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Forecasting with many predictors

� Dynamic Factor Models
� The 3-Pass Regression Filter
� Regularized Reduced Rank Regression
� Time permitting

É Bagging
É Filters and decompositions

How Many is Many?
� Many here means 25 or more
� Often many more, 100s of series
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New challenges

Why factor models
� Are parsimonious while effectively including many regressors
� Can remove measurement error or other useless information from predictors
� Factor may be of interest

É Leading indicators:
– €-coin
– Chicago Fed National Activity Index
– Aruoba-Diebold-Scotti Business Conditions Index

É Real and Nominal factors
É Global and Local factors
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Eurocoin

� European Coincident Indicator
� First factor in a Europe-wide model

€-coin: the Euro Area Economy in One Figure – May 2014
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Chicago Fed National Activity Index

� Factor extracted from 85 series
� Based on research in forecasting inflation

Chicago Fed National Activity Index

What is the National Activity Index?
The index is a weighted average of 85  
indicators of national economic activity 
drawn from four broad categories of data: 
1) production and income; 2) employment, 
unemployment, and hours; 3) personal 
consumption and housing; and 4) sales, 
orders, and inventories.
A zero value for the index indicates that the 
national economy is expanding at its his-
torical trend rate of growth; negative values 
indicate below-average growth; and posi-
tive values indicate above-average growth. 

Why are there three index values?
Each month, we provide a monthly index, 
its three-month moving average, and a  
diffusion index. Month-to-month move-
ments can be volatile, so the monthly  
index’s three-month moving average, the 
CFNAI-MA3, provides a more consistent 
picture of national economic growth. The 
CFNAI Diffusion Index captures the degree 
to which a change in the monthly index is 
spread out among its 85 indicators, aver-
aged over a three-month period.

What do the numbers mean?
When the CFNAI-MA3 value moves below 
–0.70 following a period of economic ex-
pansion, there is an increasing likelihood 
that a recession has begun. Conversely, 
when the CFNAI-MA3 value moves above 
–0.70 following a period of economic con-
traction, there is an increasing likelihood 
that a recession has ended.
When the CFNAI-MA3 value moves above 
+0.70 more than two years into an eco-
nomic expansion, there is an increasing 
likelihood that a period of sustained in-
creasing inflation has begun.

The next CFNAI will be released:
June 23, 2014
8:30 am Eastern Time
7:30 am Central Time

News Release 
Embargoed for release:
8:30 am Eastern Time
7:30 am Central Time
May 22, 2014

Contact: 
Laura LaBarbera
Media Relations
Federal Reserve Bank of Chicago
312-322-2387

Led by declines in production-related indicators, the Chicago Fed National 
Activity Index (CFNAI) decreased to –0.32 in April from +0.34 in March. Two of the 
four broad categories of indicators that make up the index made negative contri-
butions to the index in April, and two of the four categories decreased from March.

The index’s three-month moving average, CFNAI-MA3, increased to +0.19 in April from +0.04 
in March, marking its second consecutive reading above zero and its highest value since 
November 2013. April’s CFNAI-MA3 suggests that growth in national economic activity was 
slightly above its historical trend. The economic growth reflected in this level of the CFNAI-MA3 
suggests limited inflationary pressure from economic activity over the coming year.

The CFNAI Diffusion Index, which is also a three-month moving average, increased to +0.18 
in April from +0.08 in March. Thirty-four of the 85 individual indicators made positive contri-
butions to the CFNAI in April, while 51 made negative contributions. Thirty-seven indicators 
improved from March to April, while 47 indicators deteriorated and one was unchanged. Of 
the indicators that improved, 15 made negative contributions.

Current and Previous values reflect index values as of the May 22, 2014, release and April 21, 2014, release, respectively.
N/A indicates not applicable.

CFNAI, CFNAI-MA3, and CFNAI Diffusion for the latest six months and year-ago month

Index shows economic growth moderated in April

Chicago Fed National Activity Index, Three-Month Moving Average (CFNAI-MA3)
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CFNAI
Current -0.32 +0.34 +0.57 -0.77 -0.19 +0.66 -0.34
Previous N/A +0.20 +0.53 -0.74 -0.21 +0.66 -0.34

CFNAI-MA3
Current +0.19 +0.04 -0.13 -0.10 +0.18 +0.34 -0.04
Previous N/A 0.00 -0.14 -0.09 +0.17 +0.33 -0.04

 
CFNAI Diffusion
Current +0.18 +0.08 -0.16 -0.07 +0.21 +0.42 +0.01
Previous N/A +0.04 -0.14 -0.07 +0.21 +0.42 +0.02
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ADS Business Conditions Index

� Based on factor model in Aruoba, Diebold & Scotti
� Extracts common factor in:

É weekly initial jobless claims
É monthly payroll employment
É industrial production
É personal income less transfer payments, manufacturing and trade sales
É quarterly real GDP

The Model

� Scalar latent factor

xt =
q∑
i=1

ρixt−i + ηi

� Indicators

yit = ci + βixt +
pi∑
j=1

γyit−∆i + εi

É ∆i allows series to have different observational frequencies
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ADS Business Conditions Index

Aruoba-Diebold-Scotti Business Conditions Index ( 12/31/2007- 05/24/2014)
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Note: We construct the ADS Index using the latest data available as of May 30, 2014. The bold vertical lines provide information as to which indicators are available for which dates.
 For dates to the left of the left line, the ADS index is based on observed data for all six underlying indicators.  For dates between the left and right lines, the ADS index is based on
 at least two monthly indicators (typically employment and industrial production) and initial jobless claims.  For dates to the right of the right line, the ADS index is based on initial
 jobless claims and possibly one monthly indicator. The limits used on the y axis reflect the minimum and maximum values of the index over its entire history.
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Notation

� T number of time series observations
� k number of series available to forecast
� yt series to be forecast, m by 1

É m will often be 1

� xt series used to forecast, k by 1
É Usually assume E [xt] = 0 and Cov [xt] = Ik
É Demeaned and standardized
É Suppose xt = Σ−

1/2
x
(
x̃t − µX

)
� ft factors, r by 1
� xt may be yt, but not necessarily

É yt could be subset of xt (common)
É yt could be excluded from factor estimation (uncommon)
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Why factor models?

� Factor models help avoid issues with large, kitchen-sink models
� Consider issue of parameter estimation error when forecasting
� Suppose correct model is linear

yt+1 = βxt + εt

� Forecast using OLS estimates is then

ŷt+1|t = β̂xt
=

(
β̂ − β + β

)
xt

=
(
β̂ − β

)
xt

estimation error
+ βxt
correct forecast
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OLS when there are many regressors

� Suppose εt,xt are independent and jointly normally distributed

Cov
[
εt
xt

]
=
[
σ2ε 0
0 Ik

]
� Standard assumptions have k fixed, so as T →∞, β̂ − β p→ 0

ŷt+1|t ∼ N (βxt, 0)

� Degenerate normal - no error since β is effectively known
� What about the case when k is large
� Use diagonal asymptotics, k/T → c, 0 < κ < c < κ̄ <∞
� In this case

ŷt+1|t ∼ N
(
βxt, k/T × σ2ε

)
É Is still random, even when T →∞

� True even if all β = 0!
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(Really) Big models don’t make sense

� When the number of parameters is large, then almost all coefficients must
be 0

yt =
k∑
i=1

βixt,i + εi

� Variance of the LHS is the same as the RHS

V [yt] =
k∑
i=1

β2i + σ
2
ε

� If k→∞ , infi |βi| > κ > 0, then V [yt]→∞
� Even when T is very large, it will not usually make sense to have k
extremely large

� Factor models will effectively have small βi coefficient, only using two steps
1. Construct average-like estimators of factors from xt – coefficients are O (1/k)
2. Weight these using a small number of relatively large coefficients
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Static Factor Models



Static Factor Models

� Consider the cross-section of asset returns
� Model uses factors as RHS variables

xit =
r∑
j=1

λijfjt + εit

� λij are the factor loadings for series i, factor j
� εit is the idiosyncratic error for series i
� In vector notation,

xt
k×1
= Λ
k×r

ft
r×1
+ εt
r×1

É Λ is k by r
É ft is r by 1

12 / 107



Static Factor Models

� In matrix notation,
X
T×k
= F
T×r
Λ′
r×k
+ ε
T×k

É X is T by k
É F is T by r
É ε is k by 1

� When model is a strict (as opposed to approximate), E [εt] = 0 and
E
[
εtε
′
t
]
= Σε = diag

(
σ21, . . . ,σ2m

)
� Covariance of xt is then

ΛΩΛ′ + Σε

É Ω = Cov [ft], r by r
É Covariance will play a crucial role in estimation of factors
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Estimation using Principal Components

� Principal components can be used to estimate factors
� Formally, problem is

min
β ,ft ,...ft

T∑
t=1

(xt − βft)′ (xt − βft) subject to β ′β = Ir

É β is k by r
– β is related to but different from Λ
– Λ is the DGP parameter
– β is a normalized and rotated version of Λ

Definition (Rotation)
A square matrix B is said to be a rotation of a square matrix A if B = QA and
QQ′ = Q′Q = I.

É ft is r by 1
É β ′β = Ir is a normalization, and is required

– βft = ((β/2) (2ft))
– Generally, for full rank Q, (βQ)

(
Q−1ft

)
= β̃ f̃t
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The Objective Function
� If β was observable, solution would be OLS

f̂t =
(
β ′β

)−1
β ′xt

This can be substituted into the objective function
T∑
t=1

(
xt − β

(
β ′β

)−1
β ′yt

)′ (
xt − β

(
β ′β

)−1
β ′xt

)
=

T∑
t=1

x′t
(
I− β

(
β ′β

)−1
β ′
)
xt

� This works since I− β
(
β ′β

)−1
β ′ is idempotent

É AA = A
� Some additional manipulation using the trace operator on a scalar leads to
two equivalent expressions

min
β

T∑
t=1

x′t
(
I− β

(
β ′β

)−1
β ′
)
xt = max

β
tr
((
β ′β

)−1/2
β ′Σxβ

(
β ′β

)−1/2)
= max

β
β ′Σxβ

É All subject to β ′β = Ir
� Solution to last problem sets β to the eigenvectors of Σx
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Eigenvalues and Eigenvectors

Definition (Eigenvalue)

The eigenvalues of a real, symmetric matrix k by kmatrix A are the k solutions to

|λIk − A| = 0

where | · | is the determinant.

� Properties of eigenvalues
É detA =

∏r
i=1 λi

É trA =
∑r

i=1 λi
É For positive (semi) definite A, λi > 0, i = 1, . . . , r (λi ≥ 0)
É Rank

– Full-rank A implies λi 6= 0, i = 1, . . . , r
– Rank q < r matrix A implies λi 6= 0, i = 1, . . . , q and λj = 0, j = q + 1, . . . , r
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Properties of Eigenvalues and Eigenvectors

Definition (Eigenvector)

An a k by 1 vector u is an eigenvector corresponding to an eigenvalue λ of a real,
symmetric matrix k by k matrix A if

Au = λu

� Properties of eigenvectors
É If A is positive definite, then

A = VΛV′

where Λ is diagonal and VV′ = V′V = I

Definition (Orthonormal Matrix)

A k-dimensional orthonormal matrix U satisfies U′U = Ik, and so U′ = U−1.

� Implication is
V′AV = V′VΛV′V = Λ
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Computing Factors using PCA
� X is T by k (assume demeaned)
� X′X is real and symmetric with eigenvalues Λ = diag (λi)i=1,...,k
� Factors are estimated

X′X = VΛV′

V′X′XV = V′VΛV′V

(XV)′ (XV) = Λ since V′ = V−1

F′F = Λ.

� F = XV is the T by k matrix of factors
� β = V′ is the k by k matrix of factor loadings.
� All factors exactly reconstruct Y

Fβ = FV′ = YVV′ = Y
É Assumes k is large

� Note that both factors and loadings are orthogonal since

F′F = Λ and β ′β = I
� Only loadings are normalized
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Large k and factor analysis

� Consider simple example where

xit = 1× ft + εit

� ft and εit are all independent, standard normal
� Covariance of x is Σx = 1 + Ik [

2 1
1 2

]
� First eigenvector is (

k−1/2, k−1/2, . . . , k−1/2
)

É Form is due to normalization

k∑
i=1

v2ij = 1,
k∑
i=1

vijvin = 0

É
∑k

i=1

(
k−1/2

)2
=
∑k

i=1 k
−1 = kk−1 = 1
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Estimated Factors

� Estimated factor is then

f̂t =
k∑
i=1

k−1/2xit = k
1/2
(
1/k
∑

xit
)
= k1/2x̄ =

k∑
i=1

wixi

� What about x̄

x̄ = k−1
(

k∑
i=1

ft + εit

)
= ft + ε̄t
≈ ft

� Normalization means factor is Op
(
k1/2
)

É Can always re-normalize factor to be Op (1) using f̂t/k1/2

� Key assumption is that ε̄t follows some form of LLN in k
� In strict factor model, no correlation so simple
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Approximate Factor Models
� Strict factor models require strong assumptions

Cov
(
εit, εjs

)
= 0 i 6= j, s 6= t

� These are easily rejectable in practice
� Approximate Factor Models relax these assumptions and allow:

É (Weak) Serial correlation in εt
∞∑
s=0

|γs| <∞

É (Weak) Cross-sectional correlation between εit and εjt

lim
k→∞

k∑
i 6=j

E |εitεjt| <∞

É Heteroskedasticity in ε
� Requires pervasive factors

xt = Λft + εt
lim
k→∞

rank
(
k−1Λ′Λ

)
= r
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Practical Considerations when Estimating Factors

� Key input for factor estimation is Σx
É In most theoretical discussions of PCA, this is the covariance

Σx = T−1
T∑
t=1

(xt − µ̂) (xt − µ̂)

� Two other simple versions are used
É Outer-product

T−1X′X = T−1
T∑
t=1

xtx′t

– Similar to fitting OLS without a constant

É Correlation matrix

Rx = T−1
T∑
t=1

ztz′t

– zt = (xt − µ̂)� σ̂ are the original data series, only studentized
– Important since scale is not well defined for many economic data (e.g. indices)

22 / 107



Fama-French Data

� Initial exploration based on Fama-French data
É 100 portfolios

– Sorted on size and boot-to-market

É 49 portfolios
– Sorted on industry

� Equities are known to follow a strong factor model
É Series missing more than 24 missing observations were dropped

– 73 for 10 by 10 sort remaining
– 41 of 49 industry portfolios

É First 24 data points dropped for all series
É July 1928 – December 2013

� T = 1, 026
� k = 114
� Two versions, studentized and raw
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First Factor from FF Data
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First Factor from FF Data (Raw)
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Selecting the Number of Factors (r)



Choosing the number of factors

� So far have assumed r is known
� In practice r has to be estimated
� Two methods

É Graphical using Scree plots
– Plot of ordered eigenvalues, usually standardized by sum of all
– Interpret this as the R2 of including r factors
– Recall

∑l
i=1 λi = k for correlation matrix (Why?)

– Closely related to system R2,

R2 (r) =
∑r

i=1 λi∑k
j=1 λj

É Information criteria-based
– Similar to AIC/BIC, only need to account for both k and T

Stylized Fact(ors)

If in doubt, all known economic panels have between 1 and 6 factors
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Scree Plot: Fama-French
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Scree Plot: Fama-French
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Scree Plot: Fama-French (Non-Factors)
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Information Criteria

� Bai & Ng (2002) studied the problem of selecting the correct number of
factors in an approximate factor model

� Proposed a number of information criteria with the form
ln V̂ (r) + r × g

(
k,T
)

V̂ (r) =
T∑
t=1

(
xt − β̂ (r) ft (r)

)′ (xt − β̂ (r) ft (r))
É V̂ (r) is the value of the objective function with r factors

� Three versions

ICp1 = ln V̂ (r) + r
(
k + T
kT

)
ln
(

kT
k + T

)
ICp2 = ln V̂ (r) + r

(
k + T
kT

)
ln
(
min

(
k,T
))

ICp3 = ln V̂ (r) + r

(
ln
(
min

(
k,T
))

min
(
k,T
) )

� Suppose k ≈ T , ICp2 is BIC-like

ICp2 = ln V̂ (r) + 2r
(
lnT
T

)
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Information Criteria: Fama-French
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Information Criteria: Fama-French (Raw)
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Assessing Fit

� Fit can be assessed both globally and for individual series
� Least squares objective leads to natural R2 measurement of fit
� Global fit

R2global (r) = 1−
tr
(
X− β̂ (r)F (r)

)′ (
X− β̂ (r)F (r)

)
tr (X′X)

=
∑r

i=1 λi∑k
j=1 λj

� Numerator is just V̂ (r) =
∑k

i=1
∑T

t=1

(
xit −

∑r
j=1 β̂ijfjt

)2
� When x has been studentized, tr

(
X′X

)
=
∑k

j=1 λj = Tk
� Individual fit

R2i (r) = 1−

∑T
t=1

(
xit −

∑r
j=1 β̂ijfjt

)2
∑T

t=1 x
2
it

É Useful for assessing series not well described by factor model
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Individual Fit

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10
r

Individual R2 using r factors

34 / 107



Dynamic Factor Models



Dynamic Factor Models

� Dynamic factors model specify dynamics in the factors
� Basic DFM is

xt =
s∑
i=0

Φift + εt

ft =
q∑
j=1

Ψft−j + ηt

� Observed data depend on contemporaneous and lagged factors
� Factors have VAR-like dynamics
� Assumed that ft and εt are stationary, so xt is also stationary

É Important: must transform series appropriately when applying to data

� εt can have weak dependence in both the cross-section and time-series
� E
[
εt,ηs

]
= 0 for all t, s
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Optimal Forecast from DFM

xt =
s∑
i=0

Φift−i + εt, ft =
q∑
j=1

Ψft−j + ηt

� Optimal forecast can be derived

E
[
xit+1|xt, ft, xt−1, ft−1, . . .

]
= E

[ s∑
i=0

φift+1−i + εit+1|xt, ft, xt−1, ft−1, . . .

]

= Et

[ s∑
i=0

φift+1−i

]
+ Et [εit+1]

=
s′∑
i=1

Aift−i+1 +
n∑
j=1

Bjxit−j+1

� Predictability in both components
É Lagged factors predict factors
É Lagged xit predict εit
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Invertibility and MA processes

� DFM is really factors plus moving average
� Moving average processes can be replaced with AR processes when
invertible

yt = εt + θεt−1
yt − θyt−1 = εt + θεt−1 − θ (θεt−2 + εt−1)

= εt − θ 2εt−2
yt − θyt−1 + θ 2yt−2 = εt − θ 2εt−2 + θ 2 (θεt−3 + εt−2)

= εt + θ 2 (θεt−3 + εt−2)
∞∑
i=0

(−θ )i yt−i = εt

yt =
∞∑
i=1

− (−θ )i yt−i + εt

� Can approximate finite MA with finite AR
� Quality will depend on the persistence of the MA component
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Dynamic as Static Factor Models

� Superficially dynamic factor models appear to be more complicated than
static factor models

� Dynamic Factor models can be directly estimated using Kalman Filter or
spectral estimators that account for serial correlation in factors
É Latter are not useful for forecasting since 2-sided

� (Big) However, DFM can be converted to Static model by relabeling
� In DFM, factors are

[ft, ft−1, . . . , ft−s]

É Total of r (s + 1) factors in model
� Equivalent to static model with at most r (s + 1) factors

É Redundant factors will not appear in static version
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Dynamic as Static Factor Models

� Consider basic DFM

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� Model can be expressed as

xit = φi1
(
ψft−1 + ηt

)
+ φi2ft−1 + εit

= φi1ηt + φi2 (1 + (φi1/φi2)ψ) ft−1 + εit

� One version of static factors are ηt and ft−1
É In this particular version, ηt is not “dynamic” since it is WN
É ft−1 follows an AR(1) process

� Other rotations will have different dynamics
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Dynamic as Static Factor Models

� Basic simulation

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� φi1 ∼ N (1, 1),φi2 ∼ N (.2, 1)
É Smaller signal makes it harder to find second factor

� ψ = 0.5
É Higher persistence makes it harder since Corr

[
ft, ft−1

]
is larger

� Everything else standard normal
� k = 100, T = 100

É Also k = 200 and T = 200 (separately)
� All estimation using PCA on correlation

Number of Factors for Forecasting
Better to have r above r? than below
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Measuring Closeness of Estimate

� Factors are not point identified
É Can use an arbitrary rotation and model is equivalent

� Natural measure of similarity between original (GDP) factors and estimated
factors is global R2

f̂t = Aft + ηt

R2 = 1−
∑T

t=1 η̂
′
tη̂t∑T

t=1 f
′
t ft

� Note that A is a 2 by 2 matrix of regression coefficients
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Stock and Watson’s DFM Data



Stock & Watson (2012) Data

� Stock & Watson have been at the forefront of factor model development
� Data is from 2012 paper “Disentangling the Channels of the 2007-2009
Recession”

� Dataset consists of 137 monthly and 74 quarterly series
É Not all used for factor estimation
É Aggregates not used if disaggregated series available

� Monthly series are aggregated to quarterly, which is frequency of data
� Series with missing observations are dropped for simplicity

É Before dropping those with missing values data set has 132 series
É After 107 series remain
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The series

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6
Stock Prices, Wealth, Household Balance Sheets 8
Housing Prices 3
Exchange Rates 6
Other 2
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Data Transformation

� Monthly series were aggregated to quarterly using
É Average
É End-of-quarter

� All series were transformed to be stationary using one of:
É No transform
É Difference
É Double-difference
É Log
É Log-difference
É Double-log-difference

� Most series checked for outliers relative to IQR (rare)
� Final series were Studentized in estimation of PC
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Raw Data Before Transform
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Raw Data after Transform
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Studentized Data
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First Component

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−20

−15

−10

−5

0

5

10

52 / 107



First Three Components
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Scree Plot (Log)
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Scree Plot
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Information Criteria
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Individual Fit against r
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Forecasting



Forecast Methods

� Forecast problem is not meaningfully different from standard problem
� Interest is now in yt, which may or may not be in xt

É Note that stationary version of yt should be forecast, e.g. ∆yt or ∆2yt
� Two methods to forecast

Unrestricted

yt+1 = φ0 +
p∑
i=1

φiyt−i+1 + θ ′f̂t + εit

� Treats factors as observed data, only makes sense if k is large
É Uses an AR(P) to model residual dependence
É Choice of number of factors to use, may be different from r
É Can also use lags of ft (uncommon)
É Model selection is applicable as usual, e.g. BIC
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Forecast Methods

Restricted
� When yt is in xt, yt = β f̂t + εt

εt = yt − β f̂t

ŷt+1|t = β f̂t+1|t +
p∑
i=1

φi

(
yt−i+1 − β f̂t−i+1

)
= β f̂t+1|t +

p∑
i=1

φiε̂t

� VAR to forecast f̂t+1 using lags of f̂t
� Univariate AR for ε̂t
� Usually found to be less successful than unrestricted
� Care is needed when using studentized data since forecasting recentered,
rescaled version of y
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Re-integrating forecasts

� When forecasting ∆yt,

Et [yt+1] = Et [yt+1 − yt + yt]
= Et [∆yt+1] + yt

� At longer horizons,

Et [yt+h] =
h∑
i=1

Et [∆yt+i] + yt

� When forecasting ∆2yt

Et [yt+1] = Et [yt+1 − yt − yt + yt−1 + 2yt − yt−1]
= Et

[
∆2yt+1

]
+ 2yt − yt−1

É In many cases interest is in ∆yt when forecasting ∆2yt
– For example CPI, inflation and change in inflation
– Same as reintegrating ∆yt to yt
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Multistep Forecasting

� Multistep can be constructed using either method
� Unrestricted requires additional VAR for f̂t
� Alternative use direct forecasting

yt+h|t = φ̂(h)0 +
ph∑
i=1

φ̂(h)iyt−i+1 + θ̂
′
(h)f̂t

É
(
h
)
used to denote explicit parameter dependence on horizon

É yt+h|t can be either the period-h value, or the h-period cumulative forecast
(more common)

� Direct has been documented to be better than iterative in DFMs
É Problem dependent
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“Forecasting”

� Used BIC search across models
� 3 setups

É GDP lags only (4), Components Only (6), Both

h∑
j=1

∆gt+j = φ0 +
4∑
s=1

γs∆gt−s+1 +
6∑
n=1

ψnfjt + εht

Both
GDP Only R2 Components Only R2 GDP Components R2

h = 1 1, 2, 4 .517 1, 2, 3, 4, 6 .662 1 1, 2, 3, 4, 6 .686
h = 2 1, 4 .597 1, 2, 3, 4, 6 .763 1 1, 2, 3, 4, 6 .771
h = 3 1, 4 .628 1, 2, 3, 4, 6 .785 1 1, 2, 3, 4, 6 .792
h = 4 1, 4 .661 1, 2, 3, 4, 6 .805 – 1, 2, 3, 4, 6 .805
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Improving Estimated Components



Generalized Principal Components

� Basic PCA makes use of the covariance or more commonly correlation
� Correlation is technically a special case of generalized PCA

min
β ,ft ,...ft

T∑
t=1

(xt − βft)′ Σ−1ε (xt − βft) subject to β
′β = Ir

� Clever choices of Σε lead to difference estimators
É Using diag

(
σ̂21, . . . , σ̂2k

)
where σ̂2j is variance of xj leads to correlation

É Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS )

1. Estimate ε̂it = xit − β̂ if̂t using r factors
2. Estimate σ̂2εi = T

−1∑ ε̂2it andW = diag (w1, . . . ,wk) where

wi =
1/σ̂εi∑k
j=1

1/σ̂εj

3. Compute PCA-GLS usingWX
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Other Generalized PCA Estimators

� Absolute covariance weighting
1. Compute complete residual covariance Σ̂ε from residuals
2. Replace σ̂2εi in step 2 with σ̂

2
εi =

∑k
j=1

∣∣Σ̂ε (i, j)∣∣
� Down-weights series which have both large idiosyncratic variance and
strong residual covariance

� Stock & Watson (2005) use more sophisticated method
1. Estimate AR(P) on ε̂it for all series

ε̂it =
pi∑
j=1

φjεit−j + ξit

2. Construct quasi-differenced xit using coefficients

x̃it = xit −
pi∑
j=1

φ̂jxit−j

3. Estimate σ̂2εi using ξ̂it
4. Re-estimate factors using quasi-differenced data and weighting, iterate if
needed
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Generalized Principal Components Inputs
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Generalized Principal Components Weights
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Redundant and repeated factors

� Redundant factors can have adverse effects on common components
� Exactly redundant factors are identical to increasing the variance of a
studentized data series
É Including xit m-times is the same as using mxit

� Some evidence that excluding highly correlated factors is useful (Boivin &
Ng 2006)

Algorithm (Removal of Redundant Factors)

1. For each series i find series with maximally correlated error, call index ji
2. Drop series in {ji} that are maximally correlated with more than 1 series
3. For series which are each other’s ji, drop series with lower R2

� Can increase step 1 to two or even three series
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Thresholding to Select Forecasting Relevant Factors

� Bai & Ng (2008) consider problem of selecting forecasting relevant factors
� Well known issue for PCA is that factors are selected only using xt
� Can this be improved using information about yt?

Algorithm (Hard Thresholding for Variable Selection)

1. Regress yt = φ0 +
∑p

i=1 φiyt−i + γxt−1 + εt
2. Compute White heteroskedasticity robust standard errors and t-stat
3. Retain any xt where |t| > Cα for some choice of α. Common choices are 10%,
5% or 1%.

� Bai & Ng also discuss methods for soft thresholding, but these require
technology beyond this course (LASSO and Elastic Net)
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Hard Thresholding for GDP, h = 1
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Hard Thresholding for GDP, h = 4
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Prinicpal Component Analysis with Missing Data
� Two obvious solutions to missing data in PCA

É Drop all series that have missing observations
É Impute values for the missing values

� Missing data structure in SW 2012

Series
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Prinicpal Component Analysis with Missing Data
� Two obvious solutions to missing data in PCA

É Drop all series that have missing observations
É Impute values for the missing values

� Missing data structure in SW 2012
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Expectations-Maximization (EM) Algorithm

� Some problem with unobserved states can be solved using the EM algorithm
� Consider problem of estimating means from an i.i.d. mixture

Xi = Yiµ1 + (1− Yi)µ2 + Zi

É Yi is i.i.d. Bernoulli(p), Zi is standard normal
É Yi was observable, trivial problem (OLS)
É When Yi is not observable, much harder
É EM algorithm will iterate across two steps:

1. Construct “as-if” Yi using expectations of Yi given µ1 and µ2
2. Compute

µ̂1 =
∑
Pr (Yi = 1)Xi∑
Pr (Yi = 1)

µ̂2 =
∑
Pr (Yi = 0)Xi

n−
∑
Pr (Yi = 1)

3. Return to 1, stopping if the means are not changing much

É Algorithm is initialized with “guesses” about µ1 and µ2
– Example: Mean of data above median, mean of data below median

É Consider case where µ1 = 10, µ2 = −10
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Imputing Missing Values in PCA

� Ideally would like to solve PCA problem only for observed data
� Difficult in practice, no know closed form estimator
� Expectation-Maximization (EM) algorithm can be used to simply impute
missing data
É Replace missing with r-factor expectation (E)
É Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define wij = I
[
yij observed

]
and set i = 0

2. Construct X(0) =W� X + (1−W)� ιX̄ where ιis a T by 1 vector of 1s

3. Until
∣∣∣∣∣∣X(i+1) − X(i)∣∣∣∣∣∣ < c:

a. Estimate r factors and factor loadings, F̂(i) and β̂ (i) from X(i) using PCA
b. Construct X(i+1) =W� X + (1−W)�

(
F̂(i)β̂ (i)

)
c. Set i = i + 1
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Hierarchical Factors

� Can use partitioning to construct hierarchical factors
� Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors,
and extract 1 or more factors from residuals

É Country factors uncorrelated with Global, but not local from other
regions/countries

� Nominal and Real
1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract
factors from residuals
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Beyond DFM

� DFMs are an important innovation – both supported by economic theory
and statistical evidence

� From a forecasting point of view, they have some limitations
� Alternatives

É Partial Least Squares Regression
– Focuses attention on forecasting problem

É Three-pass Regression Filter
– Allows focus on factors through proxies

É Regularized Reduced Rank Regression
– Improve DFM factor selection for forecasting problem
– Theoretically more sound than using variable selection using BIC
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Partial Least Squares



Partial Least Squares

� Partial Least Squares uses the predicted variable when selecting factors
� PCA/DFM only look at xt when selecting factors
� The difference means that PLS may have advantages

É If the factors predicting yt are not excessively pervasive
É If the rotation implied by PCA requires many factors to extract the ideal factor

yt+1 = β f1t + εt

É Suppose two estimated factors with the form[
f̃1t
f̃2t

]
=
[ √

1/2
√
1/2√

1/2 −
√
1/2

] [
f1t
f2t

]
É Correct forecasting model for yt+1 requires both f̃t1 and f̃2t

yt+1 = γ1 f̃1t + γ2 f̃2t + εt
=

√
1/2γ1f1t +

√
1/2γ2f1t +

√
1/2γ1f2t −

√
2γ2f2t + εt

= (γ1 + γ2)
√

1/2f1t + (γ1 − γ2)
√

1/2f2t + εt

É Implies
√
1/2 (γ1 + γ2) = β and

√
1/2 (γ1 − γ2) = 0 (γ1 = γ2, γ1 = β/

(
2
√
1/2
)
)

É Without this knowledge, 2 parameters to estimate, not 1
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Partial Least Squares

� Partial least squares (PLS) uses only bivariate building blocks
� Never requires inverting k by k covariance matrix

É Computationally very simple
É Technically no more difficult than PCA

� Uses a basic property of linear regression

yt = β1x1t + β2x2t + β3x3t + εt

� Define η̂t = yt − γ̂1x1t where γ̂1 is from OLS of y on x1
É Immediate implication is

∑
η̂tx1t = 0

� Define ξ̂t = η̂t − γ̂2x2t where γ̂2 is from OLS of η̂ on x2
É Will have

∑
ξ̂tx2t = 0 but also

∑
ξ̂tx1t = 0
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Partial Least Squares

� Ingredients to PLS are different from PCA
� Assumed model

yt = µy + Γ f1t + εt
xt = Λ1f1t + Λ2f2t + ξt
ft = Ψft−1 + ηt

� Variable to predict is now a key component
É yt, m by 1
É Often m = 1
É Not studentized (important if m > 1)

� Same set of predictors
É xt, k by 1
É Assumed studentized
É yt can be in xt if yt is really in the future, so that the values in xt are lags

– Normally yt is excluded
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Partial Least Squares

Algorithm (r-Factor Partial Least Squares Regression)

1. Studentize xj , set x̃
(0)
j = xj and f0t = ι

2. For i = 1, . . . , r

a. Set fit =
∑

j cijx̃
(i−1)
t where cij =

∑
t x̃
(i−1)
jt yt

b. Update x̃(i)j = x̃
(i−1)
j − κijft where

κij =
f′i x̃
(i−1)
j

f′i fi

� Output is a set of uncorrelated factors f1, f2, . . . , fr
� Forecasting model is then yt = β0 + β ′ft + εt
� Useful to save C = [c1, . . . , cr] and K = [κ1, . . . ,κr] and

(
β̂0, β̂

′)
É Numerical issues may produce some non-zero covariance for factors far apart
É Normally only interested in a small number, so not important
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Factors in PLS

� Factors are just linear combinations of original data
� Obvious for first factor, which is just f1 = Xc1 = X̃(0)c1
� Second factors is f2 = X̃(1)c2

X̃(1) = X
(
Ik − c1κ′1

)
= X− (Xc1)κ′1
= X− f1κ′1

X̃(1)c2 = X̃(0) (Ik − c1κ1) c2
= Xβ2

� Same logic holds for any factor

X̃(j−1)cj = X̃(j−2)
(
Ik − cj−1κ′j−1

)
cj

= X̃(j−3)
(
Ik − cj−2κ′j−2

) (
Ik − cj−1κ′j−1

)
cj

= X
(
Ik − c1κ′1

)
. . .
(
Ik − cj−1κ′j−1

)
cj

= Xβ j
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Forecasting with Partial Least Squares
� When forecasting yt+h , use

y =

 y1+h
...
yt

 X =
 x1

...
xt−h


� When studentizing X save µ̂ and σ̂2, the vectors of means and variance

É Alternatively studentize all t observations of X, but only use 1, . . . , t − h in PLS
� Important inputs to preserve:

É ci and κi, i = 1, 2, . . . , r

Algorithm (Out-of-sample Factor Reconstruction)

1. Set f0t = 1 and x̃(0)t = (xt − µ̂)� σ̂
2. For i = 1, . . . , r

a. Compute fit = c′i x̃
(i−1)
t

b. Set x̃(i)t = x̃
(i−1)
t − fitκ′i

� Construct forecast from ft and
(
β̂0, β̂

)
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Comparing PCA and PLS

� There is a non-trivial relationship between PCA and PLS
� PCA iteratively solves the following problem to find fi = Xβ i

max
β i

V
[
Xβ i

]
subject to β ′iβ i = 1 and f

′
i fj = 0, j < i

� PLS solves a similar problem to find fi
É Different in one important way

max
β i

Corr2
[
Xβ i, y

]
V
[
Xβ i

]
subject to f′i fj = 0, j < i

É Assumes single y (m = 1)
� Implications:

É PLS can only find factors that are common to xt and yt due to Corr term
É PLS also cares about the factor space in xt, so more repetition of one factor in
xt will affect factor selected

� When xt = yt, PLS is equivalent to PCA
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The Three-pass Regression Filter



Three-pass Regression Filter

� Generalization of PLS to incorporate user forecast proxizes, zt
� When proxies are not specified, proxies can be automatically generated,
very close to PLS

� Model structure

xt = λ + Λft + εt
yt+1 = β0 + β

′ft + ηt
zt = φ0 + Φft + ξt

É ft =
[
f′1t, f′2t

]′
É Λ = [Λ1,Λ2], β =

[
β 1, 0

]
, Φ = [Φ1,Φ2]

� β can have 0’s so that some factors are not important for yt+1
� Most discussion is on a single scalar y, so m = 1
� zt is l by 1, with 0 < l� min

(
k,T

)
É l is finite
É Number of factors used in forecasting model

84 / 107



Three-pass Regression Filter

Algorithm (Three-pass Regression Filter)

1. (Time series regression) Regress xi on Z for i = 1, . . . , k, xit = φi0 + z′tφi + νit
2. (Cross section regression) Regress xt on φ̂i for t = 1, . . . ,T ,
xit = γi0 + φ̂ift + υit. Estimate is f̂t.

3. (Predictive regression) Regress yt+1 on f̂t , yt+1 = β0 + β ′f̂t + ηt

� Final forecast uses out-of-sample data but is otherwise identical
� Trivial to use with an imbalanced panel

É Run step 1 when xi is observed
É Include xit and φ̂i whenever observed in step 2

� Imbalanced panel may nto produce accurate forecasts though
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Forecasting with Three-pass Regression Filter

� Use data

y =


y1+h
y2+h
...
yt

 X =


x1
x2
...

xt−h


to estimate 3PRF
É Retain φ̂i for i = 1, . . . , k
É Retain β̂0 and β̂

� To forecast yt+h|t
É Compute f̂t by regressing xt on φ̂i and a constant
É Construct ŷt+h|t using β̂0 + β̂ f̂t
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Automatic Proxy Variables

� zt are potentially useful but not required

Algorithm (Automatic Proxy Selection)

1. Initialize w(i) = y
2. For i = 1, 2, . . . , L

a. Set zi = w(i)
b. Compute 3PRF forecast ŷ(i) using proxies 1, . . . , i
c. Update w(i+1) = y − ŷ(i)

� Proxies are natural since forecast errors
� Automatic algorithm finds factor most related to y, then the 1-factor
residual, then the 2-factor residual and so on

� Nearly identical to the steps in PLS
� Possibly easier to use 3PRF with missing data
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Theory Motivated Proxies

� One of the strengths of 3PRF is the ability to include theory motivated
proxies

� Kelly & Pruit show that money growth and output growth can be used to
improve inflation proxies over automatic proxies

� The use of theory motivated proxies effectively favors some factors over
others

� Potentially useful for removing factors that might be unstable, resulting in
poor OOS performance

� When will theory motivated proxies help?
É Proxies contain common, persistent components
É Some components in y that are not in z have unstable relationship
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Exact Relationship between 3PRF and PLS

� 3PRF and PLS are identical under the following conditions
É X has been studentized
É The 2-first stages do not include constants

� Factors that come from 3PRF and PLS differ by a rotation
� PLS factors are uncorrelated by design
� Equivalent factors can be constructed using

Σ−
1/2

f F3PRF

É Σf is the covariance matrix of F3PRF
É Will stiff differ by scale and possibly factor of ±1
É Order may also differ
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Forecasting from DFM and PLS/3PRF

� Forecast
É GDP growth
É Industrial Production
É Equity Returns
É Spread between Baa and 10 year rate

� All data from Stock & Watson 2012 dataset
� Dataset split in half

É 1959:2 – 1984:1 for initial estimation
É 1985:1 – 2011:2 for evaluation

� Consider horizons from 1 to 4 quarters
� Entire procedure is conducted out-of-sample
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DFM Components

� Forecasts computed using different methods:
É 3 components
É 3 components and 4 lags with Global BIC search
É IPp2 selected components only

� X recursively studentized
É Only use series that have no missing data

� Cheating: some macro data-series are not available in real-time, but all
forecasts benefit
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PLS/3PRF Components and Benchmark

� Consider 1, 2 and 3 factor forecasts
� Automatic proxy selection only
� Always studentize X
� Benchmark is AR(4)
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Out-of-sample R2

IP
PCA(3) 0.6038 0.4255 0.3125 0.2667
AR(4) 0.5521 0.3695 0.2699 0.2031
BIC 0.5671 0.3676 0.3047 0.2936
PCA-IC 0.5380 0.4089 0.3235 0.2773
3PRF-1 0.4653 0.3728 0.2999 0.2601
3PRF-2 0.5351 0.4081 0.3095 0.2494
3PRF-3 0.5230 0.3619 0.2294 0.1600

GDP
PCA(3) 0.6031 0.4204 0.2483 0.1485
AR(4) 0.5239 0.3578 0.2601 0.1860
BIC 0.6210 0.4573 0.2790 0.1669
PCA-IC 0.6010 0.435 0.3046 0.2246
3PRF-1 0.5385 0.4371 0.3444 0.2848
3PRF-2 0.5205 0.3759 0.2665 0.1922
3PRF-3 0.4637 0.2918 0.1796 0.1189
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Out-of-sample R2

BAA-GS10 (Diff)
PCA(3) -0.0754 -0.2065 -0.178 -0.0484
AR(4) -0.0464 -0.0914 -0.0865 -0.0097
BIC 0.0232 -0.1253 -0.0036 -0.0380
PCA-IC 0.0390 -0.0698 -0.0711 0.0242
3PRF-1 -0.0072 -0.1735 -0.1367 -0.0240
3PRF-2 0.0303 -0.1887 -0.1283 -0.0564
3PRF-3 -0.1909 -0.4024 -0.3301 -0.1710

S&P 500 Return
PCA(3) 0.0442 -0.1133 -0.1870 -0.2149
AR(4) 0.0677 -0.0095 -0.0546 -0.0725
BIC 0.0232 -0.1281 -0.1895 -0.1950
PCA-IC 0.0070 -0.0929 -0.0949 -0.0982
3PRF-1 -0.0245 -0.1575 -0.1764 -0.1863
3PRF-2 0.0903 -0.1488 -0.2122 -0.2165
3PRF-3 0.0055 -0.2029 -0.3885 -0.3833
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Alternative Fits of GDP
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Number of PC and Fit of GDP
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Number of 3PRF Factors and Fit of GDP
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Alternative Fits of Baa-10 year spread
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Number of PC and Fit of Spread
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Number of 3PRF Factors and Fit of Spread
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Regularized Reduced Rank Regression



Regularized Reduced Rank Regression

� When k is large, OLS will not produce useful forecasts
� Reduced rank regression places some restrictions on the coefficients on xt

yt+1 = γ0 + αβ
′xt + εt

= γ0 + α
(
β ′xt

)
+ εt

= γ0 + αft + εt

É α is 1 by r – factor loadings
É β is r by k – selects the factors

� When k ≈ T , even this type of restriction does not produce well behaved
forecasts
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Regularizing Covariance Matrices

� Regularization is a common method to ensure that covariance matrices are
invertible when k ≈ T , or even when k > T

� Many regularization schemes
� Tikhonov

Σ̃x = Σ̂x + ρQQ′

where QQ′ has eigenvalues bounded from 0 for any k
É Common choice of QQ′ is Ik, Σ̃x = Σ̂x + ρIk
É Makes most sense when xt has been studentized

� Eigenvalue cleaning
Σ̂x = VΛV′

É For i ≤ r, λ̃i = λi is unchanged
É For i > r, λ̃i =

(
k− r

)−1∑
i>c λi

Σ̃x = VΛ̃V′

É Effectively imposes a r-factor structure
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Combining Reduced Rank and Regularization

� These two methods can be combined to produce RRRR
� In small k case,

yt+1 = γ0 + αβ ′xt + εt
normalizedβ can be computed as as solution to generalized eigenvalue
problem
É Normal eigenvalue problem

|A− λI| = 0
É Generalized Eigenvalue Problem

|A− λB| = 0

� Reduced Rank LS ∣∣∣∣∣Σxyk×m
WΣ′xy

m×k
− λΣx

k×k

∣∣∣∣∣ = 0
β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of this problem
É W is a weighting matrix, either Im or a diagonal GLS version using variance of
yit on ith diagonal
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RRRR-Tikhonov

� β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of∣∣ΣxyWΣ′xy − λ (Σx + ρQQ′)∣∣ = 0
É X is studentized
É QQ′ is typically set to Ik
É ρ is a tuning parameter, usually set using 5- or 10-fold cross validation
É r also need to be selected

– Cross validation
– Model-based IC
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RRRR-Spectral Cutoff

� β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of ∣∣∣ΣfyWΣ′fy − λΣf ∣∣∣ = 0

� Σf is the covariance of the first rf principal components
É rf to distinguish from r (the number of columns in β )
É Σfy is the covariance between the PCs and the data to be predicted
É rf must be chosen using another criteria – Scree plot or Information Criteria

� The spectral cutoff method essentially chooses a set of r factors from the
set of rf PCs

� This is not a trivial exercise since factors are always identified only up to a
rotation

� For example, allows a 1-factor model to be used for forecasting even when
the factor can only be reconstructed from all rf PCs

� Partially bridges the gap between PCA and PLS/3PRF

105 / 107



Forecasting in RRRR

� Once β̂ was been estimated using generalized eigenvalue problem, run
regression

yt+1 = φ0 + α
(
β̂
′
xt
)
+ εt

to estimate α̂
� Can also include lags of y

yt+1 = φ0 +
p∑
i=1

φiyt−i+1 + α
(
β̂
′
xt
)
+ εt

� When using spectral cutoff, regressions use ft in place of xt
� Forecasts are simple since xt, β̂ and other parameters are known at time t

É When using spectral cutoff, ft is also known at time t
� r can be chosen using a normal IC such as BIC or using t-stats in the
forecasting regression
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General Setup for Forecasting
� When forecasting with the models, it is useful to setup some matrices so that
observations are aligned

� Assume interest in predicting yt+1|t, . . . , yt+h|t
É Can also easily use cumulative versions, Et

[∑h
i=1 yt+i

]
� All matrices will have t rows
� Leads (max h) and lags (max P)

Yleads =



y2 y3 · · · yh+1
y3 y4 · · · yh+2
...

...
...

...
yt−h+1 yt−h+2 · · · yt
yt−1 yt · · · −
yt − · · · −


, Ylags =



y1 − . . . −
y2 y1 . . . −
...

...
...

...

yP yP−1
... y1

...
...

...
...

yt−1 yt−2
... yt−P


X =

 x1
. . .
xt



� − denotes a missing observation (nan)
� When forecasting at horizon h, use column h of Yleads and rows 1, . . . t − h of Ylags
and X
É Remove any rows that have missing values

� When using PCA methods, extract PC (C) from all of X and use rows 1, . . . t − h of C
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