (6.3)

pþA ¼ 20 18.2 (5.5) 17.7 (4.3) 17.9 (4.4)

p�A ¼ 30 19.6 (9.3) 27.4 (6.7) 30.5 (5.3)

Table A3
Power and size of the false discovery rate (FDR) approach and of the method o

This table examines the composition of the 10%- and 20%-FDRþ portfolio an

Monte Carlo simulations for the true false discovery rate (in %), the percentage

Numbers in parentheses correspond to standard deviations (in percent). The dif

having a positive annualized Sharpe ratio (SR) equal to 2, 3, or 4, and underperf

or �4.

Outperforming

SR

Portfolio

type

�2

FDRþ Power Portfolio

size

FD

2 10%-FDRþ 17.3 (11.3) 25.6 (19.5) 495 (400) 15.9 (

20%-FDRþ 17.2 (11.1) 32.9 (22.1) 647 (480) 16.1 (

5%-RW 0.8 (5.6) 0.3 (1.4) 5 (22) 0.6 (

20%-RW 1.4 (5.0) 1.9 (4.3) 31 (73) 1.3 (

3 10%-FDRþ 10.4 (8.2) 48.5 (21.1) 865 (409) 9.7 (

20%-FDRþ 11.5 (9.3) 59.9 (20.4) 1,087 (430) 11.4 (

5%-RW 0.1 (0.9) 0.8 (2.4) 12 (39) 0.2 (

20%-RW 0.5 (2.3) 4.9 (8.3) 78 (133) 0.3 (

4 10%-FDRþ 8.6 (8.1) 72.8 (16.4) 1,264 (328) 8.1 (

20%-FDRþ 10.8 (9.5) 83.5 (12.2) 1,489 (294) 10.5 (

5%-RW 0.0 (0.3) 2.0 (5.3) 31 (83) 0.0 (

20%-RW 0.4 (2.2) 11.7 (15.0) 186 (243) 0.3 (
trading rules corresponding to the null hypothesis of zero
performance is of the same order of magnitude as for the
outperforming and underperforming rules.

Our results are based on 1,000 Monte Carlo iterations.
Table A2 displays the estimates using the FDR method of the
proportions of outperforming ðpþA Þ, underperforming ðp�A Þ,
and nonperforming ðp0Þ rules, for the nine Sharpe ratio
combinations. The reported results show that the estimates
are very accurate. Unreported results obtained in a simpler
setting in which strategies are all independent show that
standard deviations are only slightly increased when we
preserve the cross-sectional dependencies.

Next, we form portfolios of trading rules by controlling
the FDRþ at 10% and 20% and by using the RW approach
to control the FWER at the 5% and 20% level. For the
different portfolios and the nine Sharpe ratio combina-
tions, Table A3 reports average values over the one
thousand simulations for the true false discovery rate,
the percentage of true outperforming rules detected, and
the portfolio size. Focusing on the ð3,�3Þ pair of Sharpe
ratios (center of the table), the 10%-FDRþ portfolio
detects on average 52.6% of the outperforming rules and
closely meets its FDR target at 9.7%. In comparison, the
5%-RW portfolio detects only 0.6% of the outperforming
rules on average. Controlling the FWER at 20% with the
RW approach increases the power to only 4.7%. The 20%-
FDRþ portfolio detects on average 64.7% of the outper-
forming rules. The FDR is below the target level 20% at
11.4%. This shows that the procedure achieves a control of
the FDR, namely the achieved FDR is below the chosen
target level as predicted by asymptotic theory, while
simultaneously achieving good power properties. Hence,
the FDR approach has a clear advantage over the RW
method (and over the BRC) in the environment of our
study. Methods based on the FWER are too conservative
when l is large. The Monte Carlo study is also a good
f Romano and Wolf (RW, 2005) under the Sharpe ratio criterion.

d of the 5%- and 20%-RW portfolio. It reports average values over 1,000

of true outperforming rules detected (in percent), and the portfolio size.

ferent settings correspond to all the combinations of outperforming rules

orming rules having a negative annualized Sharpe ratio equal to �2, �3,

Underperforming SR

�3 �4

Rþ Power Portfolio

size

FDRþ Power Portfolio

size

10.5) 27.4 (20.2) 521 (404) 16.6 (10.4) 28.0 (20.5) 535 (409)

10.3) 35.4 (23.0) 683 (481) 16.9 (10.2) 36.0 (23.6) 702 (492)

3.9) 0.2 (0.9) 4 (16) 0.3 (2.5) 0.1 (0.4) 2 (7)

5.4) 2.1 (4.3) 34 (77) 0.9 (4.5) 1.2 (2.8) 20 (47)

7.5) 52.6 (21.2) 924 (398) 9.9 (7.5) 53.4 (21.5) 943 (406)

8.4) 64.7 (20.3) 1,166 (409) 11.8 (8.7) 65.7 (20.4) 1,192 (419)

1.8) 0.6 (1.8) 9 (28) 0.1 (0.9) 0.4 (1.2) 6 (19)

1.4) 4.7 (7.8) 74 (125) 0.3 (1.6) 3.5 (6.6) 55 (104)

7.0) 74.6 (15.0) 1,285 (290) 8.3 (7.1) 74.3 (15.6) 1,281 (301)

8.3) 84.9 (11.5) 1,503 (257) 11.0 (8.5) 84.9 (11.9) 1,511 (269)

0.1) 1.7 (4.1) 26 (64) 0.0 (0.7) 1.0 (3.4) 16 (59)

1.9) 11.1 (14.0) 175 (223) 0.1 (0.9) 7.5 (11.2) 119 (179)
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illustration for one cause behind the low power of the RW
method. The RW approach starts with the best-perform-
ing rules and is not able to detect further rules once it
reaches a lucky rule, i.e., a rule with no real predictive
power. As our study shows, a situation in which a rule
achieves one of the highest performance by luck is not
uncommon, e.g., with the (3, �3) pair of Sharpe ratios, the
median ranking of the first lucky rule in the simulations is
422 (mean: 521, standard deviation: 386). As there are
1,569 outperforming rules in our setting, the power of the
RW method cannot exceed 25% on average.

Further Monte Carlo results under a similar design, but
when performance is measured with the mean return
instead of the Sharpe ratio and for specific null and
alternative hypotheses set in terms of mean returns, are
included in the online Appendix.

Appendix H. Transaction costs and short sale constraints

Transaction costs are commonly decomposed into two
major components: explicit costs and implicit costs.
Explicit costs are the direct costs of trading, such as
broker commissions and taxes. Implicit costs, which are
harder to measure, represent indirect costs such as the
price impact of the trade and the opportunity cost of
failing to execute the order in a timely manner. For the
period January 1991 to March 1993, Keim and Madhavan
(1997) estimate that, for exchange-listed stocks, the
average total cost for a buy order is 0.49% (0.31% implicit
costs þ0.18% explicit costs). Transaction costs were sig-
nificantly more important in earlier years, particularly
before commissions were deregulated in May 1975. Stoll
and Whaley (1983) use published commission schedules
to estimate transaction costs during the 1960–1975
period. For the largest decile of NYSE securities, they
report an estimated one-way transaction cost of 1.35%
(the commission plus half the bid–ask spread).

Selling short also incurs a cost. The investor willing to
take a short position must borrow the stock from a
current owner at a fee. In addition, other costs are
associated with shorting, such as legal and institutional
constraints, or the risk that the short position will have to
Table A4
Total expense ratios for managed account, off-shore fund, and on-shore fund.

This table decomposes the components of the total expense ratio for three ty

fund. The four components correspond to the cost of the structure, the custody a

The sum of the three first component makes the total operating costs. We co

million. All costs are listed as basis points per year.

Asset un

Managed account

0.1 1 10 100 0.1

Cost of structure – – – – 5

Custody & admin. 30 21 10 5 30

Transaction costs 26 26 26 26 26

Total operating costs 56 47 36 31 61

Management fees 200 200 200 200 200

Total expense ratio (TER) 256 247 236 231 261
be involuntarily closed due to recall of the stock loan
(short squeeze). D’Avolio (2002), Duffie, Grleanu, and
Pedersen (2002), Geczy, Musto, and Reed (2002), and
Jones and Lamont (2002) provide useful analyzes of the
equity loan market. While short sale costs might be low
on average, they are systematically high exactly when
they are critical. As for transaction costs, lending fees have
declined over time. The average shorting cost in Jones and
Lamont (2002) sample (1926–1933) is 35 basis points per
month. For the period 2000–2001, D’Avolio (2002) reports
only 41 basis points per year. However, 9% are loan
market specials, with fees averaging 4.3% per annum,
but reaching spectacular heights in some rare instances.

The one-way transaction costs considered in our study
correspond to brokerage fees, bid–ask spread, and slip-
page. In practice, further costs are incurred by the man-
ager and passed on to the investor. To have a realistic
view of the current status of transaction costs and market
frictions, we have contacted several retail online brokers,
banks and hedge funds to gather up-to-date data. These
data show that the typical levels of transaction costs
offsetting out-of-sample performance found in our study
can be viewed as low (conservative). In recent periods,
most of the time we do not detect genuine performance
already before transaction costs (see Table 5).

We consider three real-life cases for a fund manager
trading on futures. Trading an exchange traded fund
instead of futures further raises the trading costs. Besides,
index futures are sufficiently liquid nowadays to avoid
any price impact when the traded volume stays below
several millions of dollars (based on the current market
liquidity conditions). This does not necessarily apply in
the case of ETFs. For futures, it is considered that trading
up to 2% of the average daily volume (computed over 20
days typically) does not lead to a price impact. The
average daily number of E-mini S&P 500 futures traded
on the Chicago Mercantile Exchange is around 2.5 million
contracts. This corresponds to a daily traded volume of
USD 148 billions, and the price should not be impacted if
we trade below USD 3 billion. For the E-mini Dow, we
have 80,000 contracts corresponding to USD 4.5 billion.
This gives a limit of USD 100 million.
pes of vehicles: a managed account, an off-shore fund, and an on-shore

nd administration costs, the transaction costs, and the management fees.

nsider four levels of asset under management: USD 0.1, 1, 10, and 100

der management (USD million)

Off-shore fund On-shore fund

1 10 100 0.1 1 10 100

5 5 5 60 60 60 60

21 10 5 40 31 20 5

26 26 26 26 26 26 26

52 41 36 126 117 106 91

200 200 200 200 200 200 200

252 241 236 326 317 306 291
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We investigate all types of costs incurred through a
managed account, an off-shore fund, or a on-shore fund. The
managed account case is not far from a retail investor
trading by himself through an online broker. The off-shore
fund case corresponds to a fund manager living within a
light and unregulated structure. The on-shore fund case
concerns a fund regulated by a supervisory authority. The
types of costs cover the cost of the structure (the vehicle),
the custody and administration costs, and the brokerage
fees. Common costs driven by the specific selected structure
include formation expenses (amortization of fund creation
expenses), legal expenses (audit, fund prospectus), taxes,
and hiring of a management company. Custody and admin-
istration costs relate to expenses induced by the deposit of
the assets and their administration (net asset value compu-
tation, reporting, hedging) as well as the booking fees (fees
charged by the custodian for each executed transaction). We
report transaction costs corresponding to a low turnover,
namely, 20 times the asset under management (AUM) per
year. In the case of our study, this amounts to buying or
selling 20 times the index based on 20 trading signals. These
costs include explicit and implicit costs, namely, brokerage
fees, bid–ask spread, and slippage. Beside these costs linked
to fund operations, we need to add management fees (fund
manager remuneration) here taken as a standard 2% flat
without a performance fee. The sum of all these expenses
and fees make up the so-called total expense ratio (TER).
Table A4 shows that the costs before accounting for man-
agement fees, i.e., the total operating costs, currently range
from 31 basis points to 126 basis points per year, and that
the final TER ranges from 231 basis points to 326 basis
points per year. These figures are computed from a span of
four values for the AUM: USD 0.1, 1, 10, and 100 millions.
Appendix I. Supplementary data

Supplementary data associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.
jfineco.2012.06.001.
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