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Beyond DFM

� DFMs are an important innovation – both supported by economic theory
and statistical evidence

� From a forecasting point of view, they have some limitations
� Alternatives

É Partial Least Squares Regression
– Focuses attention on forecasting problem

É Three-pass Regression Filter
– Allows focus on factors through proxies

É Regularized Reduced Rank Regression
– Improve DFM factor selection for forecasting problem
– Theoretically more sound than using variable selection using BIC
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Partial Least Squares



Partial Least Squares

� Partial Least Squares uses the predicted variable when selecting factors
� PCA/DFM only look at xt when selecting factors
� The difference means that PLS may have advantages

É If the factors predicting yt are not excessively pervasive
É If the rotation implied by PCA requires many factors to extract the ideal factor

yt+1 = β f1t + εt

É Suppose two estimated factors with the form[
f̃1t
f̃2t

]
=
[ √

1/2
√
1/2√

1/2 −
√
1/2

] [
f1t
f2t

]
É Correct forecasting model for yt+1 requires both f̃t1 and f̃2t

yt+1 = γ1 f̃1t + γ2 f̃2t + εt
=

√
1/2γ1f1t +

√
1/2γ2f1t +

√
1/2γ1f2t −

√
2γ2f2t + εt

= (γ1 + γ2)
√

1/2f1t + (γ1 − γ2)
√

1/2f2t + εt

É Implies
√
1/2 (γ1 + γ2) = β and

√
1/2 (γ1 − γ2) = 0 (γ1 = γ2, γ1 = β/

(
2
√
1/2
)
)

É Without this knowledge, 2 parameters to estimate, not 1
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Partial Least Squares

� Partial least squares (PLS) uses only bivariate building blocks
� Never requires inverting k by k covariance matrix

É Computationally very simple
É Technically no more difficult than PCA

� Uses a basic property of linear regression

yt = β1x1t + β2x2t + β3x3t + εt

� Define η̂t = yt − γ̂1x1t where γ̂1 is from OLS of y on x1
É Immediate implication is

∑
η̂tx1t = 0

� Define ξ̂t = η̂t − γ̂2x2t where γ̂2 is from OLS of η̂ on x2
É Will have

∑
ξ̂tx2t = 0 but also

∑
ξ̂tx1t = 0
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Partial Least Squares

� Ingredients to PLS are different from PCA
� Assumed model

yt = µy + Γ f1t + εt
xt = Λ1f1t + Λ2f2t + ξt
ft = Ψft−1 + ηt

� Variable to predict is now a key component
É yt, m by 1
É Often m = 1
É Not studentized (important if m > 1)

� Same set of predictors
É xt, k by 1
É Assumed studentized
É yt can be in xt if yt is really in the future, so that the values in xt are lags

– Normally yt is excluded
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Partial Least Squares

Algorithm (r-Factor Partial Least Squares Regression)

1. Studentize xj , set x̃
(0)
j = xj and f0t = ι

2. For i = 1, . . . , r

a. Set fit =
∑

j cijx̃
(i−1)
t where cij =

∑
t x̃
(i−1)
jt yt

b. Update x̃(i)j = x̃
(i−1)
j − κijft where

κij =
f′i x̃
(i−1)
j

f′i fi

� Output is a set of uncorrelated factors f1, f2, . . . , fr
� Forecasting model is then yt = β0 + β ′ft + εt
� Useful to save C = [c1, . . . , cr] and K = [κ1, . . . ,κr] and

(
β̂0, β̂

′)
É Numerical issues may produce some non-zero covariance for factors far apart
É Normally only interested in a small number, so not important
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Factors in PLS

� Factors are just linear combinations of original data
� Obvious for first factor, which is just f1 = Xc1 = X̃(0)c1
� Second factors is f2 = X̃(1)c2

X̃(1) = X
(
Ik − c1κ′1

)
= X− (Xc1)κ′1
= X− f1κ′1

X̃(1)c2 = X̃(0) (Ik − c1κ1) c2
= Xβ2

� Same logic holds for any factor

X̃(j−1)cj = X̃(j−2)
(
Ik − cj−1κ′j−1

)
cj

= X̃(j−3)
(
Ik − cj−2κ′j−2

) (
Ik − cj−1κ′j−1

)
cj

= X
(
Ik − c1κ′1

)
. . .
(
Ik − cj−1κ′j−1

)
cj

= Xβ j
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Forecasting with Partial Least Squares
� When forecasting yt+h , use

y =

 y1+h
...
yt

 X =
 x1

...
xt−h


� When studentizing X save µ̂ and σ̂2, the vectors of means and variance

É Alternatively studentize all t observations of X, but only use 1, . . . , t − h in PLS
� Important inputs to preserve:

É ci and κi, i = 1, 2, . . . , r

Algorithm (Out-of-sample Factor Reconstruction)

1. Set f0t = 1 and x̃(0)t = (xt − µ̂)� σ̂
2. For i = 1, . . . , r

a. Compute fit = c′i x̃
(i−1)
t

b. Set x̃(i)t = x̃
(i−1)
t − fitκ′i

� Construct forecast from ft and
(
β̂0, β̂

)
8 / 33



Comparing PCA and PLS

� There is a non-trivial relationship between PCA and PLS
� PCA iteratively solves the following problem to find fi = Xβ i

max
β i

V
[
Xβ i

]
subject to β ′iβ i = 1 and f

′
i fj = 0, j < i

� PLS solves a similar problem to find fi
É Different in one important way

max
β i

Corr2
[
Xβ i, y

]
V
[
Xβ i

]
subject to f′i fj = 0, j < i

É Assumes single y (m = 1)
� Implications:

É PLS can only find factors that are common to xt and yt due to Corr term
É PLS also cares about the factor space in xt, so more repetition of one factor in
xt will affect factor selected

� When xt = yt, PLS is equivalent to PCA
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The Three-pass Regression Filter



Three-pass Regression Filter

� Generalization of PLS to incorporate user forecast proxizes, zt
� When proxies are not specified, proxies can be automatically generated,
very close to PLS

� Model structure

xt = λ + Λft + εt
yt+1 = β0 + β

′ft + ηt
zt = φ0 + Φft + ξt

É ft =
[
f′1t, f′2t

]′
É Λ = [Λ1,Λ2], β =

[
β 1, 0

]
, Φ = [Φ1,Φ2]

� β can have 0’s so that some factors are not important for yt+1
� Most discussion is on a single scalar y, so m = 1
� zt is l by 1, with 0 < l� min

(
k,T

)
É l is finite
É Number of factors used in forecasting model
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Three-pass Regression Filter

Algorithm (Three-pass Regression Filter)

1. (Time series regression) Regress xi on Z for i = 1, . . . , k, xit = φi0 + z′tφi + νit
2. (Cross section regression) Regress xt on φ̂i for t = 1, . . . ,T ,
xit = γi0 + φ̂ift + υit. Estimate is f̂t.

3. (Predictive regression) Regress yt+1 on f̂t , yt+1 = β0 + β ′f̂t + ηt

� Final forecast uses out-of-sample data but is otherwise identical
� Trivial to use with an imbalanced panel

É Run step 1 when xi is observed
É Include xit and φ̂i whenever observed in step 2

� Imbalanced panel may nto produce accurate forecasts though
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Forecasting with Three-pass Regression Filter

� Use data

y =


y1+h
y2+h
...
yt

 X =


x1
x2
...

xt−h


to estimate 3PRF
É Retain φ̂i for i = 1, . . . , k
É Retain β̂0 and β̂

� To forecast yt+h|t
É Compute f̂t by regressing xt on φ̂i and a constant
É Construct ŷt+h|t using β̂0 + β̂ f̂t

12 / 33



Automatic Proxy Variables

� zt are potentially useful but not required

Algorithm (Automatic Proxy Selection)

1. Initialize w(i) = y
2. For i = 1, 2, . . . , L

a. Set zi = w(i)
b. Compute 3PRF forecast ŷ(i) using proxies 1, . . . , i
c. Update w(i+1) = y − ŷ(i)

� Proxies are natural since forecast errors
� Automatic algorithm finds factor most related to y, then the 1-factor
residual, then the 2-factor residual and so on

� Nearly identical to the steps in PLS
� Possibly easier to use 3PRF with missing data
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Theory Motivated Proxies

� One of the strengths of 3PRF is the ability to include theory motivated
proxies

� Kelly & Pruit show that money growth and output growth can be used to
improve inflation proxies over automatic proxies

� The use of theory motivated proxies effectively favors some factors over
others

� Potentially useful for removing factors that might be unstable, resulting in
poor OOS performance

� When will theory motivated proxies help?
É Proxies contain common, persistent components
É Some components in y that are not in z have unstable relationship
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Exact Relationship between 3PRF and PLS

� 3PRF and PLS are identical under the following conditions
É X has been studentized
É The 2-first stages do not include constants

� Factors that come from 3PRF and PLS differ by a rotation
� PLS factors are uncorrelated by design
� Equivalent factors can be constructed using

Σ−
1/2

f F3PRF

É Σf is the covariance matrix of F3PRF
É Will stiff differ by scale and possibly factor of ±1
É Order may also differ
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Forecasting from DFM and PLS/3PRF

� Forecast
É GDP growth
É Industrial Production
É Equity Returns
É Spread between Baa and 10 year rate

� All data from Stock & Watson 2012 dataset
� Dataset split in half

É 1959:2 – 1984:1 for initial estimation
É 1985:1 – 2011:2 for evaluation

� Consider horizons from 1 to 4 quarters
� Entire procedure is conducted out-of-sample

16 / 33



DFM Components

� Forecasts computed using different methods:
É 3 components
É 3 components and 4 lags with Global BIC search
É IPp2 selected components only

� X recursively studentized
É Only use series that have no missing data

� Cheating: some macro data-series are not available in real-time, but all
forecasts benefit
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PLS/3PRF Components and Benchmark

� Consider 1, 2 and 3 factor forecasts
� Automatic proxy selection only
� Always studentize X
� Benchmark is AR(4)
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Out-of-sample R2

IP
PCA(3) 0.6038 0.4255 0.3125 0.2667
AR(4) 0.5521 0.3695 0.2699 0.2031
BIC 0.5671 0.3676 0.3047 0.2936
PCA-IC 0.5380 0.4089 0.3235 0.2773
3PRF-1 0.4653 0.3728 0.2999 0.2601
3PRF-2 0.5351 0.4081 0.3095 0.2494
3PRF-3 0.5230 0.3619 0.2294 0.1600

GDP
PCA(3) 0.6031 0.4204 0.2483 0.1485
AR(4) 0.5239 0.3578 0.2601 0.1860
BIC 0.6210 0.4573 0.2790 0.1669
PCA-IC 0.6010 0.435 0.3046 0.2246
3PRF-1 0.5385 0.4371 0.3444 0.2848
3PRF-2 0.5205 0.3759 0.2665 0.1922
3PRF-3 0.4637 0.2918 0.1796 0.1189
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Out-of-sample R2

BAA-GS10 (Diff)
PCA(3) -0.0754 -0.2065 -0.178 -0.0484
AR(4) -0.0464 -0.0914 -0.0865 -0.0097
BIC 0.0232 -0.1253 -0.0036 -0.0380
PCA-IC 0.0390 -0.0698 -0.0711 0.0242
3PRF-1 -0.0072 -0.1735 -0.1367 -0.0240
3PRF-2 0.0303 -0.1887 -0.1283 -0.0564
3PRF-3 -0.1909 -0.4024 -0.3301 -0.1710

S&P 500 Return
PCA(3) 0.0442 -0.1133 -0.1870 -0.2149
AR(4) 0.0677 -0.0095 -0.0546 -0.0725
BIC 0.0232 -0.1281 -0.1895 -0.1950
PCA-IC 0.0070 -0.0929 -0.0949 -0.0982
3PRF-1 -0.0245 -0.1575 -0.1764 -0.1863
3PRF-2 0.0903 -0.1488 -0.2122 -0.2165
3PRF-3 0.0055 -0.2029 -0.3885 -0.3833
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Alternative Fits of GDP
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Number of PC and Fit of GDP
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Number of 3PRF Factors and Fit of GDP
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Alternative Fits of Baa-10 year spread
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Number of PC and Fit of Spread
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Number of 3PRF Factors and Fit of Spread

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

3PRF−1 (studentized)
3PRF−2 (studentized)
3PRF−3 (studentized)

26 / 33



Regularized Reduced Rank Regression



Regularized Reduced Rank Regression

� When k is large, OLS will not produce useful forecasts
� Reduced rank regression places some restrictions on the coefficients on xt

yt+1 = γ0 + αβ
′xt + εt

= γ0 + α
(
β ′xt

)
+ εt

= γ0 + αft + εt

É α is 1 by r – factor loadings
É β is r by k – selects the factors

� When k ≈ T , even this type of restriction does not produce well behaved
forecasts
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Regularizing Covariance Matrices

� Regularization is a common method to ensure that covariance matrices are
invertible when k ≈ T , or even when k > T

� Many regularization schemes
� Tikhonov

Σ̃x = Σ̂x + ρQQ′

where QQ′ has eigenvalues bounded from 0 for any k
É Common choice of QQ′ is Ik, Σ̃x = Σ̂x + ρIk
É Makes most sense when xt has been studentized

� Eigenvalue cleaning
Σ̂x = VΛV′

É For i ≤ r, λ̃i = λi is unchanged
É For i > r, λ̃i =

(
k− r

)−1∑
i>c λi

Σ̃x = VΛ̃V′

É Effectively imposes a r-factor structure

28 / 33



Combining Reduced Rank and Regularization

� These two methods can be combined to produce RRRR
� In small k case,

yt+1 = γ0 + αβ ′xt + εt
normalizedβ can be computed as as solution to generalized eigenvalue
problem
É Normal eigenvalue problem

|A− λI| = 0
É Generalized Eigenvalue Problem

|A− λB| = 0

� Reduced Rank LS ∣∣∣∣∣Σxyk×m
WΣ′xy

m×k
− λΣx

k×k

∣∣∣∣∣ = 0
β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of this problem
É W is a weighting matrix, either Im or a diagonal GLS version using variance of
yit on ith diagonal
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RRRR-Tikhonov

� β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of∣∣ΣxyWΣ′xy − λ (Σx + ρQQ′)∣∣ = 0
É X is studentized
É QQ′ is typically set to Ik
É ρ is a tuning parameter, usually set using 5- or 10-fold cross validation
É r also need to be selected

– Cross validation
– Model-based IC
– r will always be less than m, the number of y series: When there is only 1 series,
the first eigenvector selects the optimal linear combination which will predict that
series the best. Only tension if more than 1 series.

30 / 33



RRRR-Spectral Cutoff

� β are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of ∣∣∣ΣfyWΣ′fy − λΣf ∣∣∣ = 0

� Σf is the covariance of the first rf principal components
É rf to distinguish from r (the number of columns in β )
É Σfy is the covariance between the PCs and the data to be predicted
É rf must be chosen using another criteria – Scree plot or Information Criteria

� The spectral cutoff method essentially chooses a set of r factors from the
set of rf PCs

� This is not a trivial exercise since factors are always identified only up to a
rotation

� For example, allows a 1-factor model to be used for forecasting even when
the factor can only be reconstructed from all rf PCs

� Partially bridges the gap between PCA and PLS/3PRF
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Forecasting in RRRR

� Once β̂ was been estimated using generalized eigenvalue problem, run
regression

yt+1 = φ0 + α
(
β̂
′
xt
)
+ εt

to estimate α̂
� Can also include lags of y

yt+1 = φ0 +
p∑
i=1

φiyt−i+1 + α
(
β̂
′
xt
)
+ εt

� When using spectral cutoff, regressions use ft in place of xt
� Forecasts are simple since xt, β̂ and other parameters are known at time t

É When using spectral cutoff, ft is also known at time t
� r can be chosen using a normal IC such as BIC or using t-stats in the
forecasting regression
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General Setup for Forecasting
� When forecasting with the models, it is useful to setup some matrices so that
observations are aligned

� Assume interest in predicting yt+1|t, . . . , yt+h|t
É Can also easily use cumulative versions, Et

[∑h
i=1 yt+i

]
� All matrices will have t rows
� Leads (max h) and lags (max P)

Yleads =



y2 y3 · · · yh+1
y3 y4 · · · yh+2
...

...
...

...
yt−h+1 yt−h+2 · · · yt
yt−1 yt · · · −
yt − · · · −


, Ylags =



y1 − . . . −
y2 y1 . . . −
...

...
...

...

yP yP−1

... y1
...

...
...

...

yt−1 yt−2

... yt−P


X =

 x1
. . .
xt



� − denotes a missing observation (nan)
� When forecasting at horizon h, use column h of Yleads and rows 1, . . . t − h of Ylags
and X
É Remove any rows that have missing values

� When using PCA methods, extract PC (C) from all of X and use rows 1, . . . t − h of C
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