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Beyond DFM

= DFMs are an important innovation — both supported by economic theory
and statistical evidence

= From a forecasting point of view, they have some limitations
= Alternatives
> Partial Least Squares Regression
- Focuses attention on forecasting problem
» Three-pass Regression Filter
- Allows focus on factors through proxies

> Regularized Reduced Rank Regression

- Improve DFM factor selection for forecasting problem
- Theoretically more sound than using variable selection using BIC
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Partial Least Squares



Partial Least Squares

= Partial Least Squares uses the predicted variable when selecting factors
= PCA/DFM only look at x; when selecting factors
= The difference means that PLS may have advantages

If the factors predicting y: are not excessively pervasive
If the rotation implied by PCA requires many factors to extract the ideal factor

Vis1 = Bfu+ e

» Suppose two estimated factors with the form
[fn]:{\/% Vi an}
fae VI VT2 || fa

» Correct forecasting model for y:.1 requires both f1 and fa

v

v

YVer1 = '}’lflt + ’)’2th + €t

\/1727’1flt + \/1727’2}[11 + \/1727’1f2t - \/iTZth + €
(r1+ 1)V ofie + (r1 — 12) Vof + €

Implies \/72(y1 +72) = B and V12 (y1 — 12) = 0 (y1 = y2, 71 = B/ (2V/]2))

> Without this knowledge, 2 parameters to estimate, not 1

By 455)
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Partial Least Squares

= Partial least squares (PLS) uses only bivariate building blocks
= Never requires inverting k by k covariance matrix

> Computationally very simple
> Technically no more difficult than PCA

= Uses a basic property of linear regression

Ve = P1X1e + BoXor + Bsxz + €

Deﬁn Yt — 71X1: where 71 is from OLS of y on x;

> Immediate implication i§ > Ax1: = 0

A
= Define &; = #j; — 72X2; Where 75 is from OLS of 7j on x; /’ z ]‘,_ G+

> Will have 3" &xy; =0 but also 3. &y =0
’4’
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Partial Least Squares

= [ngredients to PLS are different from PCA /

= Assumed model / ("« .

—> v = (T +e
Xt = Alf:.lL__'_ Azféij' gt
ft = lI’ft71 + I3
(
= Variable to predict is now a key component
> yi,mby 1
> Oftenm=1

> Not studentized (important if m > 1)
= Same set of predictors

> X, kby 1
> Assumed studentized
> y: can be in X; if y; is really in the future, so that the values in x; are lags

- Normally y; is excluded
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Partial Least Squares

1. Studentize x; , set ”](0) =x; and foif= o I '
— )
2. Fori=1,....r — — 7 . ~ A
(1) Sy -M
a. Set flt = Z X, where ¢; = > X lt Vi \1
b. Update x() = (H) — K;ft where

= 2 N

= Qutput is a set of uncorrelated factors f1,f;, ..., f;
» Forecasting model is theny; = Bo + B'f; + e &=

= Useful to save C =[cy, ..., ¢;] and K = [k, ..., ;] and (Bg,ﬁ/)

> Numerical issues may produce some non-zero covariance for factors far apart
> Normally only interested in a small number, so not important
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Factors in PLS

= Factors are just linear combinations of original data
= Obvious for first factor, which is just f; = Xc; = XO¢,

= Second factors is f; = XWcy
¢ Ty
= X - (Xci)K)
= ’)-(—7 fll('/l
f = X(I)CZ = X(O) (Ix — c1k1) Cy
2 ——*- xp,

= Same logic holds for any factor
X0-¢ = X0 (1 —¢ix)_y) g
= X0-3) (L — ¢j_arj_5) (e — 1K} ;) €
= X (I,< - clk’l) (I;< Ci_ 1"‘, 1) Cj
= XpB,
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» When studentizing X save ftand 6%, the vecto}s of means and variance
> Alternatively studentize all t observations of X\but only use 1,...,t — hin PLS

= Important inputs to preserve: X
»candr;,i=1,2,...,r Y-AY X

Algorithm (Out-of-sample Factor Reconstruction)

1. Setfy=1and%” = (x, — ) © &
2. Fori=1,...,r
(-1)

a. Compute fiy = ¢/%;
b. Set ) =™ _ !

= Construct forecast from f; and (fo, B)
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Comparing PCA and PLS

= There is a non-trivial relationship between PCA and PLS
= PCA iteratively solves the following problem to find f; = XB;

n}jaxV [Xp;] subjectto pip;=1andfif;=0, j<i
i “' "
= PLS solves a similar problem to find f;

» Different in one important way

max Corr” [XB,,y] V [XB,] subjecttofif =0, j<i
i Vv__ -
\-5 &'l.

> Assumes singley (m = 1)

Implications:

> PLS can only find factors that are common to X; and y: due to Corr term
» PLS also cares about the factor space in x;, so more repetition of one factor in
X will affect factor selected

= When x; =y, PLS is equivalent to PCA
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The Three-pass Regression Filter
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Three-pass Regression Filter . OXFO

Generalization of PLS to incorporate user(forecast proxizes, z;

= When proxies are not specified, proxies can De=auytomatically g
very close to PLS

Model structure RLQ \,—5 x

X = A+Aft + €;
Vo1 = Po+ /5_I_f_t__+ Nt
2 = ¢o+9f+8, Y") z—‘?)(

- £ = [ {t’ fét]/

» A=[AL AL, B = [B1,0], @ =@, ¥,]
= 5 can have O’s so that some factors are not important for y;;;
= Most discussion is on a single scalary,som =1
=z islby 1, with0 <! < min (k, T)

> lis finite
> Number of factors used in forecasting model
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Three-pass Regression Filter

Algorithm (Three-pass Regression Filter)

1. (Time series regression) Regress x, onZfori=1,...,k x; = / o+ Vie

2. (Cross section regression) Regress X; 0n ¢ fort=1,. T,

Xie = Y0 + ¢ ft + vy Estimate is f,.
3. (Predictive regressmn) Regress Yi.1 on £, yie1 = Po + B'E: + 1

—
—

= Final forecast uses out-of-sample data but is othelwise identical

= Trivial to use with an imbalanced panel N)A
> Run step 1 when x; is observed b) + 6 f-"
——————

> Include x;; and ¢3,- whenever observed in step 2

» Imbalanced panel may 6 g[oduce accurate forecasts though

AV
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Forecasting with Three-pass Regression Filter ~ Oxrorp

= Use data
Yi+hn X1
Yo+n X7
: : A
Ve —_
€ron

to estimate 3PRF

> Retain ¢, fori=1,...,k
> Retain ffp and p

= To forecast Yt

» Compute f; by regressing x; on ¢, and a constant
» Construct 9 using fo + Bf:
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Automatic Proxy Variables
= 7, are potentially useful but not required "

Algorithm (Automatic Proxy Selection)

1. Initialize w(!) = = @ =2 \}
2. Fori=1,2 ’ YW =
» @ ¥, -V <=

a. Setz; = wld

b. Compute 3PRF forecast §) using proxies 1,. .., i - o
c. Update wlitt) =y — ¢() 6) \'} ’ ! /

\l_:?uj-

= Proxies are natural since forecast errors

= Automatic algorithm finds factor most related to y, then the 1-factor
residual, then the 2-factor residual and so on

Nearly identical to the steps in PLS
= Possibly easier to use 3PRF with missing data
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Theory Motivated Proxies

= One of the strengths of 3PRF is the ability to include theory motivated
proxies

= Kelly & Pruit show that money growth and output growth can be used to
improve inflation proxies over automatic proxies

= The use of theory motivated proxies effectively favors some factors over
others

= Potentially useful for removing factors that might be unstable, resulting in
poor OOS performance

= When will theory motivated proxies help?

> Proxies contain common, persistent components
> Some components in y that are not in z have unstable relationship
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Exact Relationship between 3PRF and PLS

3PRF and PLS are identical under the following conditions

» X has been studentized
» The 2-first stages do not include constants

Factors that come from 3PRF and PLS differ by a rotation
PLS factors are uncorrelated by design

Equivalent factors can be constructed using

zf_ y: ZFSPRF

» 3¢ is the covariance matrix of F3PRF
> Will stiff differ by scale and possibly factor of +1
> Order may also differ

15/33



Forecasting from DFM and PLS/3PRF

= Forecast L - {-S '

> GDP growth
> Industrial Production

» Equity Returns S - (‘:Sf()' k.s,

» Spread between Baa and 10 year rate
= All data from Stock & Watson 2012 dataset &= ESIU- N4
= Dataset split in half

» 1959:2 - 1984:1 for initial estimation + ("‘)
» 1985:1 - 2011:2 for evaluation

= Consider horizons from 1 to 4 quarters
= Entire procedure is conducted out-of-sample
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DFM Components

= Forecasts computed using different methods:

> 3 components
» 3 components and 4 lags with Global BIC search
> [P, selected components only

T .
» X recursively studentized
> Only use series that have no missing data

= Cheating: some macro data-series are not available in real-time, but all
forecasts benefit
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PLS/3PRF Components and Benchmark

= Consider 1, 2 and 3 factor forecasts
= Automatic proxy selection only

= Always studentize X

= Benchmark is AR(4)



Out-of-sample R?

2
\ 1P 3 Y

PCA(3) 06038 0.4255 0.3125 0.2667<
AR(4) 05521 0.3695 0.2699 0.2031
BIC 05671 03676 03047 0.2936—
PCA-IC 05380 0.4089 0.3235 0.2773 “—
3PRF-1 04653 03728 02999 0.2601 G
3PRF-2 05351 0.4081 0.3095 0.2494
3PRF-3  0.5230 03619 0.2294 0.1600

GDP
PCA(3) 06031 0.4204 02483 0.1485
AR(4) 05239 03578 02601 0.1860
BIC 0.6210 04573 02790 0.1669
PCAIC 06010 0435 03046 0.2246
3PRF-1 0.5385 04371 0.3444 0.2848
3PRF-2 05205 0.3759 0.2665 0.1922
3PRF-3 04637 02918 0.1796 0.1189
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Out-of-sample R?

/

BAA-GS10 (Diff)
1 PCA(3) -0.0754 -0.2065 -0.178 -0.0484
K IS AR(4) -0.0464 -0.0914 -0.0865 -0.0097
BIC 0.0232 -0.1253 -0.0036 -0.0380
PCA-IC 0.0390 -0.0698 -0.0711 0.0242
l - 3PRF-1 -0.0072 -0.1735 -0.1367 -0.0240
3PRF-2  0.0303 -0.1887 -0.1283 -0.0564
3PRF-3 -0.1909 -0.4024 -0.3301 -0.1710

S&P 500 Return
PCA(3) 0.0442 -0.1133 -0.1870 -0.2149
AR(4) 0.0677 -0.0095 -0.0546 -0.0725
BIC 0.0232 -0.1281 -0.1895 -0.1950
PCA-IC 0.0070 -0.0929 -0.0949 -0.0982
3PRF-1 -0.0245 -0.1575 -0.1764 -0.1863
3PRF-2  0.0903 -0.1488 -0.2122 -0.2165
3PRF-3  0.0055 -0.2029 -0.3885 -0.3833
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Alternative Fits of GDP
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Number of 3PRF Factors and Fit of GDP
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Number of PC and Fit of Spread
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Reqgularized I_|Reduced Rank Regression
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Reqgularized Reduced Rank Regression

= When k is large, OLS will not produce useful forecasts

= Reduced rank regression places some restrictions on the coefficients on x;

~ ¢ ¥«
/et = yotap'xXete

mxl = ')’0+a(ﬂlxt)+€t q"’ "\.‘r—
= rot+afi+e ']QV-K(_
/
™ -2
» ais 1 by r - factor loadings KB M xk

- B is{cﬁyk’— selects the factors
-
= When k =~ T, even this type of restriction does not produce well behaved

forecasts
( ) f<m
M7 r' - A0

m xle



Regularizing Covariance Matrices

= Regularization is a common method to ensure that covariance matrices are
invertible when k ~ T, or even when k> T

= Many regularization schemes

= Tikhonov

where QQ’ has eigenvatu

» Common choice of QQ’ is Iy, Zx = 3 £
> Makes most sense when x; has been s%

= Eigenvalue cleaning
3 = VAV
» Fori<r, A; = A; is unchanged
s Fori>rli=(k—r) " Yo A

3 = VAV’

» Effectively imposes a r-factor structure




Combining Reduced Rank and Regularization

= These two methods can be combined to produce RRRR
= In small k case, g
!/
Yer1 =70 +@£J5t + €
normalizedf3 can be computed as as solution to generalized eigenvalue
problem
> Normal eigenvalue problem

A 21]=0 [U,D]fe.-‘,m,]:)

> Generalized Eigenvalue Problem

k2 A — AB|_
= Reduced Rank LS M_‘:\V XU OJ “evs k'8)

M
SyWEiy — A [ =0
kxm mxk kxk

P are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of this problem
» W is a weighting matrix, either I, or a diagonal GLS version using variance of
yi on it diagonal
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RRRR-Tikh

= 3 are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of

-,
[Ty WEyy — A (Zx +pQQ') | =0 X ) xle
o
> X is studentized \7 c - X
» QQ’ is typically set to I Txl ’L@
> (s a tuning parameter, usually set using 5- or 10-fold cross validation
» T also need to be selected

- Cross validation

- Model-based IC

= rwill always be less than m, the number of y series: When there is only 1 series,
the first eigenvector selects the optimal linear combination which will predict that
series the best. Only tension if more than 1 series.

\/-’r S Mt d\P*"f(T
1%: iV
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RRRR-Spectral Cutoff

P are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of

PC-‘- X \L( ‘zfywzgy—;\zf‘go .E;C' l/

Te (?L (tc‘('

¢ is the covariance of the first r¢ principal components

> 17 to distinguish from r (the number of columns in B) c’l
» Yg is the covariance between the PCs and the data to be predicted r(’(.
> 1y must be chosen using another criteria - Scree plot or Information Criteria

The spectral cutoff method essentially chooses a set of r factors from the
set of ry PCs

This is not a trivial exercise since factors are always identified only up to a
rotation

For example, allows a 1-factor model to be used for forecasting even when
the factor can only be reconstructed from all ry PCs

Partially bridges the gap between PCA and PLS/3PRF
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Forecasting in RRRR

= Once B was been estimated using generalized eigenvalue problem, run

regression
A/
Vis1 = Po+ @ (/5 Xt) + €
A
to estimate & ,f\ -
N .

= Can also include lags of y

p
Yes1 = Po + Z PYe—iv1 T @ (fjlxt) +€;
i=1

= When using spectral cutoff, regressions use f; in place of x;
= Forecasts are simple since xy, /3 and other parameters are known at time t
» When using spectral cutoff, f; is also known at time t

= 1 can be chosen using a normal IC such as BIC or using t-stats in the
forecasting regression
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General Setup for Forecasting

= When forecasting with the models, it is useful to setup some matrices so that
observations are aligned
= Assume interest in predicting Yei1)e, - -« » Yern|t

» Can also easily use cumulative versions, E; [Zf.’:l yH,-]

= All matrices will have t rows
= Leads (max h) and lags (max P) ‘P
-y .
+ w «h wooon
Y= | Y2 Vs St Yhet ) . ) ) K
f L B y3 Ya e Yn+2 : : : :
. . . . X
YLeads _ : : : . , YLags - v N : y X = .
Veehet Ym0 W G ! Xte)
Ye—1 Ve cee - : : :
+ -' ‘) yt - . _ —
L Ye—1  Ye—2 : Ye—p

= — denotes a missing observation (nan)
» When forecasting at horizon h, use column h of Y'**® and rows 1,...t — h of Y'#%
and X
> Remove any rows that have missing values
= When using PCA methods, extract PC (C) from all of X and use rows 1,...t —h of C
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