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Dynamic Factor Models



Dynamic Factor Models

� Dynamic factors model specify dynamics in the factors
� Basic DFM is

xt =
s∑
i=0

Φift + εt

ft =
q∑
j=1

Ψft−j + ηt

� Observed data depend on contemporaneous and lagged factors
� Factors have VAR-like dynamics
� Assumed that ft and εt are stationary, so xt is also stationary

É Important: must transform series appropriately when applying to data

� εt can have weak dependence in both the cross-section and time-series
� E
[
εt,ηs

]
= 0 for all t, s
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Optimal Forecast from DFM

xt =
s∑
i=0

Φift−i + εt, ft =
q∑
j=1

Ψft−j + ηt

� Optimal forecast can be derived

E
[
xit+1|xt, ft, xt−1, ft−1, . . .

]
= E

[ s∑
i=0

φift+1−i + εit+1|xt, ft, xt−1, ft−1, . . .

]

= Et

[ s∑
i=0

φift+1−i

]
+ Et [εit+1]

=
s′∑
i=1

Aift−i+1 +
n∑
j=1

Bjxit−j+1

� Predictability in both components
É Lagged factors predict factors
É Lagged xit predict εit
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Invertibility and MA processes

� DFM is really factors plus moving average
� Moving average processes can be replaced with AR processes when
invertible

yt = εt + θεt−1
yt − θyt−1 = εt + θεt−1 − θ (θεt−2 + εt−1)

= εt − θ 2εt−2
yt − θyt−1 + θ 2yt−2 = εt − θ 2εt−2 + θ 2 (θεt−3 + εt−2)

= εt + θ 2 (θεt−3 + εt−2)
∞∑
i=0

(−θ )i yt−i = εt

yt =
∞∑
i=1

− (−θ )i yt−i + εt

� Can approximate finite MA with finite AR
� Quality will depend on the persistence of the MA component
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Dynamic as Static Factor Models

� Superficially dynamic factor models appear to be more complicated than
static factor models

� Dynamic Factor models can be directly estimated using Kalman Filter or
spectral estimators that account for serial correlation in factors
É Latter are not useful for forecasting since 2-sided

� (Big) However, DFM can be converted to Static model by relabeling
� In DFM, factors are

[ft, ft−1, . . . , ft−s]

É Total of r (s + 1) factors in model
� Equivalent to static model with at most r (s + 1) factors

É Redundant factors will not appear in static version
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Dynamic as Static Factor Models

� Consider basic DFM

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� Model can be expressed as

xit = φi1
(
ψft−1 + ηt

)
+ φi2ft−1 + εit

= φi1ηt + φi2 (1 + (φi1/φi2)ψ) ft−1 + εit

� One version of static factors are ηt and ft−1
É In this particular version, ηt is not “dynamic” since it is WN
É ft−1 follows an AR(1) process

� Other rotations will have different dynamics
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Dynamic as Static Factor Models

� Basic simulation

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� φi1 ∼ N (1, 1),φi2 ∼ N (.2, 1)
É Smaller signal makes it harder to find second factor

� ψ = 0.5
É Higher persistence makes it harder since Corr

[
ft, ft−1

]
is larger

� Everything else standard normal
� k = 100, T = 100

É Also k = 200 and T = 200 (separately)
� All estimation using PCA on correlation

Number of Factors for Forecasting
Better to have r above r? than below
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Measuring Closeness of Estimate

� Factors are not point identified
É Can use an arbitrary rotation and model is equivalent

� Natural measure of similarity between original (GDP) factors and estimated
factors is global R2

f̂t = Aft + ηt

R2 = 1−
∑T

t=1 η̂
′
tη̂t∑T

t=1 f
′
t ft

� Note that A is a 2 by 2 matrix of regression coefficients
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Stock and Watson’s DFM Data



Stock & Watson (2012) Data

� Stock & Watson have been at the forefront of factor model development
� Data is from 2012 paper “Disentangling the Channels of the 2007-2009
Recession”

� Dataset consists of 137 monthly and 74 quarterly series
É Not all used for factor estimation
É Aggregates not used if disaggregated series available

� Monthly series are aggregated to quarterly, which is frequency of data
� Series with missing observations are dropped for simplicity

É Before dropping those with missing values data set has 132 series
É After 107 series remain

13 / 42



The series

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6
Stock Prices, Wealth, Household Balance Sheets 8
Housing Prices 3
Exchange Rates 6
Other 2
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Data Transformation

� Monthly series were aggregated to quarterly using
É Average
É End-of-quarter

� All series were transformed to be stationary using one of:
É No transform
É Difference
É Double-difference
É Log
É Log-difference
É Double-log-difference

� Most series checked for outliers relative to IQR (rare)
� Final series were Studentized in estimation of PC
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Raw Data Before Transform
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Raw Data after Transform
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Studentized Data
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First Component
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First Three Components
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Scree Plot (Log)
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Scree Plot
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Information Criteria
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Individual Fit against r
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Forecasting



Forecast Methods

� Forecast problem is not meaningfully different from standard problem
� Interest is now in yt, which may or may not be in xt

É Note that stationary version of yt should be forecast, e.g. ∆yt or ∆2yt
� Two methods to forecast

Unrestricted

yt+1 = φ0 +
p∑
i=1

φiyt−i+1 + θ ′f̂t + εit

� Treats factors as observed data, only makes sense if k is large
É Uses an AR(P) to model residual dependence
É Choice of number of factors to use, may be different from r
É Can also use lags of ft (uncommon)
É Model selection is applicable as usual, e.g. BIC
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Forecast Methods

Restricted
� When yt is in xt, yt = β f̂t + εt

εt = yt − β f̂t

ŷt+1|t = β f̂t+1|t +
p∑
i=1

φi

(
yt−i+1 − β f̂t−i+1

)
= β f̂t+1|t +

p∑
i=1

φiε̂t

� VAR to forecast f̂t+1 using lags of f̂t
� Univariate AR for ε̂t
� Usually found to be less successful than unrestricted
� Care is needed when using studentized data since forecasting recentered,
rescaled version of y
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Re-integrating forecasts

� When forecasting ∆yt,

Et [yt+1] = Et [yt+1 − yt + yt]
= Et [∆yt+1] + yt

� At longer horizons,

Et [yt+h] =
h∑
i=1

Et [∆yt+i] + yt

� When forecasting ∆2yt

Et [yt+1] = Et [yt+1 − yt − yt + yt−1 + 2yt − yt−1]
= Et

[
∆2yt+1

]
+ 2yt − yt−1

É In many cases interest is in ∆yt when forecasting ∆2yt
– For example CPI, inflation and change in inflation
– Same as reintegrating ∆yt to yt
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Multistep Forecasting

� Multistep can be constructed using either method
� Unrestricted requires additional VAR for f̂t
� Alternative use direct forecasting

yt+h|t = φ̂(h)0 +
ph∑
i=1

φ̂(h)iyt−i+1 + θ̂
′
(h)f̂t

É
(
h
)
used to denote explicit parameter dependence on horizon

É yt+h|t can be either the period-h value, or the h-period cumulative forecast
(more common)

� Direct has been documented to be better than iterative in DFMs
É Problem dependent
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“Forecasting”

� Used BIC search across models
� 3 setups

É GDP lags only (4), Components Only (6), Both

h∑
j=1

∆gt+j = φ0 +
4∑
s=1

γs∆gt−s+1 +
6∑
n=1

ψnfjt + εht

Both
GDP Only R2 Components Only R2 GDP Components R2

h = 1 1, 2, 4 .517 1, 2, 3, 4, 6 .662 1 1, 2, 3, 4, 6 .686
h = 2 1, 4 .597 1, 2, 3, 4, 6 .763 1 1, 2, 3, 4, 6 .771
h = 3 1, 4 .628 1, 2, 3, 4, 6 .785 1 1, 2, 3, 4, 6 .792
h = 4 1, 4 .661 1, 2, 3, 4, 6 .805 – 1, 2, 3, 4, 6 .805
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Improving Estimated Components



Generalized Principal Components

� Basic PCA makes use of the covariance or more commonly correlation
� Correlation is technically a special case of generalized PCA

min
β ,ft ,...ft

T∑
t=1

(xt − βft)′ Σ−1ε (xt − βft) subject to β
′β = Ir

� Clever choices of Σε lead to difference estimators
É Using diag

(
σ̂21, . . . , σ̂2k

)
where σ̂2j is variance of xj leads to correlation

É Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS )

1. Estimate ε̂it = xit − β̂ if̂t using r factors
2. Estimate σ̂2εi = T

−1∑ ε̂2it andW = diag (w1, . . . ,wk) where

wi =
1/σ̂εi∑k
j=1

1/σ̂εj

3. Compute PCA-GLS usingWX
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Other Generalized PCA Estimators

� Absolute covariance weighting
1. Compute complete residual covariance Σ̂ε from residuals
2. Replace σ̂2εi in step 2 with σ̂

2
εi =

∑k
j=1

∣∣Σ̂ε (i, j)∣∣
� Down-weights series which have both large idiosyncratic variance and
strong residual covariance

� Stock & Watson (2005) use more sophisticated method
1. Estimate AR(P) on ε̂it for all series

ε̂it =
pi∑
j=1

φjεit−j + ξit

2. Construct quasi-differenced xit using coefficients

x̃it = xit −
pi∑
j=1

φ̂jxit−j

3. Estimate σ̂2εi using ξ̂it
4. Re-estimate factors using quasi-differenced data and weighting, iterate if
needed
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Generalized Principal Components Inputs
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Generalized Principal Components Weights
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Redundant and repeated factors

� Redundant factors can have adverse effects on common components
� Exactly redundant factors are identical to increasing the variance of a
studentized data series
É Including xit m-times is the same as using mxit

� Some evidence that excluding highly correlated factors is useful (Boivin &
Ng 2006)

Algorithm (Removal of Redundant Factors)

1. For each series i find series with maximally correlated error, call index ji
2. Drop series in {ji} that are maximally correlated with more than 1 series
3. For series which are each other’s ji, drop series with lower R2

� Can increase step 1 to two or even three series
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Thresholding to Select Forecasting Relevant Factors

� Bai & Ng (2008) consider problem of selecting forecasting relevant factors
� Well known issue for PCA is that factors are selected only using xt
� Can this be improved using information about yt?

Algorithm (Hard Thresholding for Variable Selection)

1. Regress yt = φ0 +
∑p

i=1 φiyt−i + γxt−1 + εt
2. Compute White heteroskedasticity robust standard errors and t-stat
3. Retain any xt where |t| > Cα for some choice of α. Common choices are 10%,
5% or 1%.

� Bai & Ng also discuss methods for soft thresholding, but these require
technology beyond this course (LASSO and Elastic Net)
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Hard Thresholding for GDP, h = 1
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Hard Thresholding for GDP, h = 4
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Prinicpal Component Analysis with Missing Data
� Two obvious solutions to missing data in PCA

É Drop all series that have missing observations
É Impute values for the missing values

� Missing data structure in SW 2012
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Expectations-Maximization (EM) Algorithm

� Some problem with unobserved states can be solved using the EM algorithm
� Consider problem of estimating means from an i.i.d. mixture

Xi = Yiµ1 + (1− Yi)µ2 + Zi

É Yi is i.i.d. Bernoulli(p), Zi is standard normal
É Yi was observable, trivial problem (OLS)
É When Yi is not observable, much harder
É EM algorithm will iterate across two steps:

1. Construct “as-if” Yi using expectations of Yi given µ1 and µ2
2. Compute

µ̂1 =
∑
Pr (Yi = 1)Xi∑
Pr (Yi = 1)

µ̂2 =
∑
Pr (Yi = 0)Xi

n−
∑
Pr (Yi = 1)

3. Return to 1, stopping if the means are not changing much

É Algorithm is initialized with “guesses” about µ1 and µ2
– Example: Mean of data above median, mean of data below median

É Consider case where µ1 = 10, µ2 = −10
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Imputing Missing Values in PCA

� Ideally would like to solve PCA problem only for observed data
� Difficult in practice, no know closed form estimator
� Expectation-Maximization (EM) algorithm can be used to simply impute
missing data
É Replace missing with r-factor expectation (E)
É Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define wij = I
[
yij observed

]
and set i = 0

2. Construct X(0) =W� X + (1−W)� ιX̄ where ιis a T by 1 vector of 1s

3. Until
∣∣∣∣∣∣X(i+1) − X(i)∣∣∣∣∣∣ < c:

a. Estimate r factors and factor loadings, F̂(i) and β̂ (i) from X(i) using PCA
b. Construct X(i+1) =W� X + (1−W)�

(
F̂(i)β̂ (i)

)
c. Set i = i + 1
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Hierarchical Factors

� Can use partitioning to construct hierarchical factors
� Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors,
and extract 1 or more factors from residuals

É Country factors uncorrelated with Global, but not local from other
regions/countries

� Nominal and Real
1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract
factors from residuals
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