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Overview

= Bootstrap
= Constructing Technical Trading Rules
= Multiple Hypothesis Testing

» Reality Check

> Hansen’s Test of Superior Predictive Ability
> Bonferroni and Bonferroni-Holm Bounds

> StepM

» Model Confidence Set

> False Discovery Rate Control
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The Boostrap

Definition (The Bootstrap)

The bootstrap is a statistical procedure where data is resampled, and the
resampled data is used to estimate quantities of interest.

= Bootstraps come in many forms
> Structure
- Parametric
- Nonparametric
> Dependence Type
- 1ID
- Wild
- Block and other for dependent data
= All share common structure of using simulated random numbers in
combination with original data to compute quantities of interest
= Applications
> Confidence Intervals
> Refinements
> Bias estimation
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Basic Problem

= Compute standard deviation for an estimator
= For example, in case of mean x for i.i.d. data, we know

N N

is usually a reasonable estimator of the standard deviation of the data
= The standard error of the mean is then

2
sz%

which can be used to form confidence intervals or conduct hypothesis tests
(in conjunction with CLT)

= How could you estimate the standard error for the median of xy,...x,?

» What about inference about a quantile, for example that 5" percentile of
X1,...Xn?

= Bootstrap is a computational method to construct standard error estimates
of confidence interval for a wide range of estimators.
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|ID Bootstrap

= Assume n i.i.d.random (possibly vector valued) variables x, ..., X,
= Estimator of of a parameter of interest 0

> For example, the mean

Definition (Empirical Distribution Function)

The empirical distribution function assigns probability 1/n to each observation
value. For a scalar random variable x;,i = 1, ..., n, the EDF is defined

R 1 &
FX)= -3 lyx.
i=1

= Also known as the empirical CDF
= CDF of X should have information about precision of 8, so ECDF might also
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|ID Bootstrap for the mean OXFORD &

Algorithm (11D Bootstrap)

1. Simulate a set of n i.i.d. uniform random integers u;, i = 1,...n from the range
1,...,n (with replacement)

2. Construct a bootstrap sample x}, = {Xu,, Xu,, - - - Xu, }
3. Compute the mean

1

* *

91;-;5 Xp,i
i=1

4. Repeat steps 1-3 B times
5. Estimate the standard of 0 using

=300 0)’

i=1
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MATLAB Code for [ID Boots

n = 100; x = randn(n,1);
% Mean of x
mu = mean(x);
B = 1000;
% Initialize muStar
muStar = zeros(B,1);
% Loop over B bootstraps
for b=1:B
% Uniform random numbers over 1...n
u = ceil(n*rand(n,1));
% Xx-star sample simulation
xStar = x(u);
% Mean of x-star
muStar(b) = mean(xStar);
end
s2 = 1/(n-1)*sum((x-mu).~2);
stdErr = s2/n
bootstrapStdErr = mean((muStar-mu).”2)
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How many bootstrap replications?

= Bis used for the number of bootstrap replications
= Bootstrap theory assumes B — oo quickly

= This ensures that the bootstrap distribution is identical to the case where
all unique bootstraps were computed

> There are a lot of unique bootstraps
» n" in the i.i.d. case

= Using finite B adds some extra variation since two bootstraps with the same
data won’t produce identical estimates

= Note: Often useful to set the state of your random number generator so that
results are reproducible

% A non-negative integer
seed = 26031974
rng(seed)

= Should choose B large enough that the Monte Carlo error is negligible
= |n practice little reason to use less than 1,000 replications
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Getting the most out of B bootstrap replications ©

= Balanced resampling

> In standard i.i.d. bootstrap, some values will inevitibly appear more than others
» Balanced resampling ensures that all values appear the same number of times
> In practice simple to implement

Algorithm (11D Bootstrap with Balanced Resampling)

1. Replicate the data so that there are B copies of each x;. The data set should
have Bn observations

2. Construct a random random permutation of the numbers 1,...,Bn as uy, ... ugy

3. Construct the bootstrap sample X;, = {Xu,, 11> Xuny_ 1097 - - - Xt yen |

= This algorithm samples without replacement from the replicated dataset of

Bn observations
= Each data point will appear exactly B times in the B bootstrap samples
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MATLAB Code for IID Balanced Bootstrap

n = 100; x = randn(n,1);
% Replicate the data
XRepl = repmat(x,B,1);
B = 1000;
% Random permutaiton of 1,...,B*n
u = randperm(n*B);
% Loop over B bootstraps
for b=1:B
% Uniform random numbers over 1...n
ind = n*(b-1)+(1:n);
xb = xRepl(u(ind));
end
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Getting the most out of B bootstrap replications ox

= Antithetic Random Variables
= |f samples are negatively correlated, variance of statistics can be reduced

> Basic idea is to order data so that if one sample has too many large values of x,
then the next will have too many small
» This can induce negative correlation while not corrupting bootstrap

Algorithm (11D Bootstrap with Antithetic Resampling)

1. Order the data so that x; < X, ... < xy,. Treat these indices as the original data.

. Simulate a set of n i.i.d. uniform random integers u;, i = 1,...n from the range
1,...,n (with replacement)

. Construct the bootstrap sample X; = {Xu;, Xu,, - .. Xu, }

N

. Constructit; =n —u; + 1
Construct the antithetic bootstrap sample ;. ; = {Xa,, Xz, . .. Xa, }
. Repeat forb=1,3,...,B—1

= Using antithetic random variables is a general principle applicable to
virtually all simulation estimators
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MATLAB Code for IID Bootstrap with Antithetic R\

n = 100; x = randn(n,1);

% Mean of x

mu = mean(x);

B = 1000;

% Initialize muStar

muStar = zeros(B,1);

% Sort X

X = sort(x);

% Loop over B bootstraps

for b=1:2:B
% Uniform random numbers over 1...n
u = ceil(n*rand(n,1)); xStar = x(u);
% Mean of x-star
muStar(b) = mean(xStar);
% Uniform random numbers over 1...n
u = n-utl; xStar = x(u);
% Mean of x-star
muStar(b+1) = mean(xStar);

end

corr(muStar(1:2:B),muStar(2:2:B))

12/180



Bootstrap Estimation of Bias

= Many statistics have a finite sample bias
= This is equivalent to saying that § — 8 ~ c/n for some ¢ # 0

> Many estimators have ¢ = 0, for example the sample mean
> These estimators are unbiased

= Biased estimators usually arise when the estimator is a non-linear function
of the data

= Bootstrap can be used to estimate the bias, and the estimate can be used to
debias the original estimate

Recall the definition of bias

Definition (Bias)

The bias of an estimator is
E [6 — 0]
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Bootstrap Estimation of Bias

Algorithm

1. Estimate the parameter of interest 0

2. Generate a bootstrap sample x;, and estimate the parameter on the bootstrap
sample. Denote this estimate as 0,

3. Repeat 2 a total of B times
4. Estimate the bias as

B
Bias=B~'> 6; -6
i=1

= Example of bootstrap bias adjustment will be given later once more results
for time-series have been established
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Bootstrap Estimation of Standard Error

Algorithm

1. Estimate the parameter of interest 0

2. Generate a bootstrap sample x;, and estimate the parameter on the bootstrap
sample. Denote this estimate as 0,

3. Repeat 2 a total of B times
4. Estimate the standard error as

B
std. Er =, [B-1>" (6; - 6)°
i=1

= Other estimators are also common

B

Std. Err = J(B— 'y (él; —(97;)

2
i=1

= B should be sufficiently large that B or B — 1 should not matter
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= Bootstraps can also be used to construct confidence intervals

= Two methods:

1. Estimate the standard error of the estimator and use a CLT
2. Estimate the confidence interval directly using the bootstrap estimators {0,;}

= The first method is simple and have previously been explained
The second is also very simple, and is known as the percentile method
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Algorithm (Percentile Method)

A confidence interval [CaL, CaH] with coverage ay — ay, can be constructed:
1. Construct a bootstrap sample x
2. Compute the bootstrap estimate é,j
3. Repeat steps 1-2

4. The confidence interval is constructed using the empirical ay quantile and the
empirical ay quantile of {6; }

= |f the bootstrap estimates are ordered from smallest to largest, and Bay, and
Bay are integers, then the confidence interval is

[9§OKL’ 9§aﬁ:|
= This method may not work well in all situations

> nsmall
> Highly asymmetric distribution
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MATLAB Code for Percentile Method

n = 100; x = randn(n,1);

% Mean of x

mu = mean(x);

B = 1000;

% Initialize muStar

muStar = zeros(B,1);

% Loop over B bootstraps

for b=1:B
% Uniform random numbers over 1...n
u = ceil(n*rand(n,1));
% Xx-star sample simulation
xStar = x(u);
% Mean of x-star
muStar(b) = mean(xStar);

end

alphal = .05;alphaH=.95;

muStar = sort(muStar);

CI = [muStar(alphalL*B) muStar(round(alphaH*B))]
CI - mu
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Bootstrap and Regression

= Bootstraps can be used in more complex scenarios
= One simple extension is to regressions

= Using a model, rather than estimating a simple statistic, allows for a richer
set of bootstrap options

> Parametric
» Non-parametric

Basic idea, however, remains the same:

> Simulate random data from the same DGP
» Now requires data for both the regressor y and the regressand x
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= Parametric bootstraps are based on a model

= They exploit the structure of the model to re-sample residuals rather than
the actual data

= Suppose
Vi=XiP +e€
where €; is homoskedastic
= The parametric bootstrap would estimate the model and the residuals as
&=y —xip
= The bootstrap would then construct the re-sampled “data” by sampling ¢;
separately from x;
> In other words, use two separate sets of i.i.d. uniform indices
= Construct yj; = Xu, B + éu,
= Compute statistics using these values
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Useful function: bsxfun

= Many examples use bsxfun
BSXFUN Binary Singleton Expansion Function

C = BSXFUN(FUNC,A,B) applies the element-by-element binary
operation specified by the function handle FUNC to arrays A and
B, with singleton expansion enabled. FUNC must be able to accept
as input either two column vectors of the same size, or one
column vector and one scalar, and return as output a column
vector of the same size as the input(s). FUNC can either be a
function handle for an arbitrary function satisfying the above
conditions or one of the following built-in:

= Allows k by n matrix to be added/subtracted from k by 1 vector or 1 by n
vector

x = randn(1000,10);
mu = mean(x);
err = bsxfun(@minus,x,mu);
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n = 100; x = randn(n,2); e = randn(n,1); y = x*ones(2,1) + e;
% Bhat
Bhat = x\y; ehat = y — xxBhat;
B = 1000;
% Initialize BStar
BStar = zeros(B,2);
% Loop over B bootstraps
for b=1:B
% Uniform random numbers over 1...n
uxX = ceil(n«rand(n,1)); uE = ceil(nxrand(n,1));
% x—star sample simulation
xStar = x(uX,:); eStar = e(uk);
yStar = xStarxBhat + eStar;
% Mean of x—star
BStar(b,:) = (xStar\yStar)’;
end
Berr=bsxfun (@minus, BStar ,Bhat ") ;
bootstrapVCV = Berr’xBerr/B
trueVCV = eye(2)/100
OLSVCV = (e’xe)/n % inv(x'*Xx)
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Non-parametric Bootstrap

= Non-parametric bootstrap is simpler
It does not use the structure of the model to construct artificial data

The vector [y;, X;] is instead directly re-sampled
= The parameters are constructed from the pairs

Algorithm (Non-parametric Bootstrap for i.i.d. Regression Data)

1. Simulate a set of n i.i.d. uniform random integers u;, i = 1, ...n from the range
1,...,n (with replacement)

2. Construct the bootstrap sample zy = {Yu,, Xy, }
3. Estimate the bootstrap p by fitting the model

A Kk

Yu; = Xu, by + €
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MATLAB Code for Nonparametric Bootstrap of Regressio

n = 100; x = randn(n,2); e = randn(n,1); y = x*ones(2,1) + e;
% Bhat
Bhat = x\y; ehat = y — xxBhat;
B = 1000;
% Initialize BStar
BStar = zeros(B,2);
% Loop over B bootstraps
for b=1:B
% Uniform random numbers over 1...n
u = ceil(nkxrand(n,1));
% x—star sample simulation
yStar = y(u);
xStar = x(u,:);
% Mean of x—star
BStar(b,:) = (xStar\yStar)’;
end
Berr=bsxfun (@minus, BStar ,Bhat ") ;
bootstrapVCV = Berr’xBerr/B
trueVCV = eye(2)/100
OLSVCV = (e’xe)/n % inv(x'*Xx)
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Bootstrapping Time-series Data

= i.i.d. bootstrap is only appropriate for i.i.d. data
» Note: Usually OK for data that is not serially correlated
= Two strategies for bootstrapping time-series data

> Parametric & i.i.d. bootstrap: If the model postulates that the residuals are
i.i.d. or at least white noise, then a residual-based i.i.d. bootstrap may be
appropriate
- Examples: AR models, GARCH models using appropriately standardized residuals

> Nonparametric block bootstrap: Weak assumptions, basically that blocks can be
sampled so that they (blocks) are approximately i.i.d.
- Similar to the notion of ergodicity which is related to asymptotic independence
- Important: Like Newey-West covariance estimator, block length must grow with

sample size
= Fundamentally same reason

25/180



UN Y
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MATLAB Code for all time-series applications

% Number of time periods

T = 100;

% Random errors

e = randn(T,1);

zeros(T,1);

% Y is an AR(1), phil = 0.5

v(1) = e(1)*sqrt(1/(1-.572));

for t=2:T
y(t)=0.5%y(t-1)+te(t);

end

% 10,000 replications

B = 10000;

% Initial place for mu-star

muStar = zeros(B,1);

<
1]
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= Samples blocks of m consecutive observations
= Uses blocks which start at indices 1,... T —m+1

Algorithm (Moving Block Bootstrap)

1. Initialize i = 1

2. Draw a uniform integerv;on1,..., T —m+1

3. Assign uj_1yj=Vvi+j—1forj=1,...,m

4. Increment i and repeat 2-3 untili > [T /m]

5. Trim u so that only the first T remain if T /m is not an integer
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MATLAB Code for Moving Block Bootstrap

% Block size

m = 10;
% Loop over B bootstraps
for b=1:B

% ceil(T/m) Uniform random numbers over 1...T-m+l
u = ceil((T-m+1)*rand(ceil (T/m),1));
u = bsxfun(g@plus,u,0:m-1)";
% Transform to col vector, and remove excess
u=u(:); u=ull:T);
% y-star sample simulation
yStar = y(u);
% Mean of y-star
muStar(b) = mean(yStar);
end
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Circular Bootstrap

= Simple extension of MBB which assumes the data live on a circle so that
Yr+1 = Y1, Yr42 = Y2, €1C.

= Has better finite sample properties since all data points get sampled with
equal probability

= Only step 2 changes in a very small way

Algorithm (Circular Block Bootstrap)

1. Initialize i = 1

2. Draw a uniform integervion 1,..., T

3. Assign wi_yyj =Vi+j—1forj=1,...,m

4. Increment i and repeat 2-3 until i > [T/m]

5. Trim u so that only the first T remain if T /m is not an integer
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MATLAB Code for Circular Block Bootstrap |

% Block size
m = 10;
% Loop over B bootstraps
yRepl = [y;vy];
for b=1:B
% ceil(T/m) Uniform random numbers over 1...T-m+l
u = ceil(T*rand(ceil(T/m),1));
u = bsxfun(g@plus,u,0:m-1)’;
% Transform to col vector, and remove excess
u=ul:); u=ull:T);
% y-star sample simulation
yStar = yRepl(u);
% Mean of y-star
muStar(b) = mean(yStar);
end
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Stationary Bootstrap

Differs form MBB and CBB in that the block size is no longer fixed
Chooses an average block size of m rather than an exact block size

= Randomness in block size is worse when m is known, but helps if m may be
suboptimal

= Block size is exponentially distributed with mean m

Algorithm (Stationary Bootstrap)

1. Draw u; uniformonl,...,T
2. Fori=2,...,t

a. Draw a uniformvon (0, 1)
b. fv>1/mu=u_;+1

i Ifu,->T,u,-=u,-fT

c. Ifv<1/m,draw uy; uniformonl,..., T
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MATLAB Code for Stationary Bootstrap

% Average block size

m = 10;

% Loop over B bootstraps
yRepl = [y;vy];

u = zeros(T,1);

for b=1:B
u(l) = ceil(T*¥rand);
for t=2:T

if rand<l/m
u(t) = ceil(T*rand);
else
u(t) = u(t-1) + 1;
end
end
% y-star sample simulation
yStar = yRepl(u);
% Mean of y-star
muStar(b) = mean(yStar);
end
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Comparing the Three TS Bootstraps

MBB was the first

= CBB has simpler theoretical properties and usually requires fewer
corrections to address “end effects”

SB is theoretically worse than MBB and CBB, but is the most common
choice in time-series econometrics

» Theoretical optimality assumes that the the “optimal” block size is used
= Popularity of SB stems from difficulty in determining optimal m
> More on this in a minute

Random block size brings some robustness at the cost of extra variability
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Bootstrapping Stationary AR(P

= The stationary AR(P) model can be parametrically bootstraps
= Assume

Ye=@1Ye-1+ 2Ye2+ ...+ QpYrp+ €
= Usual assumptions, including stationarity
= Can use a parametric bootstrap by estimating the residuals

=Y~ P1ye1+...+ PpYrp

Algorithm (Stationary Autoregressive Bootstrap)

1. Estimate the AR(P) and the residuals fort=P+1,..., T
2. Recenter the residuals so that they have mean O

™

étzét—

3. Draw u uniform from 1,...,T — P+ 1 and set y; = yu,
Y3 = Yutlr - Yp = YusP+1
4. Recursively simulate yp., ;. ...yr using € drawn using an i.i.d. bootstrap
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MATLAB Code for Stationary AR Bootstrap

phi = y(1:T-1)\y(2:T);
ehat = y(2:T)-phi*y(1:T-1);
yStar = zeros(T,1);
for i=1:B
% Initialize to one of the original values
yStar(l) = y(ceil(T*rand));
% Indices for errors
u = ceil((T-1)*rand(T,1));
% Demean errors
eStar = ehat(u) - mean(ehat(u))
% Recursion to simulate AR
for t=2:T
yStar(t) = phi¥*yStar(t-1) + eStar(u(t));
end
end
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Data-based Block Length Selection

= Block size selection is crucial for good performance of block bootstraps
= Small block sizes are too close to i.i.d. while large block sizes are overly
noisy
= Politis and White (2004) provide a data dependent lag length selection
procedure
> See also Patton, Politis, and White (2007) correction

= Code is available by searching the internet for
‘opt_block_length_REV_dec07”
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How Data-based Block Length Selection Works ~ oxi

= Politis and White (2004) show for stationay bootstrap

2G
Bopt,sp = (DSB> N'/3

» G=3 o __ |kl yr where yy is the autocovariance
> Dsp =128 (0)? where g(w) = >_°___rscos(ws) is the spectral density function

S=—o00

= Need to estimate G and Dsp to estimate By sp
G =300 A (kIM) K F,

1 if |s| €[0,2]
A(S)=4¢2(1—]s|) if [s| €[Y/21]
0 otherwise
» Dsg=28(0 =3 A (K/M) 71 cos (wk)

> M is set to 2m
> 1 is the smallest integer where if p; > 2/log T/T,j=m+1,...,Kr where

Kr = 2max (5, log,, (T))
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Example 1: Mean Estimation for Log Normal

= yi X LN(O, )

= n=100

= B = 1000 using i.i.d. bootstrap

= This is a check that the bootstrap works

= Also shows that bootstrap will not work miracles

= Performance of bootstrap is virtually identical to that of asymptotic theory

> Gains to bootstrap are more difficult to achieve
> Most useful property is in estimating standard error in hard to compute cases
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Example 1: Mean Estimation for Log-Normal OXFORD &

350

Il Asymptotic
Il Bootstrap

0
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Example 2: Bias in AR(1)

= Assume y; = ¢y;_1 + €; Where e; < N(0, 1)
« ¢ =09, T=50
= Use parametric bootstrap

= Estimate bias using the different between bootstrap estimates and the
actual estimate

| | Direct | Debiased |

¢ | 08711 | 0.8810
Var | 0.0052 | 0.0044

= Reduced the bias by about 1/3
= Reduced variance (rare)
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Technical Trading

= Technical trading is one form or predictive modeling
= |t is mostly a graphical, rather than statistical tool
= Constructs rules based on price movements

= Rules, while often used graphically, can usually be written down in
mathematical expressions

= This can be used to formally allow for testing for technical trading rules

> Testing the rules is going to be the basis of the assignments this term
> Using appropriate methodology for evaluation will be important
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Daily DJIA for 12 months
Use high, low and close
Compute the rules, but focus on the visualization of the rule

Rule implementation

> Red dot is sell
> Green dot is buy
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Filter Rules

Definition (x% Buy Filter Rule)

A x% filter rule buys when price has increased by x% from the previous low, and
liquidates when the price has declined x% from the high measured since the
position was opened.

Definition (x% Sell Filter Rule)

A x% filter rule sells when price has declined by x% from the previous high, and
liquidates when the price has increased x% from the low measured since the
position was opened.

= These are a momentum rule

= |f using both rules with the same percentage, will always have an long or
short position, since after a decline of x%, a short is opened, and after a rise
of X% a long is opened
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Filter Rules

= A modified rule allows for periods where there is no long or short

Definition (x%/y% Buy Filter Rule)

A x% filter rule buys when price has moved up by x% from the previous low, and
liquidates when the price has declined y% from the high measured since the
position was opened.

= The sell rule is similarly defined, only using the relative low
= y <X, andy = x then reduces to previous rules
= Do not have to use both long and short rules
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Filter Rules OXFORD

Filter (x=2.5%)
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Moving-Average Oscillator

Definition (Moving-Average Oscillator)

The moving average oscillator requires two parameters, m and n, n > m,

t t
MAO;=m™" Y Pi—n' > P

i=t—m+1 i=t—n+1

= This is obviously the difference between an m period MA and a n period MA
= Momentum rule
= |t is used as an indicator to buy when positive or sell when negative

> Usually used to initiate a trade when it first crosses, not simply based on sign
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Moving-Average Oscillator

= MA; is not enough to determine a buy rule, since the direction of the
crossing matters

= Formally the buy and sell can be defined as the difference of MA,

Buy if sgn(MAO;) — sgn (MAO;_1) = 2
Sellif sgn(MAO;) — sgn(MAQO;_1) = —2

= sgn is the signum function which returns x/|x| for x # 0 and 0 forx =0
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Moving Average Oscillator

Moving Average Oscillator (m=12,n=26)
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Trading Range Breakout/Support and Resistance OXForp

Definition (Trading Range Breakout)

The trading range break out is takes one parameter, m, and is defined

TRE, = (P, > max ({P}ZL,,)) — (P < min ({PHZL,))

Positive values (1) indicate that the price is above the m-period moving
maximum, negative values —1 indicate that it is below the m-period moving
minimum.

= Momentum rule
= Buy on positive signals, sell on negative signals

If no signal, then takes the value O
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Trading Range Breako

Trading Range Breakout (m=26)
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Channel Breakout

Definition (x% Channel Breakout)

The x% channel breakout rule, using a m-day channel, is defined

Buy if P; > max <{P b '") :?“Ei’) ; mn((P0LL.) g o
t—1
Buy if P < min ({Pi}ZL,) N :ngpi < )) o

= Momentum rule
= x% denotes the channel

= Modification of trading range breakout with second condition which may
reduce sensitivity to volatility
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Channel Range Breakout

Channel Breakout (x=5%, m=26)
T
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Moving Average Convergence/Divergence (MACD)o

Definition (Moving Average Convergence/Divergence (MACD))

The moving-average convergence/divergence indicator takes three parameters,
m, n and d, and is defined

oo oo
6e = (1—Am)Y AWPri—(1—2An) > AhPe
i=0 i=0
) .
Seo= (1=2A)>_ Ayse
i=0

= Pronounced MAK-D
s Am=1-2 A, =1- -2 A, =1- %
= S; is the signal line

Plot often has 6 and S, and a histogram to indicate the difference 6; — S;
Difference is used to predict trends

Buyif  sgn(&; — St) —sgn (6;—1 — Si—1) =2
Sellif sgn(s;— Sy) —sgn (6;—1 — Sp—1) = —2
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MACD (m=12,n=26,5=9)
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Relative Strength Indicator

Definition (Relative Strength Indicator)
The relative strength indicator takes one parameter m and is defined as

RSI =100 — m,.wo P
S 1[(},[7,,_,;[471)”] m+1

T =
LM (e r )]

= The core of the indicator are two EWMAs

= Each EWMA is based on indicator variables or positive (top) or negative
(bottom) returns

= |f all positive, then indicator will equal 100, if all negative, indicator will
equal 0

= EWMA can be replaced with MA

= Buy signals are indicated if RSI is below some threshold (e.g. 30), sell if
above a different threshold (e.g. 70)

= RSI is a reversal rule
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Relative Strength Indicator (Reversal

RSI (m=14)
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Definition (Stochastic Oscillator)

A stochastic oscillator takes two parameters m and n and is defined as

P, — min ({P }l o m)

%K; = 100 x
‘ max ({P Yo m) min ({P Yice m)
n
%D; = % 21: %K _i11
=

Trading rules are based on intersections of the lines and the direction of of
the intersection

s f %K;_1 < %D;_1 and %K; > %Dy, then a buy signal is indicated
s |f %K;_1 > %D;_1 and %K; < %Dy, then a sell signal is indicated

Often implemented using fast and slow periods, with feedback between the
two
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Stochastic Oscillator

SO (Slow, m=15, n=5)
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Stochastic Oscillator

SO (Fast, m=10, n=3)
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OXFORD

Bollinger Band

Definition (Bollinger Bands)

Bollinger bands plot the m-day moving average and the MA plus/minus 2 times
the m-day moving standard deviation, where the moving averages are defined

m 2
Z P H P
t ! : :Pt i+1 t— \l 1 ( TR 1)>

= Rules can be based on prices leaving the bands, and possibly then crossing
of the moving average

= For example, buy when price hit bottom (reversal) and then sell when it hits
the MA

= Alternatively buy when it hits the top (strong upward trend)
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Bollinger Band (reversal, m=22)
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Bollinger Band (momentum, m=10)
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A Simple Momentum Rule

= Momentum is a common strategy
= Can construct a momentum rule as

o _J 1 ifP>Py
Y 0 ifP, <P,y

= Technically (trivial) moving average rule with d-day delay filter
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Definition (On-Balance Volume)

On-Balance Volume (OBV) plots the difference between moving averages of
signed daily volume, defined

t
OBV, =) _ VOL,D;

s=1

where VOL; is the volume in period s, Ds is a dummy which is 1 if P, > P,_; and
-1 otherwise, and the trading signal is

o[ 1 MAY > mag
Tl 0 MA%Y < MA,,

where MAQSV = g~ 1, OBV,_;_1,q=m,n,m < n.

= Most rules make use of price signals
= OBV mixes volume information with indicator variable
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n-Balance

On Balance Volume (m=10, n=26)
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Additional Filters

= Many ways rules can be modified
= MAs and EWMAs can be swapped
= Can use a d-day delay filter to stagger execution of trade from signal
Can use b%-band with some filters to reduce frequency of execution

» Requires the recent price (or fast signal) to be b% above the band (or slow
signal)
> Relevant for most rules
» Examples
- Moving-Average Oscillator: Requires fast MA to be larger than 1 + b times slow for
a buy signal, and smaller than 1 — b for a sell signal
- Trading Range Breakout/Channel Breakout: Use 1 + b times max and 1 — b times
min
= Can use k-day holding period, so that positions are held for k-days and
other signal are ignored
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= Most technical rules are interpreted as buy, neutral or sell - 1, 0 or -1
= Essentially applies a step function to the trading signal

= Can use a other continuous, monotonic increasing functions, although not
clear which ones

= One options is to run a regression
ev1 = Bo+ P1Se + €

= S; is a signal is computed using information up-to and including ¢t
> Can be discrete or continuous

= Maps to an expected return, which can then be used in Sharpe-optimization
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Combining Multiple Technical Indicators

= Technical trading rules can be combined
= Not obvious how to combine when discrete
Method 1: Majority vote

> Count number of rules with signs 1, 0 or -1

Method 2: Aggregation

> Compute sum of indicators divided by number of indicators

3 = E:'(:l Skt
k

and go long/short S;
> Bound by 100% long and 100% short
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= Obvious strategy it to look at returns, conditional on signal
= |mportant to have a benchmark model

> Often buy and hold, or some other much less dynamic strategy

= Obvious test is t-statistic of difference in mean return between the active
strategy and the benchmark

= Can also examine predictability for other aspects of distribution

> Volatility
» Large declines

71/180



Brock, Lakonishok and LeBaron i

One of the first systematically test trading rules
= Focused on two rules:

> Moving Average Oscillator
> Trading Range Breakout

= (Controversially) documented evidence of excess returns to technical
trading rules

= Returns were large enough to cover transaction costs

72/180



Moving Average Oscillator

= Moving Average Oscillators implemented for

»m=1,n=50
»m=1,n=150
»m=5n=150

»m=1,n=200
»m=2,n=200

Use both the standard rule and one with a 1%-band filter

Standard is implemented by taking the position and holding for 10 days,
ignoring all other signals

= b%-band version:

» Requires an exceedence by 1% of the slow MA, but no crossing

MA b
i . MA b i ke S _ 7
Buy if (n—l St Pi> > 100° Sell if (n—1 ZLI_"H Pi> < 100

> If b > 0 then some days may have no signal
> If b = 0 then all days are buys or sells
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Trading Range Breakout

= Trading range breakout is implemented for

» m=>50
» m =100
» m=150

= Implemented using the standard and with a 1% band
= b% band version is

TRB, = (Pt> <1+1go> max ({P}, - m)>
(< (- (2
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Empirical Application

A total of 26 rules are created

» MAQO: 5 (m, n)x 2 (Fixed or Variable Window) x2 (b =0, .01)
» TRB: 3 (m) x 2 (b=0,.01)

DJIA from 1897 until 1986
= Main result is that there appears to be predictability using these rules

= Strongest results were for the fixed windows MAO with m = 1, n = 200 and
b=.01

= TRB with m = 150 and b = .01 also had a strong result
= Report

> Number of buy and sell signals

> Mean return during buy and sell signals

> Probability of positive return for buy and sell signals
> Mean return of a portfolio which both buys and sells
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the difference of the mean buy and mean sell from the unconditional 1-day mean, and buy-sell
from zero. “Buy > 0” and “Sell > 0” are the fraction of buy and sell returns greater than zero.
The last row reports averages across all 10 rules. Results for subperiods are given in Panel B.

Panel A: Full Sample

Period Test

N(Buy) N(SelD)

Buy Sell

Buy > 0 Sell > 0 Buy-Sell

1897-1986 (1,50, 0)

(1,50, 0.01)
(1,150, 0)
(1, 150,0.01)
(5,150,0)
(5,150,0.01)
(1,200, 0)
(1,200,0.01)
(2,200, 0)
(2,200,0.01)

Average

14240

11671

14866

13556

14858

13491

15182

14105

15194

14090

10531

8114

9806

8534

9814

8523

9440

8450

9428

8442

0.00047 —0.00027
(2.68473) (—3.54645)
0.00062 —0.00032
(3.73161) (—3.56230)
0.00040  —0.00022
(2.04927) (—3.01836)
0.00042 —0.00027
(2.20929) (—3.28154)
0.00037 —0.00017
(1.74706) (—2.61793)
0.00040  —0.00021
(1.97876) (—2.78835)
0.00039 —0.00024
(1.93865) (—3.12526)
0.00040  —0.00030
(2.01907) (—3.48278)
0.00038  —0.00023
(1.87057) (—3.03587)
0.00038 —0.00024
(1.81771) (—3.03843)
0.00042 —0.00025

0.5387

0.5428

0.5373

0.5402

0.5368

0.5382

0.5358

0.5384

0.5351

0.5368

0.4972

0.4942

0.4962

0.4943

0.4970

0.4942

0.4962

0.4924

0.4971

0.4949

0.00075
(5.39746)
0.00094
(6.04189)
0.00062
(4.39500)
0.00070
(4.68162)
0.00053
(3.78784)
0.00061
(4.05457)
0.00062
(4.40125)
0.00070
(4.73045)
0.00060
(4.26535)
0.00062
(4.16935)
0.00067
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the sample. Numbers in parentheses are standard ¢-ratios testing the difference of the mean buy

and mean sell from the unconditional 1-day mean, and buy-sell from zero. “Buy > 0” and
“Sell > 0” are the fraction of buy and sell returns greater than zero. The last row reports
averages across all 10 rules.

Test N(Buy) N(Sel) Buy Sell Buy >0 Sell >0 Buy-Sell

1,50,0) 340 344 0.0029 —0.0044 0.5882 0.4622 0.0072
(0.5796)  (—3.0021) (2.6955)

1,50,0.01) 313 316 0.0052 —0.0046 0.6230 0.4589 0.0098
(1.6809) (—3.0096) (3.5168)

1,150,0) 157 188 0.0066 —0.0013 0.5987 0.5691 0.0079
(1.7090)  (—1.1127) (2.0789)

(1, 150,0.01) 170 161 0.0071 —0.0039 0.6529 0.5528 0.0110
(1.9321) (-1.9759) (2.8534)

(5,150,0) 133 140 0.0074 —0.0006 0.6241 0.5786 0.0080
(1.8397)  (—-0.7466) (1.8875)

5,150,0.01) 127 125 0.0062 —0.0033 0.6614 0.5520 0.0095
(1.4151) (—1.5536) (2.1518)

(1, 200, 0) 114 156 0.0050 —0.0019 0.6228 0.5513 0.0069
(0.9862) (-1.2316) (1.5913)

(1, 200, 0.01) 130 127 0.0058 ~0.0077 0.6385 0.4724 0.0135
(1.2855)  (—2.9452) (3.0740)

(2,200,0) 109 140 0.0050 —-0.0035 0.6330 0.5500 0.0086
(0.9690) (-1.7164) (1.9092)

(2,200,0.01) 117 116 0.0018 —0.0088 0.5556 0.4397 0.0106
(0.0377)  (~3.1449) (2.3069)

Average 0.0053 —0.0040 0.0093




generate a signal. "/V{buy)” and "/V(5ell)” are the number of buy and sell signals reported during
the sample. Numbers in parentheses are standard ¢-ratios testing the difference of the mean buy
and mean sell from the unconditional 1-day mean, and buy-sell from zero. “Buy > 0” and

“Sell > 0” are the fraction of buy and sell returns greater than zero. The last row reports
averages across all 6 rules.

Test N(Buy) N(Sell) Buy Sell Buy>0 Sell>0 Buy-Sell
(1,50, 0) 722 415 0.0050 0.0000 0.5803 0.5422 0.0049
(2.1931)  (—0.9020) (2.2801)
(1,50,0.01) 248 252 0.0082 —0.0008 0.6290 0.5397 0.0090
(2.7853)  (—1.0937) (2.8812)
(1,150,0) 512 214 0.0046 —0.0030 0.5762 0.4953 0.0076
(1.7221)  (—1.8814) (2.6723)
(1,150,0.01) 159 142 0.0086 —0.0035 0.6478 0.4789 0.0120
(2.4023) (—1.7015) (2.9728)
(1,200,0) 466 182 0.0043 —0.0023 0.5794 0.5000 0.0067
(1.4959) (-1.4912) (2.1732)
(1,200,0.01) 146 124 0.0072 —-0.0047 0.6164 0.4677 0.0119
(1.8551) (—1.9795) (2.7846)
Average 0.0063 —0.0024 0.0087
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The Standard Forecasting Model

= Standard forecasts are also popular for predicting economic variables
= Generically expressed

Vert = Bo + Xep + €11
X, is a 1 by k vector of predictors (k = 1 is common)

Includes both exogenous regressors such as the term or default premium
and also autoregressive models

= Forecasts are i1t
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The forecast combination problem

= Two level of aggregation in the combination problem

1. Summarize individual forecasters’ private information in point forecasts
Vewhiilt
» Highlights that “inputs” are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure C (yt+h|t,wt+h|t)

= Obvious competitor is the “super-model” or “kitchen-sink” - a model built
using all information in each forecasters information set

= Aggregation should increase the bias in the forecast relative to SM but may
reduce the variance

= Similar to other model selection procedures in this regard
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se the “Super Model”

Could consider pooling information sets
Ft = U e

= Would contain all information available to all forecasters
= Could construct consensus directly C (]-'f; 0t+h|t)
= Some reasons why this may not work

> Some information in individuals information sets may be qualitative, and so
expensive to quantitatively share

> Combined information sets may have a very high dimension, so that finding the
best super model may be hard

- Potential for lots of estimation error

= (Classic bias-variance trade-off is main reason to consider forecasts
combinations over a super model

» Higher bias, lower variance
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Linear Combination under MSE Loss

= Models can be combined in many ways for virtually any loss function
= Most standard problem is for MSE loss using only linear combinations
= | will suppress time subscripts when it is clear that it is t + h|t

= Linear combination problem is

minE [¢?] = E [(th - W’i')z}

= Requires information about first 2 moments of he joint distribution of the
realization y.,; and the time-t forecasts ¥

312115 )
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Linear Combination under MSE Loss

= The first order condition for this problem is

= —Uyly + Uy W + TgyW — Sy = 0
= The solution to this problem is

w = (yyyg, + ZW> - (Zyg, + ,uyug,)

= Similar to the solution to the OLS problem, only with extra terms since the
forecasts may not have the same conditional mean
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Linear Combination under MSE Loss

= Can remove the conditional mean if the combination is allowed to include a
constant, w,

We = Uy —w*yg,
*

_ —1
W = EW ZW

= These are identical to the OLS where w, is the intercept and w* are the
slope coefficients

= The role of w, is the correct for any biases so that the squared bias term in
the MSE is 0
MSE [e] = B[e]* + V[e]
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Understanding the Diversification Gains

= Simple setup
e1 ~Fi(0,01), es~F,(0,03), Corrler, e2] = p, Covleres] = 01z

= Assume o3 < o2
= Assume weights sum to 1 so that w; = 1 — wy (Will suppress the subscript
and simply write w)
= Forecast error is then
y—wy —(1-=w)y,
= Error is given by
e“=we;+(1 —w)ey

= Forecast has mean 0 and variance

wiol+(1—wiol+2w(l —w)or
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Understanding the Diversification Gains

= The optimal w can be solved by minimizing this expression, and is

2 2
Oy — 012 01— 012

W*:— 1—W*:—
o?+ok 201, o?+03 201,

Intuition is that the weight on a model is higher the:

> Larger the variance of the other model
» Lower the correlation between the models

1 weight will be larger than 1 if p > g—j
Weights will be equal if o1 = o for any value of correlation

> Intuitively this must be the case since model 1 and 2 are indistinguishable

from a MSE point-of-view
» When will “optimal” combinations out-perform equally weighted combinations?

Any time o1 # 03

= If p =1 then only select model with lowest variance (mathematical
formulation is not well posed in this case)

86/180



Constrained weights

= The previous optimal weight derivation did not impose any restrictions on
the weights

= |n general some of the weights will be negative, and some will exceed 1
= Many combinations are implemented in a relative, constrained scheme

minE [e*] =E {()’ml - w’?)z} subject tow’t = 1

= The intercept is omitted (although this isn’t strictly necessary)

If the biases are all 0, then the solution is dual to the usual portfolio
minimization problem, and is given by

-1
W = ZWL

/ —1
LEWL

= This solution is the same as the Global Minimum Variance Portfolio
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Combinations as Hedge against Structural Breaksoxrorp

= One often cited advantage of combinations is (partial) robustness to
structural breaks

= Best case is if two positively correlated variables have shifts in opposite
directions

= Combinations have been found to be more stable than individual forecasts

> This is mostly true for static combinations
> Dynamic combinations can be unstable since some models may produce large
errors from time-to-time
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Weight Estimation

= All discussion has focused on ‘optimal” weights, which requires information
on the mean and covariance of both y;,, and Y,

> This is clearly highly unrealistic
= |n practice weights must be estimated, which introduces extra estimation
error

= Theoretically, there should be no need to combine models when all
forecasting models are generated by the econometrician (e.g. when using
F)
= |n practice, this does not appear to be the case
» High dimensional search space for “true” model
> Structural instability

> Parameter estimation error
> Correlation among predictors

Clemen (1989): “Using a combination of forecasts amounts to an admission
that the forecaster is unable to build a properly specified model”
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Weight Estimation

= Whether a combination is needed is closely related to forecast
encompassing tests

= Model averaging can be thought of a method to avoid the risk of model
selection

> Usually important to consider models with a wide range of features and many
different model selection methods

= Has been consistently documented that prescreening models to remove the
worst performing is important before combining

= One method is to use the SIC to remove the worst models
» Rank models by SIC, and then keep the x% best
= Estimated weights are usually computed in a 3rd step in the usual procedure

> R: Regression

> P: Prediction

» S: Combination estimation
»T=P+R+S

= Many schemes have been examined
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Weight Estimation

= Standard least squares with an intercept

N
Yeeh = Wo + W Vein|t + €r4hn

= | east squares without an intercept

Ye+n = W/?t+h|t t €tvh
= Linearly constrained least squares
n—1
Yerh = Yerhnje = Z Wi (Veehile — Jeehnie) + e
i=1
> This is just a constrained regression where >~ w; = 1 has been implemented
wherew, =1 - 3" 'w;
> Imposing this constraint is thought to help when the forecast is persistent

C / !
€tine = —Wo + (1 - W '«) Yeeh + W €pipt

> e are the forecasting errors from the n models
> Only matters if the forecasts may be biased
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Weight Estimation

= Constrained least squares

Yerh = W¥en)e + €0 SUbject to w'e=1, w; > 0

> This is not a standard regression, but can be easily solved using quadratic
programming (MATLAB quadprog)

= Forecast combination where the covariance of the forecast errors is
assumed to be diagonal

> Produces weights which are all between 0 and 1
» Weight on forecast i is

S

Wi =

L
S~

> May be far from optimal if p is large
» Protects against estimator error in the covariance
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Weight Estimation

= Median
> Can use the median rather than the mean to aggregate
> Robust to outliers
» Still suffers from not having any reduction in parameter variance in the actual
forecast

= Rank based schemes
> Weights are inversely proportional to model’s rank

—1
Rt+h,i|t

;1:1 Rt;;l,ilt
> Highest weight to best model, ratio of weights depends only on relative ranks
> Places relatively high weight on top model
= Probability of being the best model-based weights
> Count the proportion that model i outperforms the other models

T
T 0yl [L (ecsnie) <L (ecnjie)]
t=1

w; =

Dt+hit

n
c _ ~
Yerne = Zthrh,i\t.VtJrh,ﬂt
i=1
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Broad Recommendations

= Simple combinations are difficult to beat

> 1/n often outperforms estimated weights
» Constant usually beat dynamic
> Constrained outperform unconstrained (when using estimated weights)
= Not combining and using the best fitting performs worse than combinations
- often substantially

= Trimming bad models prior to combining improves results

Clustering similar models (those with the highest correlation of their errors)
prior to combining leads to better performance, especially when estimating
weights

> Intuition: Equally weighted portfolio of models with high correlation, weight
estimation using a much smaller set with lower correlations

= Shrinkage improves weights when estimated
= |f using dynamic weights, shrink towards static weights
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Equal Weighting

= Equal weighting is hard to beat when the variance of the forecast errors are
similar
= |f the variance are highly heterogeneous, varying the weights is important
> If for nothing else than to down-weight the forecasts with large error variances
= Equally weighted combinations are thought to work well when models are
unstable
» Instability makes finding “optimal” weights very challenging
= Trimmed equally-weighted combinations appear to perform better than
equally weighted, at least if there are some very poor models

» May be important to trim both ‘good” and “bad” models (in-sample
performance)

- Good models are over-fit
- Bad models are badly mis-specified
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Shrinkage Methods

Linear combination
yf+h|t =W ¥rine
Standard least squares estimates of combination weights are very noisy

Often found that “shrinking” the weights toward a prior improves
performance

Standard prior is that w; = 1

However, do not want to be dogmatic and so use a distribution for the
weights

Generally for an arbitrary prior weight wy,
w72 ~ N (wo, )

N is a correlation matrix and 72 is a parameter which controls the amount of
shrinkage
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Shrinkage Methods OXFOF

= | eads to a weighted average of the prior and data

Ala A

_ asa —1
W= (+979) (2w +9IW)
= W is the usual least squares estimator of the optimal combination weight
= If N is very large compared to y'y = Zthl yt+h|ty;+h|t then w =~ wy
= On the other hand, if y'y dominates, then w ~ W
= Other implementation use a g-prior, which is scalar

W= (g9 +Y'9) " (89'IWo+Y'IW)

= Large values of g > 0 least to large amounts of shrinkage
= 0 corresponds to OLS

Wt
W=Wor 9%
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Inference for Many Forecasts

= Six papers:

> White, H. ‘A reality check for data snooping”. Econometrica

» Hansen, P. “A Test for Superior Predictive Ability”. JBES

> Sullivan, Timmermann & White. “Data-Snooping, Technical Trading Rule
Performance, and the Bootstrap”. Journal of Finance

» Romano & Wolf. “Stepwise Multiple Testing as Formalized Data Snooping”.
Econometrica

» Hansen, Lunde & Nason. “The Model Confidence Set”. Econometrica

» Bajgrowicz & Scaillet. “Technical trading revisited: false discoveries,
persistence tests and transaction costs”. Journal of Financial Economics
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Diebold-Mariano-West

= The Diebold-Mariano-West test examines whether two forecasts have equal
predictive ability

DMW tests are all based on the difference of two loss functions
o0r=L (}’Hh;yﬁh“) -L ()’Hh,f’ah“)

= The test statistic is based on the asymptotic normality of § = P~! ZtT:RH Ot
If P/R — 0 then

VP (5 —E[6]) % N (0,0?)

= g2 isthe long-run variance, that is

o’=1lim Vv
P—oo

T
p-i 3 5t]

t=R+1

= Must account for autocovariances, so a HAC estimator is used (Newey-West)
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DMW with the Bootstrap

= Alternatively could estimate the variance using the bootstrap

= For example, the stationary bootstrap could be used as long as the window
length grows with the size of the evaluation sample

= To implement the stationary bootstrap, the loss differentials would be
directly re-sampled to construct 6; forb=1,...,B

= The variance would then be computed as

The test statistic is then

» Note: the +/P term is implicit in the denominator since o2 will decline as the
sample size grows (G35 ~ 6%/P)

100/ 180



DMW using percentile method

= Alternatively, inference could be made using the percentile method

= To implement the percentile method, it is necessary to enforce the null
Hy:E[6:]=0

= This can be done by re-centering the loss differentials around the average
in the data: 6; = 6; — 6

» The centered loss differentials §; could then be re-sampled to compute an
estimate of the average loss-differential 6;,

= Inference using the percentile method would be based on the empirical
frequency where 6 < 6; or 6 > 6;,
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DMW using percentile method

= Since the test is 2-sided||

2xBIZB:1[

b=1

53| < 15|

> If many of the re-sampled centered means are less then §, then the loss

differential does not appear large
> If few of the re-sampled centered means are less than &, then the loss

differential appears large

= Since the distribution is asymptotically normal, there is no need to use the
percentile method since the bootstrap t-stat is simple to construct
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Reality Check

The Reality Check extends DMW to testing for Superior Predictive Ability (SPA)

Tests of SPA examine whether a set of forecasting models can outperform a
benchmark

= Suppose forecasts were available for m forecasts,j=1,...,m

= The vector of loss differentials relative to a benchmark could be constructed
as A A
L (YI+h,¥t+h,BM|t) - L (Yt+h,)’t+h,1|t)
L (Yerhs Veenmmie) — L (Verhs Jeen21e)
t — .
L (Yerhs Jeenamie) — L (Veehs Ieehmye)
® VernBume IS the loss from the benchmark forecast
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Asymptotic distribution in the RC

= Under similar arguments as in Diebold & Mariano and West,
VP (5 -E[5]) LN (O,
= ¥ is the asymptotic covariance matrix of the average loss differentials

p? 3 1
Zzﬁt

t=R+1

Y= 1limV
P—oo

= This looks virtually identical to the case of the univariate DMW test
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Hypotheses of SPA

= |f the benchmark model is as good as the other models, then the mean of
each element of 6, should be 0 or negative

» These are losses, so if the BM is better, then its loss is smaller then the loss
from the other model

= A total of m models
= The null in a test of SPA is

Hy: max (E[6j]) <0

= Note: If no models are statistically better than the benchmark, then there is no
point in implementing the RC
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Examples of SPA: MSE

= The standard example is for comparing models using MSE (or MAE, or
similar)

N N 2
L (Yest Vesnjie) = (Yeeh — Jeaijie)
= The vector of loss differentials is then

(Yt+h - yt+h,BM\t)§ - ()’t+h - yt+h,1\t)§

5. = (Yt+h - yt+h,BM\t) - (.Vt+h - yt+h,2\t)
t= .

(Yt+h - S’t+h,BM\t)2 - (Yt+h - yt+h,m|t)2

= This is the simplest form of an SPA test
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Examples of SPA: Return Predictability

= SPA can also be used to test whether the returns of a set of trading models
are equal

= In this case the “loss” function is the negative of the return from the strategy

L (Yesh Yesnjie) = —In (1 +YeenS (Jenjie) )

= S (Jt+hjjc) is a signal which indicates the size of the portfolio

> Vein IS the holding period return of the asset
> Could be -1, 0, 1 for short, out, long strategies
> Jeenjie is the input for the signal function, e.g. a Moving Average Oscillator

= The vector of loss differentials is then

In (1 + YesnS (5’t+h,1|t)) —In (1 + Ye+nS (5’t+h,BM|t))
o= :
In (1 + Ye+nS (5’t+h,m\t)) —In (1 + YesnS (5’t+h,BM|t))

= The benchmark could be a simple strategy, e.g. buy-and-hold (S(-) = 1)

= Ultimately the “loss differential” is the difference between the returns of a
set of strategies and the benchmark strategy
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Example: Predictive Likelihood

= SPA can be used to test distribution fit
= The loss function is just the negative of the likelihood

L (Yest Vesnjie) = =1 Vesn|Vesnjie)

> Jienjie CONtains any time-t information needed to compute the log-likelihood

= The vector of loss differentials is then

i (Yeshleene) — Iave (Vesn|Venamie)
Iy (Yesh|een2ie) — Iave (Vesn|Vesnmmie)

L (Ve |Sernmie) — I (Vesn[Jenmme)

The benchmark could be a simple strategy, e.g. buy-and-hold (S(-) = 1)

Ultimately the differential is just the difference between the returns of a set
of strategies and the benchmark strategy
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Example: a from a multifactor model

= Suppose you were interested in testing for excess performance

Usual APT type regression

ré

— . / .
=0+ Ep e

The “benchmark a” is 0 - the test is implemented directly on the estimated
as

= Loss function is just —a (negative excess performance)
= The vector of loss differentials is then

rit—f{fh ay+ €1
5[ = X = :
rfn,t - ft/ﬁm
= Used to test fund manager skill

dm + ém,t
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Implementing the Reality Check

= The Reality Check is implemented using the P by m matrix of loss
differentials

» P out-of-sample periods
> m models

= The original article describes two methods

» Monte Carlo Reality Check
> Bootstrap Reality Check

= |n practice, only the Bootstrap Reality Check is used

The distribution of the maximum of normals is not normal, and so only the
percentile method is applicable
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Algorithm (Bootstrap Reality Check)

1. Compute TR¢ = max (6)

2. Forb=1,...,B re-sample the vector of loss differentials 6, to construct a
bootstrap sample {5{,_t} using the stationary bootstrap

3. Using the bootstrap sample, compute

T
T;R¢ = max (P‘l > by, - 3)

t=R+1

4. Compute the Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

b
p —value =B~ "I [T;*¢ > T
b=1
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Intuition

= The bootstrap means are like draws (simulation) from the asymptotic
distribution N (0, %)
= Taking the maximum of these draws simulates the distribution of a set of
correlated normals
= Each bootstrap mean is centered at the sample mean
> This is known as using the Least Favorable Configuration (LFC) point
> Simulation is done assuming any model could as good as the benchmark
= Since the asymptotic distribution can be simulated, asymptotic critical
values and p-values can be constructed directly
= The Monte Carlo Reality Check works by first estimating X using a HAC
estimator, and then simulating random normals directly
» MCRC is equivalent to BRC, only requires estimating:

- A potentially large covariance is m is big
- The Choleski decomposition of this covariance
- Bdrawn from this Choleski
> In practice, m may be so large that the covariance matrix won'’t fit in a normal
computer’s memory
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= The original formulation had

rit—f{ﬁ1 a1+ €1t
0: = . = .

rlc;l,t _'ft/[}m
= Alternatively distribution could be built up by directly re-sampling the
returns and factors jointly

am + ém,t

.....

cross-sectional regression in each bootstrap

= Reality check allow for parameter estimation error as long as
(P/R)InInR — 0 which is similar to P/R — 0

= Also works if P/R — oo, in which case it is essential to re-sample returns
and factors and re-estimate f3;, in each bootstrap
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Application in Original Paper

= The original paper is applied to the BLL-type trading rules
= Used S&P 500 rather than DJIA
= Constructed 4 types of trading rule primitives:

» Momentum measures: (p; — p;—;j) /p.—; forj € {1,...,11} (11 rules)

» Trend: p,j = a+ f (m — i) + ¢ for m € {5,10, 15, 20} day periods (4 rules)

» Relative strength: 771 320 T [(Pe—i — Pe—i—1) > 0] for T € {5,10, 15,20} (4
rules)

» Moving average oscillator for fast speeds of {1, 5, 10, 15} and slow speeds of
(5,10, 15,20} (10 rules)

- Note: Slow has to be strictly longer than fast, so a total of 4 + 3+ 2 + 1 = 10 rules

= All combinations of 3 of these 29 variables were fed into a linear regression
to produce forecasts

et = B+ BoXir + BsXir + PaXpr + €441

» Fori,j, ke {1,...,29} without repetition, so 39C3 = 3654 rules
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Application in Original Paper

= Benchmark is a model which includes only a constant
Ter1 = P11+ €
= Models compared in terms of MSE
L (yert, Jer11e) = (Ver1 — Bo — Buixie — Paxie — /33?(1<,t)2
= Models also compared in terms of directional accuracy
L (Yt+1:yt+1|t) =-1 [Yt+1 (/30 + ﬁlxi,t + ﬁZXj,t + ﬁsxk,t) > 0]
» The negative is used to turn a ‘good” (same sign) into a “bad”

> Modification allows application of RC without modification since null is
Hp : max (E [6;,]) <0
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MSE Differential
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= Negative MSE differential plotted (higher is better)
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Sign Prediction OXFORD

REALITY CHECK RESULTS: DIRECTIONAL ACCURACY PERFORMANCE

Best predictor variables: Z, 13, Z,; 14, Z, 2

Best
Experiment Benchmark
Percent Correct 54.7493 50.7916
Difference in Prediction Directional Accuracy: .0396
Bootstrap Reality Check p-value: 2040
Naive p-value: .0036
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Sign Prediction OXFORD
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s Test of SPA

= Hansen (2005, JBES) provided two refinements of the RC

1. Studentized loss differentials
2. Omission of very bad models from the distribution of the test statistic

= From a practical point-of-view, the first is a very important consideration
= From a theoretical point-of-view, the second is the important issue

» The second can be ignored if no models are very poor
> This may be difficult if using automated model generation schemes
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Studentization of Loss Differentials

= The RC uses the loss differentials directly

= This can lead to a loss of power if there is a large amount of cross-sectional
heteroskedasticity

= Bad, high variance model can mask a good, low variance model

= The solution is to use the Studentized loss differential

= The test statistic is is based on

T = max /

j=1,...m \/@

= (DIZ is an estimator of the asymptotic (long-run) variance of §;
P—-1
af =70 +2) kit
i=1
> 7jiis the i™ sample autocovariance of the sequence {0j+}
» k=25 (1= 1) 4+ 1 (1= )" where wis the window length in Stationary
Bootstrap)

) N2
= Alternatively use bootstrap variance cblz = %Zle ( bj — 5;)
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Studentized SPA

1. Estimate &} and compute T;™ = max (5 /4 @} /P)

2. Forb=1,...,B re-sample the vector of loss differentials &, to construct a bootstrap
sample {6}, } using the stationary bootstrap

3. Using the bootstrap sample, compute

p! ZtT=R+1 i*,b,t - 51'
\ /c?)iZ/P

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

T;5 = max

b
p—value=B""Y "I [T,ﬁPA > T,fPA]
b=l
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The u in T5™is for upper

= The U is included to indicate that the p-value derived using the LFC may not be the
best p-value

= Suppose the some of the models have a very low mean and a high standard
deviation

= |n the RC and SPA-U, all models are assumed to be as good as the benchmark
= This is implemented by always re-centering the bootstrap samples around &;

= |f a model is rejectably bad, then it may be possible to improve the power of the
RC/SPA-U by excluding this model

= This is implemented using a “pre-test” of the form

Q]l

I'=1, I = /> _+2InlnP, I,-l=5,->0

\J@2/P

> The first (c for consistent) tests whether the standardized mean loss differential
is greater than a HQ-Llike lower bound

> The second (L for lower) only re-centers if the loss-differential is positive (e.g.
the benchmark is out-performed)
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General SPA

Algorithm (Test of SPA)

1. Estimate &} and compute T** = max (5 /4 @} /P)

2. Forb=1,...,B re-sample the vector of loss differentials &, to construct a bootstrap
sample {6}, } using the stationary bootstrap

3. Using the bootstrap sample, compute

p! ZZ;RH e — 50
o /“31‘2/})

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

T;f,PA = max , s=1Lcu

b
p — value = B! ZI [T;iPA > TSPA] . s=lLuc
pat
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Comments on SPA

= The three versions only differ on whether a model is re-centered

= |f a model is not re-centered, then it is unlikely to be the maximum in the
re-sample distribution

» This is how “bad” models are discarded in the SPA
= Can compute 6 different p-values statistics

» Studentized or unmodified
> Indicator functionin,c,u

- Test statistic does not depend on [, ¢, u, only p-value does
= Reality Check uses unmodified loss differentials and u
= |n practice Studentization beings important gains

= Using c is important if using SPA on large universe of automated rules if
some may be very poor
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370 Journal of Business & Economic Statistics, October 2005

Hansen: A Test for Superior Predictive Ability
R whereas the idea of Hansen (2003) is to take the supremum
These are easnly obtained using the *estimators” A' and fover asmaller (confidence) set chosen such that it contains the
given by iy = min(dy,0) and A =0, k=1,...,m, whefgye parameter with a probability that converges to 1. In this
the Ianer y|e|ds the LFC-based test. It is smple to verify thgticle, we use aclosely related procedure based directly on the
ji < a° < i, which in part motivates the superscripts, and wesymptotic distributions of Theorem 1 and Corollary 1.
have the following result, where Fo is the cdf of ¢(Z, vo) that In the preceding section, we saw that the poor alternatives
we defined in Theorem 1. are irrelevant for the asymptotic distribution. So a proper test
i 1/2i should reduce the influence of these models while preserving
Theorem 21/I2_e‘|': bethe adf of p(n'/2Z;, V), for i =1, ?helnfl uence of the modelswith pk = 0. It may be tempting to
or u, where n*/4(Z;, — ju') - Nin(0, 9. Suppose that ASSUMRy mply exclude the alternatives with di < O from the analysis.
tions 1 and 2 hold; lhen F§ — Foasn— oo, for al w”t'”u'%utthlsapproach doesnot lead to valid inferencein general, be-
points of Fo and Fj,(x) < FC(X) < Fa(0 forall nand all X € Regyge the modelsthat are (or appear to be) alittleworsethan the
Theorem 2 demonstrates that ji¢ leads to a consistent egPenchmark can have a substantial influence on the distribution
mate of the asymptotic distri butlon of our test statistic. The théaf the test statistic in finite samples (and even asymptotically
orem also demonstratesthat i Il« and 2" provide upper and low 1k = 0). So we construct our test in away that incorporates
bound for the distribution FS that can be useful in practice; fﬁl models, while reducing the influence of aternatives that the
example, a substantial difference between these bounds is i lata siggest are poor.
dicative of the presence of poor aternatives, in which case th?
sample-dependent null distribution is useful.

Our choice of estimator, fi°, is motivated by the law of the
ated logarithm stating that

nmarb‘

i=1lcu ad the foIIovvl ng corollary demonstrates that to the larger critical value Cpc.

ields a consistent p value. /2(qy —
aner%anva in the analypss Naturally, we would want to avoid P(Iimwpw =+,/2loglogn
3.

such propedlies yo theGarantigostiel studentized test statistic, t =
Baisethe testipati stets theveaginipebtie disttieUPRes fhoe irFhe first equATBRMBRRIQR &Rﬁﬂ)@? %{:‘h&kﬂ‘éf the

depefwired framd RE, thess erEfit)sanes narametens foheitradi Theslemenys of ch tha AR Tyle
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© — & WHIER leads tdhe critical value Cspa. In cortrast, the RC fails to
&Mﬁ&tfﬁwoaﬂ)’em mate of F }1 re/ecl the null hypothesis, because the LFC-based null distribution leads
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Application of RC to Technical Trading Rules

= Sullivan, Timmermann and White (1999) apply the RC to a large universe of
technical trading rules

Rules include:

> Filter Rules

» Moving Average Oscillators

> Support and Resistance

» Channel Breakout

» On-balance Volume Averages

- Tracks volume times return sign
- Similar to Moving Average rules for prices

Total of 7,846 trading rules

= Only use 1 at a time

Use DJIA as in BLL, updated to 1996

= Consider mean return criteria and Sharpe Ratio
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sample periods. Results are provided for both the Brock, Lakonishok, and LeBbaron (BLL) unive
of rules. The table reports the performance measure (i.e., the annualized mean return) along w
p-value. The nominal p-value results from applying the Reality Check methodology to the bes
the data-snooping.

BLL Universe of Trading Rules

Sample Mean Return White’s p-Value  Nominal p-Value M

In-sample

Subperiod 1 (1897-1914) 9.52 0.021 0.000

Subperiod 2 (1915-1938) 13.90 0.000 0.000

Subperiod 3 (1939-1962) 9.46 0.000 0.000

Subperiod 4 (1962-1986) 7.87 0.004 0.000

90 years (1897-1986) 10.11 0.000 0.000

100 years (1897-1996) 9.39 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 8.63 0.154 0.055

S&P 500 Futures (1984-1996) 4.25 0.421 0.204




Mean Return Performance Expanded

Full Universe of Trading Rules

Sample Mean Return  White’s p-Value  Nominal p-Value

In-sample

Subperiod 1 (1897-1914) 16.48 0.000 0.000

Subperiod 2 (1915-1938) 20.12 0.000 0.000

Subperiod 3 (1939-1962) 25.51 0.000 0.000

Subperiod 4 (1962-1986) 23.82 0.000 0.000

90 years (1897-1986) 18.65 0.000 0.000

100 years (1897-1996) 17.17 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 14.41 0.341 0.004

S&P 500 Futures (1984--1996) 9.43 0.908 0.042
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RC based on Sharpe Ratio

= From any strategy it is simple to compute the Sharpe Ratio

_ T -
_ p! Et:R+1 Tl — Ifeel
T -~ =2
\/FF1 >terst (P = F)

The strategy return is e = oS (§je1)¢)

SR

» 7 is the mean of the strategy return
® Iyt IS the risk-free rate
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RC based on Sharpe Ratio

= The bootstrap can be used to compute a bootstrap version of the same rule
by jointly re-sampling {71, 7741}
= The bootstrap Sharpe Ratio is then

a
SR, = ——
b
Vb —c?
T
1 -
a = P71 Py b
t=R+1
T
_ p-1 -2
b = P Z bt+1
t=R+1
T
-1 -~
c = P'Y T
t=R+1

= The SR can be computed for all models
= The RC can then be applied to the (negative) SR, rather than the (negative)
return
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universe of rules. The table reports the performance measure (i.e., the Sharpe ratio) along wi
p-value. The nominal p-value results from applying the Reality Check methodology to the bes
the data-snooping.

BLL Universe of Trading Rules

Sample Sharpe Ratio = White’s p-Value = Nominal p-Value S}

In-sample

Subperiod 1 (1897-1914) 0.51 0.147 0.016

Subperiod 2 (1915-1938) 0.51 0.037 0.000

Subperiod 3 (1939-1962) 0.79 0.000 0.000

Subperiod 4 (1962-1986) 0.53 0.051 0.003

90 years (1897-1986) 0.45 0.000 0.000

100 years (1897-1996) 0.39 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 0.28 0.721 0.127

S&P 500 Futures (1984-1996) 0.23 0.702 0.165




Sharpe Ratio Performance: Expanded

Sample

Full Universe of Trading Rules

Sharpe Ratio

White’s p-Value

Nominal p-Value

In-sample
Subperiod 1 (1897-1914)
Subperiod 2 (1915-1938)
Subperiod 3 (1939-1962)
Subperiod 4 (1962-1986)
90 years (1897-1986)
100 years (1897-1996)

Out-of-sample
Subperiod 5 (1987-1996)
S&P 500 Futures (1984-1996)
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0.76
2.18
1.41
0.91
0.82

0.87
0.66

0.000
0.056
0.000
0.000
0.000
0.000

0.903
0.987

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000



Stepwise Multiple Testing

= The main issue with the Reality Check and the Test for SPA is the null
= These tests ultimately test one question:

> |s the largest out-performance consistent with a random draw from the
distribution when there are not superior models to the benchmark?

= |f the null is rejected, only the best performing model can be determined to
be better than the benchmark
» What about the 2nd best model? Or the k™ best model?

= The StepM extends that reality check by allowing individual models to be
tested

= |t is implemented by repeatedly applying a RC-like algorithm which controls
the Familywise Error Rate (FWE)
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Basic Setup

= The basic setup is identical to that of the RC/SPA

= The test is based on &;¢ = L (Vein, Jesnpmie) — L (Vern Jesnjie)
= Can be used in the same types of tests as RC/SPA

> Absolute return

» Sharpe Ratio

> Risk-adjusted a comparisons
MSE/MAE

» Predictive Likelihood

v

= Can be implemented on both raw and Studentized loss differentials
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Null and Alternative Hypotheses

= The null and alternatives in StepM are not a single statement as they were
in the RC/SPA

= The nulls are
Hyj:E[0,]<0, j=1,...,m

= The alternatives are
Hl,i :E[6:]>0, j= 1,...,m

= StepM will ultimately result in a set of rejections (if any are rejected)

= Goal of StepM is to identify as many false nulls as possible while controlling
the Familywise Error Rate
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Familywise Error Rate

Definition (Familywise Error Rate)

For a set of null and alternative hypotheses Hy; and Hy; fori=1,...,m, let Zy
contain the indices of the correct null hypotheses. The Familywise Error Rate is

defined as

Pr (Rejecting at least one Hy; for i € Zy) = 1 — Pr (Reject no Hy; for i € Z)

= The FWE is concerned only with the probability of making at least one Type
| error
= Making 1, 2 or m Type | errors is the same to FWE

> This is a criticism of FWE
> Other criteria exist such as False Discovery Rate which controls the percentage

of rejections which are false (# False Rejection/# Rejections)
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= Bonferoni bounds are the first procedure to control FWER

Definition (Bonferoni Bound)

Let T1, Ty, ..., T, be a set of m test statistics, then

Pr(TyU...U TylHig,...Hno) <Y Pr(Tj|Ho))
- —_———
=% Individual Probability

m
. . =1
Joint Probability

where Pr (Tj|Hy;) is the probability of observing T;given the null Hy; is true.

= Bonferoni bounds are a simple method to test m hypotheses using only
univariate test statistics
Let {pv;} be a set of m p-values from a set of tests
The Bonferoni bound will reject the set of nulls is pv; < a/m for all
> a is the size of the test (e.g. 5%)
= When m is moderately large, this is a very conservative test
» If m =15, all pv; < 1% to reject using 5% size
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Definition (Holm’s Procedure)

Let Ty, Ty, ..., Ty, be a set of m test statistics with associated p-values pv;,
j=1,...,m where itis assumed pv; < py; if i <j. If

pv; < a/ (m—j+1)

then Hy; can be rejected in factor of H; ; while controlling the famliywise error
rate at a.

= Example: p-values of .001, .01, .03, .05, m =4, a = .05

= Improves Bonferoni by ordering the p-values and using a stepwise
procedure

= Allows subsets of hypotheses to be tested - Bonferoni is joint
= Less strict, except when j = 1 (same as Bonferoni)
Note: Holm’s procedure ends as soon as a null cannot be rejected
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Relationships between testing procedures

= The RC/SPA, Bonferoni and Holm are all related

| | Worst-case Dependence | Accounts for Dependence in Data |

Single-step Bonferoni RC, SPA
Stepwise Holm StepM
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Algorithm (StepM)

1. Begin with the active set A ={1,2,...,m}, superior set S = {}
Construct B bootstraps sample {6} .} ,b=1,...,B

W N

For each bootstrap sample, compute T,:ife”M = MaXje 4 {5;”- -0 1'}
Compute qy, as the 1 — a quantile of { T,:ffepM }

If max;jc 4 (6;) < qx,q Stop
Otherwise for each j € A

a. If6; > qu addj to S and delete from A
b. Returnto 2

oy U gn
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Comments

= StepM would be virtually identical to RC if only the largest 51 was tested

= Improves on the RC since (weakly more) individual out-performing models
can be identified

= |f no model outperforms, will stop with none and RC p-value will be larger
than a

= Steps 2-4 are identical to the RC using the models in A
= The stepwise testing can improve power by removing models

» The improvement comes if a model with substantial out-performance also has
large variance
> Removing this model allows the critical value to be reduced

= StepM only guarantees that FWE< @, and in general will be < a

» Willonly = a ifE [5;& =0 forallj
> Example: N (u, 0*) when < 0,Hp: u =0
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Studentization

= |ike the SPA to the RC, the StepM can be implemented using Studentized
loss differentials

= Romano & Wolf argue that the Studentization should be done inside each
bootstrap sample, not globally as in the SPA

= Theoretically both are justified and neither makes a difference
asymptotically

= Computing the variance inside each bootstrap will more closely match the
re-sampled data than when using a global estimate
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Studentized StepM Algorithm

Algorithm denti StepM)
1. Begin with the active set A = {1,2,..., m}, superior set S = {}
. Compute zj = 6;/ cb/.z /P where (D,-z was previously defined

. Construct B bootstraps sample {&},} ,b=1,...,B

A W N

. For each bootstrap sample, compute

5 4,
" bj — 9j

kafepM = maxq 2~
g jeA /‘

5% is an estimate of the long-run variance of the bootstrapped data

where @;
5. Compute d}, 05 the 1 — a quantile of { T SeeM }
6. Ifmaxje 4 (%) < qi, Stop
7. Otherwise for eachj € A

a. Ifzj > q;, addj to S and delete from A
b. Returnto2
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Why Studentization Help

= StepM is built around confidence intervals of the form

(61— qra00] X ... X [6m — qr,ar ]

Null hypotheses are rejected for models where O is not in its confidence
interval

In the raw form, the confidence interval is a square - the same for every
loss differential

= When Studentization is used, the confidence intervals take the form

[51 — w%/Pqﬁ,a,oo} X ... X [Sm - \/mqu{m}

This ‘customization” allows for more rejections if the loss differentials have
cross-sectional heteroskedasticity
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Block-size Selection

= Paper proposes a procedure to make data driven block size
= Basic idea is to use a (V)AR on {§;,} to approximate the dependence
> Similar to Den Hann-Levine HAC

= Fit AR & estimate residual covariance (or use short block bootstrap on
errors)

= Simulate from model

» Forw=1,..., W compute the bootstrap confidence region with size
1 — ausing percentile method

= For each block size, compute the empirical coverage - percentage of
simulated ¢ in their confidence region

» Choose optimal w which most closely matches 1 — «
> Alternative: Use Politis & White
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Empirical Application

= Applied StepM to a set of 105 Hedge Fund Returns with long histories
= Returns net of management fees

= Benchmark model was risk-free rate

= m =105, P = 147 (all out-of-sample)

= Results:

» Raw data: No out-performers

- Max ratio of standard deviation @;/®; = 22

» Studentized: 7 funds identified

Note: Will always identify funds with the largest 6 (or z) first
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Empirical Application

CORRESPONDING HEDGE FUNDS IN OUR EMPIRICAL APPLICATION

X7, — XT,841 Fund (X7,5 = X7,541)/07,5 Fund

1.70 Libra Fund 10.63 Market Neutral*

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage*
1.36 Aggressive Appreciation 8.43 Univest (B)*

1.27 Gamut Investments 6.33 TQA Arbitrage Fund*
1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage*
1.14 FBR Weston 5.29 Gabelli Associates*
1.11 Berkshire Partnership 5.24 Elliott Associates**
1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund

1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust

2The return unit is 1%. Funds identified in the first step are indicated by the superscript * and funds identified
in the second step are indicated by the superscript **.

Y'The risk-free rate is a simple and widely accepted benchmark. Of course, our methods also
apply to alternative benchmarks such as hedge fund indices or multifactor hedge fund bench-
marks; for example, see Kosowski, Naik, and Teo (2005).

27To account for leftover dependence not captured by the VAR (1) model, we use the stationary
bootstrap with average block size b =5 to bootstrap the residuals.
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Improving StepM using SPA

The main step in the StepM algorithm is identical to the RC

The important difference is that the test is implemented for each null,
rather than globally

StepM will suffer if very poor models are included with a large variance

» Especially true for raw version, but also relevant for Studentized version

» Example {g;]ww({_osHé ?D

» Reality Check critical value will be 1.95, while “best” critical value would be
1.645 (since only 1 relevant for asymptotic distribution)

The RC portions of StepM can be replaced by SPA versions which addresses
this problem

Simple as adding in the indicator function II.C when subtracting the mean in
step 3 (step 4 in Studentized version)

Using SPA modification will always find more out-performing models
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Model Confidence Set (MCS

RC, SPA and StepM were all testing superior predictive ability
This type hypothesis is common when there is a natural benchmark

= |[n some scenarios there may not be a single benchmark, or there may more
than one models which could be considered benchmarks

= When this occurs, it is not clear

> How to implement RC/SPA/StepM
» How to make sound conclusions about superior predictive ability

= The model confidence set addresses this problem by bypassing the
benchmark

= The MCS aims to find the best model and all models which are
indistinguishable from the best

> The model with the lowest loss will always be the best - identifying the others
is more challenging

= Also returns p-values for models with respect to the MCS
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Notation Preliminaries

= The outcome of the MCS is a set of models
> ALl model sets will be denoted using M
= The initial model set is My

= The goal is to find M* which is the set of all models which are
indistinguishable from the best

= The output of the MCS algorithm is M\l_a where a is the size of the test

> The size is interpreted as a Familywise Error Rate - same as StepM
> In general M;_, will contain more than 1 model

In between Mg and M\l,a are other sets of models

MODMlD...DM\I—a
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Notation Preliminaries

= To construct the model confidence set, two tools are needed

> An equivalence test da: Determines whether the model in M are equal in
terms of loss

> An elimination rule ex: Determines which model to eliminate if d, finds that
the models are not equivalent

= The generic form of the algorithm, starting at i = 0:

1. Apply da to M;
2. If da rejects equivalence, use eqto eliminate 1 model to produce M; 4
a. If not, stop

3. Increment i, return to 1
= Has a similar flavor to StepM

> Also gains from eliminating models with high variance
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The Model Confidence Set

= When the algorithm ends, the final set /\//\ll_a has the property
lim Pr (M* C /(/l\l,a) >1—-«a
P—oo

= The result follows directly since the FWE is < «a

= If there is only 1 “best” model, then the result can be strengthened

lim Pr (M* C /(/l\lfa) =1

P—oo

» The MCS will find the “best” model asymptotically
» The intuition behind this is that the “best” model will have:
- Lower loss than all other models
- The variance of the average loss differential will decline as P — oo
= When 2 or more models are equally good, there is always a a chance that at
least 1 will be rejected
= |n large samples, models which are not in M* will be eliminated with
probability 1 since the individual test statistics are consistent
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Model Confidence Set

= The MCS takes loss functions as inputs, but ultimately works on loss
differentials

= Since there is no benchmark model, all loss differentials are considered

5ij,t =L (Yt+h»yt+h,i\t) —L (}’t+h,5’t+h,j|t)

= There are many pairs, and so the actual test examines whether the average
loss for model j is different from that of all models

= If §; is sufficiently positive, then model i is worse then the other models in
the set
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Null and Alternative

= The MCS can be based on two test statistics
= Both satisfy some technical conditions on d 4 and e

= The first is based on T' = max;c o (Z;) where z; = 6i/6; and 6? isan
estimate of the (log-run) variance of 6;
> The elimination rule is exq = argmax;c , Zi
= The second is based on Tr = max;je v |Z;j| where Z; = 6;;/6 and & is an
estimate of the (log-run) variance of o;;

> The elimination rule is eg v = argmax;c o4 SUPje a1 Zij
> Eliminate the model which has the largest loss differential to some other
model, relative to its standard deviation

= At each step the null is Hy : M = M* and the alternative is H; : M 2 M*
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Model Confidence Set Setup

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model

T
l_q' =p! Z Lj,t
t=R+1

where Lj, = L (Yt+h»5’t+h,j|t)
3. For each bootstrap replication, compute centered the bootstrap average loss
T

* _ p—1 * T
My =P Y L L
t=R+1
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Algorithm (Model Confidence Set)

1. Being with M = My containing all models where m is the number of models in
M

2. Calculate L=m=" Y21 L, ny =m~' Y22 ., and

2
6} =B S (n;”- - r‘;;) where 7 is the average of n;,; for model j

3. Define T = maxje v (Z;) where zj = Lj/6;
4. For each bootstrap sample, compute
T; = maxie ((Lj; — L3 ) /67) = maxjend ((mj; = 15) /)
5. Compute the p-value of M as p=B~'S°p_ I [T; > T|
6. If D> a stop

7. If p < a, set exq = argmax;c v, () and eliminate the model with the largest
test statistic from M

8. Return to step 2, using the reduced model set
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Comments

= |t is important that the variance estimates are re-computed in each step of
algorithm

This allows the standard errors to decline if poor models are excluded since
the cross-sectional variance of L; should be smaller when a bad model is
dropped

= |n practice the MCS should be implemented by computing in order

1. A set of bootstrap indices
2. The P by m set of bootstrapped losses Lj;,
3. The 1 by m vector containing nj;

= By iterating over these B times only the B by m matrix containing n;vj has to
be retained

> Plus the 1 by m vector containing L;
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Model Confidence P-value

= The MCS can also provide p-values for each model

= |[f model i is eliminated, then the p-value of model i is the maximum of the
p found when model i is eliminated and all previous p-values

= Suppose a = .05, and the first three rounds eliminated models with p of
.01,.04,.02, respectively

= The three p-values would then be:

> .01(nothing to compare against)
> .04 = max(.01, .04)
> .04 = max(.02,.04)

= The output of the MCS algorithm is ﬁ/l\l_a which contains the true set of
best models with probability weakly larger than 1 — «

= This is similar to a standard frequentist confidence interval which contains
the true parameter with probability of at least 1 — «

= The MCS p-value is not a statement about the probability that a model is
the best

» For example, the model with the lowest loss always has p-value = 1
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ence P-value

Table 1: Computation of MCS p-values

Elimination Rule p-value for Hy a, MCS p-value
em, Py, = 0.01 ﬁeM‘ =0.01
eM, Py i, = 0.04 136/\42 =0.04
eM, Py i, =0.02 ﬁfM; =0.04
eMm, Py py, = 0.03 Pep, =0.04
eMs Phg iy = 0.07 1;9/\45 =0.07
eMs Priypig = 0.04 De e = 0.07
e, Py, = 0.11 Per, = 0.11
eMy Py i = 0.25 Pepy, =025

€My PHO,MmU = 1.00 ﬁemmu = 1.00

The table illustrates the computation of MCS p-values. Note that MCS p-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For example, the MCS p-value for e o4, (the third model to
be eliminated) exceeds the p-value for Hy a1, because the p-value associated with Hy a4, — a null hypothesis tested

prior to Hy aqy — is larger.
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Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model L; = P~! ZtT: re1 Lit where
Lt = L (Yeshs Jeshjit)
3. For each bootstrap replication, compute centered the bootstrap average loss

T
7x _ p—1 * T.
L;;=P Z Ly, — I
t=R+1

4. Calculate 5
:B 12 Lbz 1 (LbjiL*))
b=1

where I,]? is the average of L,;J. for the model j across all bootstraps
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Algorithm (Model Confidence Set)

1. Being with M = My containing all models where m is the number of models in
M

2. Define Tp = max;je p (2;) where z; = |L; — Lj| /0

3. For each bootstrap sample, compute Ty, = MaX;jc (

I - L;( /64)
4. Compute the p-value of M as

B
p = B_1 ZI I:Ti;,b > TR]
b=1
5. Ifp > a stop

6. If p < a, set exq = argmax; ,, SUp;jc 4 (Zj) and eliminate the model with the
largest test statistic from M

7. Return to step 2, using the reduced model set
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Comments

The main difference is that the variance is not re-estimated in each iteration

= This happens since Ty is based on the maximum DMW test statistic in each
iteration

> DMW only depends on the properties of the pair

However, the bootstrapped distribution does depend on which models are
included and so this will vary across the iterations

This version of the algorithm requires storing the B by m matrix of ZIT
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Confidence sets for ICs

The MCS can be used to construct confidence sets for ICs
This type of comparison does not directly use forecasts, and so is in-sample
This differs from traditional model selection where only the model with the
best IC is chosen
The MCS for an IC could be used as a pre-filtering mechanism prior to
combining
Implementing the MCS on an IC is slightly more complicated than the
default MCS since it is necessary to jointly bootstrap the vector {yt,xi,t}
where X;; are the regressors in model j
Paper recommends using Ty statistic to compare models using IC
The object of interest is
IC;=TIné} +¢

¢ is the penalty term

> AIC: 2k;, BIC: k;In T

» AIC: 2k, BIC: K InT
k;* is known as effective degrees of freedom (in mis-specified model k* # k)
MCS paper discusses how to estimate k*
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Confidence sets for ICs

= Using Tr MCS construction algorithm, the test statistic is based on

Tr :[%ﬁuﬂn&? +¢| — [TIno? +¢|

= The bootstrap critical values are computed from

Thp = ”ng\y/(t ([TIné# +¢ —Tlne?] - [Tlnérjz* +¢— Tll’l@'iz])

. 61.2* is the variance computed using

X% * B*
€bt = Yoo — XpjtBp,

. /3;] is re-estimated using the bootstrapped data {YZ,pXZ,;‘,t}

= Errors are computed using the bootstrapped data and parameter estimates
= Aside from these changes, the remainder of the algorithm is unmodified
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False Discovery Rate and FWER

= Controlling False Discover Rate (FDR) is an alternative to controlling Family
Wise Error Rate (FWER)

Definition (k-Familywise Error Rate)

For a set of null and alternative hypotheses Hy; and Hy; fori=1,...,m, let Zy
contain the indices of the correct null hypotheses. The k-Familywise Error Rate
is defined as

Pr (Rejecting at least k Hy, for i € Zy) = 1 — Pr (Reject no Hy; for i € Zy)

= kis typically 1, so the testing procedures control the probability of any
number of false rejections

> Type | errors
= The makes FWER tests possibly conservative
> Depends on what the actual intent of the study is
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The False Discovery Rate is the percentage of false null hypothesis relative to
the total number of rejections, and is defined

FDR = F/g

where F is the number of false rejections and R is the total number of rejections.

= Unlike FWER, methods that control FDR explicitly assume that some
rejections are false.

= Ultimately this leads to a (potentially) procedure that might discover more
actual rejections

= For standard DMW-type tests, both FWER and FDR control fundamentally
reduce to choosing a critical value different from the usual +1.96

> Most of the time larger in magnitude
> Can be smaller in the case of FDR when there are many false nulls
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False Discov

= FDR is naturally adaptive
= When the number of false nulls is small (~0), then FDR should choose a
critical value similar to the FWER-based procedures
» R~ F,F/R~ 1soanyF is too large
» On the other hand, when the percentage of false nulls is near 100%, can reject

all nulls

- F=~0,F/R =~ 0andall nulls can be rejected
- Critical value can be arbitrarily small since virtually no tests have small values
- Hypothetically, could have a critical value of 0 if all nulls were actually false

= FDR controls the false rejection rate, and it is common to use rates in the
range of 5-10%

> Ultimately should depend on risk associated with trading a bad strategy

against the cost of missing a good strategy
> Adding a small percentage of near O excess return strategies to a large set of

useful strategies shouldn’t deteriorate performance substantially
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Operationalizing FDR

= Operationalizing FDR requires some estimates

= |n standard trading strategy setup, Hyp : 4 = 0, Hy : u # 0 where u is the
expected return in excess of some benchmark

> Benchmark might be risk-free rate, or could be buy-and-hold strategy
= 77 is the proportion of false nulls

» Estimated using information about the distribution of p-values “near” 1 since
these should all be generated from true nulls
> Entire procedure relies on only p-values

- Similar to Bonferoni or Bonferoni-Holm

» For standard 2-sided alternative

pi=2(1-a(t])

where t; is (normalized) test statistic for strategy i.
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Computing FDR

= where
> ¢ is the target FDR rate
> 7t and an estimate of the percentage of nulls that are true (no abnormal
performance)
~ 1is the number of rules
> 7 is the parameter that is used to find the p-value cutoff
> ZLI I[p; < r]is the number of rejections using y

= The numerator is simply an estimate of the number of false rejections,

which is

Probability of Null True x Number of Hypotheses = Number of True
Hypotheses

Number of False Hypotheses x Cutoff = Number of False that are Rejected
using

= Exploits the fact that under the null p-values have a uniform distribution, so

that if there are M false nulls, then, usini a threshold of i will reject iM



Positive and Negative FDR

= Can further decompose FDR into upper (better) and lower (worse) measures

aftlyy 1aftlyy
I I
YiciIpi<yuv, ti>0] Yt Ipi <y ti<0]
= This version assumes a symmetric 2-sided test statistic, so that on average
50% of the false rejections are in each tail

= Allows for tail-specific choice of y which would naturally vary if the number
of correct rejections was different

— _—
FDR = , FDR =

> Suppose for example that many rules were bad, then y;, would be relatively
large
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Estimation of 7

= 77 is estimated as 1
£ = Zi:l I[pk > )L]
I(1-X)

= Ais a tuning parameter

» Simple to choose using visual inspection
> Recall that true nulls lead to a flat p-value histogram
> Find point where histogram looks non-flat, use cutoff for A

= Histogram from BS

2,000

-
@
S
3
>

Frequency

1,000

500F —[ ~

p-values
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Estimating

» # allows percentage of correct rejections to be computed as A4 =1 — #
= |n the decomposed FDR the number of good (bad) rules can be computed as

!
GXZI[Pi<TU,ti>0]

i=1

> Note that yy is fixed here
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Bajgrowicz & Scaillet

= Apply FDR to technical trading rules of STW
= Use DJIA
> 1897-2011

= Find similar results, although importantly consider transaction costs for
break even

» Strategies that trade more can have higher means while not violating EMH
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Background on Competitor Methods OXFORD

Sample RW portfolio Best rule DJIA
period
Sharpe Portfolio Sharpe  BRC p- Sharpe
ratio size ratio value ratio
1: 1897- 1.24 45 1.18 0.00 -0.12
1914
2:1915- - 0 0.73 0.11 0.06
1938
3:1939- 1.49 62 2.34 0.00 0.41
1962
4: 1962- 1.52 15 1.45 0.00 -0.16
1986
5:1987- - 0 0.84 0.93 0.66
1996
6: 1997- - 0 0.48 1.00 0.12
2011
1897- 0.70 88 0.82 0.00 0.12
1996
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Good and Bad Rules

100%

75% | — .

50% | ] 1

25% 1

. . . LY Y %
N. q/. ()_). b(. 6_)' b.
Sample periods
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-20
0 1,000 2,000 3,000 4,000 5000 6,000 7,000
Strategies

= Transaction costs are important when assessing rules
= Rather than apply arbitrary TC, look for break even
= Transaction costs are a function of mean and number of transactions

0 = u; — TC x #{trades}

u; is the full-sample mean, not the annualized
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Break-even transact on costs (bps)
|

0 1,000 2,000 3000 4000 5000 6,000 7,000
Strategies

= Transaction for break even are lower
» Actual transaction costs are lower
= Unclear whether this is driven by more trading signals or worse mean
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Persistence of Rules

Sample period FDR portfolio RW portfolio 50 best rules Best rule

IS 00s Median size IS 00s Median size IS 00s IS 00s
1: 1897-1914 3.41 0.47 14 131 0.51 0 5.79 0.50 6.34 0.03
2:1915-1938 4.62 0.01 13 0.90 0.17 0 539 -0.03 5.98 0.09
3: 1939-1962 4.77 0.55 15 1.85 0.09 0 5.78 043 6.70 0.12
4: 1962-1986 534 -031 13 1.36 0.14 0 6.17 -0.18 6.95 -0.59
5: 1987-1996 4.52 —-0.34 12 - - - 5.44 -037 6.07 0.08
6: 1997-2011 4.55 —0.74 12 0.78 0.07 0 522 —0.51 597 —-0.27

= Sharpe-Ratios

= Persistence is low

= Combinationmappearsto benothetp
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