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Dynamic Factor Models



Dynamic Factor Models

= Dynamic factors model specify dynamics in the factors
Basic DFM is

Xt

s
Z q’,‘ft + €t
i=0

q
Z ‘I’ft,]' + nt
j=1

= Observed data depend on contemporaneous and lagged factors
= Factors have VAR-like dynamics
= Assumed that f; and €; are stationary, so x; is also stationary

f;

> Important: must transform series appropriately when applying to data
= ¢; can have weak dependence in both the cross-section and time-series
= E [e,m,] =0forallt,s

2/42



Optimal Forecast from DFM

s q
Xt = Z ‘I’,’ft_,' + €g, ft = Z'I’ft_i + N
i=0 j=1
= Optimal forecast can be derived

s
E X %o £ % 1,61, ] = E|:Z¢ift+1—i+6it+llxtvft,xtlvftly-u
i=0

E; [Z ¢ift+1i:| +Ee[€ir1]

i=0

s’ n

Z Aifi_ip + Z Bixit_j11
i=1 j=1

= Predictability in both components

> Lagged factors predict factors
~ Lagged x; predict €;
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Invertibility and MA processes

= DFM is really factors plus moving average
= Moving average processes can be replaced with AR processes when

invertible
Vi = er+0€1
Vi—0yi—1 = €+0e_1—0(0€r—3+€—1)
€t — 92&_2
Ve—0Vio1+ 0%y = € — 0%2+ 0% (063 +€r2)

= €+ 0%(0c3+€2)

oo

Z (—e)i Yi—i = €t

i=0
Yo = Z—(—g)i)’tfz‘"‘ﬁ
i=1

= Can approximate finite MA with finite AR
= Quality will depend on the persistence of the MA component
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Dynamic as Static Factor Models

= Superficially dynamic factor models appear to be more complicated than
static factor models

= Dynamic Factor models can be directly estimated using Kalman Filter or
spectral estimators that account for serial correlation in factors

> Latter are not useful for forecasting since 2-sided
= (Big) However, DFM can be converted to Static model by relabeling
= [n DFM, factors are
(£ £, £ ]

> Total of r(s + 1) factors in model

Equivalent to static model with at most r (s + 1) factors

> Redundant factors will not appear in static version
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Dynamic as Static Factor Models

= Consider basic DFM

Xp = Quft+Ppfiiter

fe Yfe1+n:

= Model can be expressed as

Xe = ¢u (Yfio1 +0e) + Piofior + €t
Gitne + Pin (1 +(91/p2) ) fr—1 + €3t

= One version of static factors are n; and f;_;

> In this particular version, n; is not “dynamic” since it is WN
> fi_1 follows an AR(1) process

= Other rotations will have different dynamics
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Dynamic as Static Factor Models

= Basic simulation

Xi = Qaft+ Pofi1+ e
fe Yfeo1+ 1
* ¢i ~N(1, 1)1 ~N(2,1)
> Smaller signal makes it harder to find second factor
= =05

> Higher persistence makes it harder since Corr [ft,ft,l] is larger

= Everything else standard normal
= k=100, T = 100

» Also k =200 and T = 200 (separately)
= All estimation using PCA on correlation

Number of Factors for Forecasting

Better to have r above r* than below
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Measuring Closeness of Estimate

= Factors are not point identified
» Can use an arbitrary rotation and model is equivalent

= Natural measure of similarity between original (GDP) factors and estimated
factors is global R?

f} = }&f} +‘77t
122 = 1-— E::t_l j7£f7t
Y i

= Note that A is a 2 by 2 matrix of regression coefficients
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Dynamic as Static Factor Models

1C,y Selected r, T=100, k=100
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Dynamic as Static Factor Models
1Cyy Selected r, T=100, k=200
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Dynamic as Static Factor Models
1C)s Selected r, T=200, k=100
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R? of factors on estimated factors
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Stock and Watson’s DFM Data



Stock & Watson (2012) Data

= Stock & Watson have been at the forefront of factor model development

= Data is from 2012 paper “Disentangling the Channels of the 2007-2009
Recession”

= Dataset consists of 137 monthly and 74 quarterly series

> Not all used for factor estimation
» Aggregates not used if disaggregated series available

Monthly series are aggregated to quarterly, which is frequency of data
= Series with missing observations are dropped for simplicity

~ Before dropping those with missing values data set has 132 series
> After 107 series remain
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The series

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6
Stock Prices, Wealth, Household Balance Sheets 8
Housing Prices 3
Exchange Rates 6
Other 2
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Data Transformation

Monthly series were aggregated to quarterly using

> Average
» End-of-quarter

All series were transformed to be stationary using one of:

> No transform

» Difference

> Double-difference

> Log

> Log-difference

> Double-log-difference

= Most series checked for outliers relative to IQR (rare)
= Final series were Studentized in estimation of PC
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Untransformed SW Data (Studentized)
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Raw Data after Tran

Transformed SW Data
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Studentized SW Data
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First Three Components

First Component (Standardized)

Second Component (Standardized)

Third Component (Standardized)
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Scree Plot

Scree Plot, Stock & Watson (Log)
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Scree Plot, Stock & Watson
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Information Criteria

Information Criteria
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Forecasting



Forecast Methods

= Forecast problem is not meaningfully different from standard problem
= Interest is now in y;, which may or may not be in x;
» Note that stationary version of y; should be forecast, e.g. Ay; or A2y,
= Two methods to forecast
Unrestricted

P
Ver1 = @o + Z PiVe—iv1+0't + €

i=1

= Treats factors as observed data, only makes sense if k is large

v

Uses an AR(P) to model residual dependence

Choice of number of factors to use, may be different from r
» Can also use lags of f; (uncommon)

Model selection is applicable as usual, e.g. BIC

v

v
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Forecast Methods

Restricted
= When Vi isin Xt, Vi = ijt + €t

€t =Vt —ﬁft

Vet

14
B+ Z ¥ ()’H'+1 - ﬁfpm)

i=1

v
Pl + Z Pié:

i=1

VAR to forecast fm using lags of ft
= Univariate AR for ¢é;
Usually found to be less successful than unrestricted

= Care is needed when using studentized data since forecasting recentered,
rescaled version of y
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Re-integrating forecasts

= When forecasting Ay,

Eelyer1]l = Eel¥er1 — Ve + Vi
E:[AYe1] + Ve

= At longer horizons,
h

Ee[Ven] = > Ee[AVLil+ Ve
i=1

» When forecasting A%y,

Ei[Ver1]l = EelVeer — Ve — Ve + Vi1 +2¥: — V1]
E; [A%ye1] + 2y — vt

> In many cases interest is in Ay; when forecasting A%y,

- For example CPI, inflation and change in inflation
- Same as reintegrating Ay to y;

27/42



Multistep Forecasting

= Multistep can be constructed using either method
= Unrestricted requires additional VAR for ft
= Alternative use direct forecasting

h
14
A~ ~ Al A
Yernt = Qo + > PuiYe—iv1 + Ok
-1

> (h) used to denote explicit parameter dependence on horizon
> Yi+h)e Can be either the period-h value, or the h-period cumulative forecast
(more common)

= Direct has been documented to be better than iterative in DFMs

» Problem dependent
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“Forecasting”

= Used BIC search across models
= 3 setups
> GDP lags only (4), Components Only (6), Both

h 4 6
Z AZrj = Po + Z YsAZt—s+1 + Z Ynfit + €nt

j=1 s=1 n=1

Both
GDPOnly  R? Components Only ~ R? GDP  Components  R%
h=1 1,2,4 517 1,2,3,4,6 .662 1 1,2,3,4,6 .686
h=2 1,4 .597 1,2,3,4,6 .763 1 1,2,3,4,6 771
h=3 1,4 .628 1,2,3,4,6 .785 1 1,2,3,4,6 792
h=4 1,4 661 1,2,3,4,6 .805 - 1,2,3,4,6 .805
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Improving Estimated Components



Generalized Principal Components

= Basic PCA makes use of the covariance or more commonly correlation
= Correlation is technically a special case of generalized PCA

T
S E; (% — BEY =" (x; — BF) subject to p'B = I,

= Clever choices of X, lead to difference estimators

> Using diag (61,...,07) where 67 is variance of x; leads to correlation
» Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS)

1. Estimate é;; = X — /3 ,f[ using r factors
2. Estimate 6% = T~'S é2 and W = diag (w1, ..., wy) where

l/é-Fi

k
Z,‘:l Yoo

w; =

3. Compute PCA-GLS using WX
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r Generalized PCA Estimators

= Absolute covariance weighting
1. Compute complete residual covariance 3 from residuals
2. Replace 6 in step 2 with 67 = S| [ (i,))]
= Down-weights series which have both large idiosyncratic variance and
strong residual covariance
= Stock & Watson (2005) use more sophisticated method
1. Estimate AR(P) on é;; for all series

Di
& = Z Qj€i—j + Eit
j=1
2. Construct quasi-differenced x;; using coefficients
bi
X =Xi — > Qi
j=1
3. Estimate 6% using &;

4. Re-estimate factors using quasi-differenced data and weighting, iterate if
needed
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Normalized Residual Variance
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Generalized Principal Componen

Generalized PCA Weights

Absolute Residual Covariance
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Redundant and repeated factors

= Redundant factors can have adverse effects on common components

= Exactly redundant factors are identical to increasing the variance of a
studentized data series

> Including x;; m-times is the same as using mx;

= Some evidence that excluding highly correlated factors is useful (Boivin &
Ng 2006)

Algorithm (Removal of Redundant Factors)

1. For each series i find series with maximally correlated error, call index j;
2. Drop series in {j;} that are maximally correlated with more than 1 series
3. For series which are each other’s j;, drop series with lower R?

= Can increase step 1 to two or even three series
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Thresholding to Select Forecasting Relevant Factorsorp

= Bai & Ng (2008) consider problem of selecting forecasting relevant factors
= Well known issue for PCA is that factors are selected only using x;
= Can this be improved using information about y;?

Algorithm (Hard Thresholding for Variable Selection)

1. Regressy = o + 2_1; iVe—i+1Xe—1+ €
2. Compute White heteroskedasticity robust standard errors and t-stat

3. Retain any x; where |t| > C, for some choice of a. Common choices are 10%,
5% or 1%.

» Bai & Ng also discuss methods for soft thresholding, but these require
technology beyond this course (LASSO and Elastic Net)
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Hard Thresholding for GDP, h = 1
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Hard Thresholding, h=1
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Hard Thresholding for GDP, h = 4

Hard Thresholding, h=4

23 (1%)

5L 36 (5%)

50 (10%) ¢
57 (>10%)
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Prinicpal Component Analysis with Missing Data ¢

= Two obvious solutions to missing data in PCA
> Drop all series that have missing observations
> Impute values for the missing values

= Missing data structure in SW 2012
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Expectations-Maximization (EM) Algorithm

= Some problem with unobserved states can be solved using the EM algorithm
= Consider problem of estimating means from an i.i.d. mixture

Xi=Yiur +(1-Y)uz +2;

> Y;isi.i.d. Bernoulli(p), Z; is standard normal
> Y; was observable, trivial problem (OLS)

> When Y; is not observable, much harder

EM algorithm will iterate across two steps:

v

1. Construct “as-if” Y; using expectations of Y; given uj and uy
2. Compute

. X PrYi=1X; N D Pr(Y; =0)X;
D S 7T0 =S VR 33 =)
3. Return to 1, stopping if the means are not changing much
» Algorithm is initialized with ‘guesses” about u; and u;
- Example: Mean of data above median, mean of data below median

> Consider case where u; = 10, uz = —10
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Imputing Missing Values in PCA

= |deally would like to solve PCA problem only for observed data

= Difficult in practice, no know closed form estimator

= Expectation-Maximization (EM) algorithm can be used to simply impute
missing data

> Replace missing with r-factor expectation (E)
> Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define w;; =1 |y;; observed| and seti =0
2. Construct X© = W © X + (1 — W) ® tX where tvis a T by 1 vector of 1s
3. Until HXUH) G

a. Estimate r factors and factor loadings, FO) and /3 9) from x() using PCA
b. Construct X(*) =W o X +(1 - W)@ ( ()ﬁ())
c. Seti=i+1
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Hierarchical Factors

= Can use partitioning to construct hierarchical factors
= Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors,
and extract 1 or more factors from residuals

> Country factors uncorrelated with Global, but not local from other
regions/countries
= Nominal and Real

1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract
factors from residuals
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