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= Dynamic Factor Models

= The 3-Pass Regression Filter

» Regularized Reduced Rank Regression
= Time permitting

» Bagging
» Filters and decompositions

How Many is Many?
= Many here means 25 or more
= Often many more, 100s of series
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New challenges OXFORD *

Why factor models
= Are parsimonious while effectively including many regressors
» Can remove measurement error or other useless information from predictors
= Factor may be of interest

» Leading indicators:

> €-coin
> Chicago Fed National Activity Index
> Aruoba-Diebold-Scotti Business Conditions Index

» Real and Nominal factors
» Global and Local factors
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Eurocoin OXFORD *

= European Coincident Indicator
= First factor in a Europe-wide model

€-coin: the Euro Area Economy in One Figure — May 2014
€-coin and eurg-area GDF
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Chicago Fed National Activity Index SKioRD

= Factor extracted from 85 series
= Based on research in forecasting inflation
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ADS Business Conditions Index OXFORD ‘&

= Based on factor model in Aruoba, Diebold & Scotti
= Extracts common factor in:

» weekly initial jobless claims
monthly payroll employment
industrial production

personal income less transfer payments, manufacturing and trade sales
quarterly real GDP

The Model

= Scalar latent factor

\{

v

v

\{

q
Xt = Z PiXt—i T Ni
i=1

= Indicators
pi
Yie = i+ BiXe + > YVie—na, + €
j=1

» A; allows series to have different observational frequencies
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ADS Business Conditions Index OXFORD &%

Aruoba-Diebold-Scotti Business Conditions Index ( 12/31/2007- 05/24/2014)
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Notation OXFORD ‘&7

= T number of time series observations
= k number of series available to forecast
= y; series to be forecast, m by 1
» m will often be 1
= X; series used to forecast, k by 1

» Usually assume E[x;] = 0 and Cov [x;] = I
» Demeaned and standardized
~ Suppose x; = S ¥ (% — )

= f, factors, rby 1
= X; may bey;, but not necessarily

» y: could be subset of x; (common)
» y; could be excluded from factor estimation (uncommon)
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Why factor models? OXFORD ‘¢

Factor models help avoid issues with large, kitchen-sink models

Consider issue of parameter estimation error when forecasting

Suppose correct model is linear

Vis1 = PX; + €;

Forecast using OLS estimates is then

S/t+1|t = /3Xt
= (/3 —p +/3)Xt
= (/3 —ﬁ)xt+ [5Xt

estimation error  correct forecast
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OLS when there are many regressors OXFORD ‘&

= Suppose €;, X; are independent and jointly normally distributed

2
e | | o O
o=l

Standard assumptions have k fixed, so as T — oo, 5 — 8 20

5’t+1]t ~ N (%, 0)

Degenerate normal - no error since f5 is effectively known

What about the case when k is large

Use diagonal asymptotics, k/T — ¢,0 < k < c < K < o0
In this case

S/t+1|t ~N (ﬁxt» kT x U?)

» |s still random, even when T — oo

True even if all 5 = 0!

10/71



UNIVERSITY OF

(Really) Big models don’t make sense OXFORD &2

= When the number of parameters is large, then almost all coefficients must
be O

k
Yo=Y PiXei+ €
i=1

= Variance of the LHS is the same as the RHS
k
Viy] = Zﬁiz + 07
i=1

» If k — oo, inf; |Bi| > k > 0, then V[y;] — o0

= Even when T is very large, it will not usually make sense to have k
extremely large

= Factor models will effectively have small ; coefficient, only using two steps

1. Construct average-like estimators of factors from x; — coefficients are O (1/k)
2. Weight these using a small number of relatively large coefficients
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Static Factor Models A )

= Consider the cross-section of asset returns
= Model uses factors as RHS variables

.
Xit = E Aijfjt + €ir
=1

= A; are the factor loadings for series i, factor j
= ¢; is the idiosyncratic error for series i

= |n vector notation,

Xt = A ft + €;
kx1 kxrrx1  rx1

» Aiskbyr
» frisrbyl
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Static Factor Models OXFORD ‘&2

= |n matrix notation,
X =FA + €
Txk Txrrxk Txk
» Xis T by k
» FisTbyr
» eiskbyl
= When model is a strict (as opposed to approximate), E [e;] = 0 and
E [ei€;] = 3 = diag (0,...,0%)
= Covariance of x; is then
AN + 3,

» Q=Covi[fi],rbyr
» Covariance will play a crucial role in estimation of factors

13/71



UNIVERSITY OF

Estimation using Principal Components OXFORD ‘&

= Principal components can be used to estimate factors
= Formally, problem is

T
min x; — Bf) (x, — Bf;) subjectto p'p =1,
ﬂ,ft’__.ft;( : — Bf) (x — pf;) subject to B

» Biskbyr
> f3 is related to but different from A

> A is the DGP parameter
> f is a normalized and rotated version of A

Definition (Rotation)

A square matrix B is said to be a rotation of a square matrix A if B= QA and
QQ'=QQ=1L

» frisrby1

» p’'p =1, is a normalization, and is required
> P = ((B/2) (2fr) L
» Generally, for full rank Q, (8Q) (Q~!f;) = pf;
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The Objective Function OXFORD &

= |If 5 was observable, solution would be OLS
P ~1
f = (/5//5) B X
This can be substituted into the objective function
T , T
S (x=BB'B)BY) (=B (BB Bx) = Y x(1-B(BB) B )x
t=1 t=1

= This works since I — B (B'B) " B’ is idempotent
» A A=A
= Some additional manipulation using the trace operator on a scalar leads to
two equivalent expressions

T
n}jintzzljxé (I -B(B'B)" /5/) X = maxtr ((/j’/j)_ P p'sp (B'B)” /2>
= mﬁax/j’zxﬁ

» All subjectto ' =1,
= Solution to last problem sets 5 to the eigenvectors of ¥
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Eigenvalues and Eigenvectors OXFORD ‘o

Definition (Eigenvalue)

The eigenvalues of a real, symmetric matrix k by k matrix A are the k solutions to

ALy — Al =0

where | - | is the determinant.

= Properties of eigenvalues
» detA = H;=1 A
» trA = Z;:I A
» For positive (semi) definite A, A; >0,i=1,...,r (4; > 0)
» Rank

> Full-rank A implies A; #0,i=1,...,r
> Rank g < rmatrix Aimplies 4; #0,i=1,...,qand 4; =0,j=q+1,...,r
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Properties of Eigenvalues and Eigenvectors OXFORD &

Definition (Eigenvector)

An a k by 1 vector u is an eigenvector corresponding to an eigenvalue A of a real,
symmetric matrix k by k matrix A if

Au = Au

= Properties of eigenvectors

» If A is positive definite, then
A = VAV’

where A is diagonal and VV' = V'V =1
Definition (Orthonormal Matrix)

A k-dimensional orthonormal matrix U satisfies UU = I, and so U’ = U~ ..

= Implication is
V'AV = V'VAV'V = A
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Computing Factors using PCA SXEORD S

= X is T by k (assume demeaned)

.....

= Factors are estimated
X'X = VAV’
V'X'XV = V'VAV'V
(XV) (XV)=Asince V' =V~!
F'F = A.
» F =XV isthe T by k matrix of factors

» B =V’ isthe k by k matrix of factor loadings.
= All factors exactly reconstruct Y

FB=FV =YVV' =Y
» Assumes k is large
= Note that both factors and loadings are orthogonal since
FF=Aand p'p =1

= Only loadings are normalized
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Large k and factor analysis OXFORD &

= Consider simple example where
Xi=1Xfi+ €

= f; and €;; are all independent, standard normal
» Covariance of x is ¥y =1+ I;

1
—_ DN
N =
| I |

= First eigenvector is
(k_l/z, k=7 ..., k_1/2)

» Form is due to normalization

k k

2
> vi=1, Y Vv =0
=1 i=1

> Z;{:I (k_l/z)z = Z:’(:I K=k =1
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Estimated Factors OXFORD ‘&2

Estimated factor is then

k k
fr=D Kk Pxp=k" (l/k int> = KPR=) wx
=1 =1

What about x

k
¥ = k7! (th-i-éit)
i=1

ft + €

~ fi

Normalization means factor is O, (k”*)

~ Can always re-normalize factor to be O, (1) using f;/k"?

Key assumption is that é; follows some form of LLN in k

In strict factor model, no correlation so simple
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Approximate Factor Models s or 8

= Strict factor models require strong assumptions
Cov (€, €55) =0 i#j, s#t
= These are easily rejectable in practice

» Approximate Factor Models relax these assumptions and allow:
» (Weak) Serial correlation in €;

(e @]
> sl < o0
s=0

> (Weak) Cross-sectional correlation between €; and €;;

k
lim ZE |€itejt| < o0

k— o0 -
» Heteroskedasticity in e
= Requires pervasive factors
Xy = Afi+e€
lim rank (k"'A’A) = r

k—oo
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Practical Considerations when Estimating Factorsoxrorn*

= Key input for factor estimation is Xy

» |In most theoretical discussions of PCA, this is the covariance

T
=T ') (% — )X — )

t=1

= Two other simple versions are used
» Quter-product
T
TT'X'X=T"") xx;
t=1
> Similar to fitting OLS without a constant

» Correlation matrix
T
—1§ : /
X — T tht
t=1

> Zt = (Xt — () © & are the original data series, only studentized
> Important since scale is not well defined for many economic data (e.g. indices)
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Fama-French Data OXFORD ‘&2

= [nitial exploration based on Fama-French data
» 100 portfolios

> Sorted on size and boot-to-market
» 49 portfolios
> Sorted on industry
= Equities are known to follow a strong factor model

» Series missing more than 24 missing observations were dropped

> 73 for 10 by 10 sort remaining
> 41 of 49 industry portfolios

» First 24 data points dropped for all series
» July 1928 - December 2013

= T=1,026
» k=114
= Two versions, studentized and raw
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First Factor from FF Data OXFORD |

UNIVERSITY OF

401

20

10

Market

-10

Scatter Plot of Excess Market and 1st PC

ce p*=93.7

-60

|
-40 -20 0 20 40 60 80
First Component

24/71



UNIVERSITY OF

First Factor from FF Data (Raw) SKisin

Scatter Plot of Excess Market and 1st PC (raw)
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Choosing the number of factors OXFORD *

= So far have assumed r is known
= In practice r has to be estimated
= Two methods

» Graphical using Scree plots

> Plot of ordered eigenvalues, usually standardized by sum of all
> Interpret this as the R% of including r factors

> Recall Z§=1 A; = k for correlation matrix (Why?)
> Closely related to system R2,

YA

R*(r) =
Z;I';l Aj

» |Information criteria-based
> Similar to AIC/BIC, only need to account for both kand T

Stylized Fact(ors)

If in doubt, all known economic panels have between 1 and 6 factors
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Scree Plot: Fama-French OXFORD *

Scree Plot, Fama-French Size, B-to—M, Industry
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Scree Plot: Fama-French OXFORD *

Scree Plot, Fama—-French Size, B-to—M, Industry (Log)
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Scree Plot: Fama-French (Non-Factors) OXFORD

Scree Plot, Fama-French Size, B-to—M, Industry
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Information Criteria OXFORD ‘€2

= Bai & Ng (2002) studied the problem of selecting the correct number of
factors in an approximate factor model
= Proposed a number of information criteria with the form

1n\7(\r)+r><g(k,T)

T
Vi) = > (ke —BWOEM) (% — BN (1)
t=1

» V (r) is the value of the objective function with r factors
= Three versions

—— k+T kT
ICy, = 1nV(r)+r<W> In (k-I——T)
IC,, = In V() +r (klj—TT) In (min (k, T))
B . In (min (k, T))
ICp; = InV()+r ( — ( K T)

= Suppose k ~ T, IC,,is BIC-like

ICyy =InV (r)+2r (thT)
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Information Criteria: Fama-French OXFORD |

Information Criteria
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Information Criteria: Fama-French (Raw) OXFORD ‘&5

Information Criteria (raw)
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Assessing Fit OXFORD ‘&%

= Fit can be assessed both globally and for individual series
Least squares objective leads to natural R*> measurement of fit
Global fit

tr(X—p (NEM) (X—pn)FD)
tr (X'X)

Rélobal(r) = 1-
Z?:l Ai
k
Zj:l Aj
. — k T roa 2
Numeratorisjust V(r)=>"._; > .., (Xit - Zj:] ﬁijﬁ't)

When x has been studentized, tr (X'X) = Z]’-‘Zl A; =Tk
Individual fit

2
T A
thl (Xit - 2;21 ﬁijﬁt)
_ —
D=1 Xit

» Useful for assessing series not well described by factor model

RI(r) = 1
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Dynamic Factor Models OXFORD &

= Dynamic factors model specify dynamics in the factors
= Basic DFM is

S

Xy = Z‘I’ift-l-ft
i=0
q

f, = ) wf,_;j+n,
j=1

= Observed data depend on contemporaneous and lagged factors
» Factors have VAR-like dynamics
= Assumed that f; and €; are stationary, so X; is also stationary
» Important: must transform series appropriately when applying to data
= €; can have weak dependence in both the cross-section and time-series
= E e, m,] =0forallt,s
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Optimal Forecast from DFM OXFORD

s q
Xy = Z‘I’ift_i-l-et, ft = Z‘I’ft_j-i-nt
i=0 j=1

» Optimal forecast can be derived

N
E [Xiep1|%e, £, %1, f-1,...] = E [Z @ ifei1—i+ €irrr [Xe. B, X1, B 1,
=0

s
= E; [Z ¢ift+1—i] + Et[€¢41]
i=0

s’ n
= D Affiiii+ Y BiXijn
i=1 j=1
= Predictability in both components

» Lagged factors predict factors
» Lagged x;; predict €;;
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Invertibility and MA processes OXFORD &2

= DFM is really factors plus moving average
= Moving average processes can be replaced with AR processes when

invertible
Vi = €+ 0€q
Ve —0yi—1 = € +0€_1—0(0€—2+€r—1)
= €t — 026t—2
Ve — O0ye_1 + 92Yt—2 = € — 92€t—2 +6* (O€r—3 + €r—2)

= e +0%(0c_3+€2)

(e .e]

=0y = e

i=0
Ve = Z —(=0) yr_i + €
i=1
= Can approximate finite MA with finite AR
= Quality will depend on the persistence of the MA component
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Dynamic as Static Factor Models OXFORD &

Superficially dynamic factor models appear to be more complicated than
static factor models

Dynamic Factor models can be directly estimated using Kalman Filter or
spectral estimators that account for serial correlation in factors

» Latter are not useful for forecasting since 2-sided

(Big) However, DFM can be converted to Static model by relabeling
In DFM, factors are

[ftr ft—I) RIES) ft—S]

» Total of r(s + 1) factors in model

Equivalent to static model with at most r (s + 1) factors

» Redundant factors will not appear in static version
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Dynamic as Static Factor Models OXFORD ‘&2

» Consider basic DFM
Xi = Qufet+ Ppfi1+ €
fo = Y+
= Model can be expressed as
Xi = ¢ (Yfic1+0) + Piofio1 + €ir
= Qune+ Qin (1 +(21/9) ) fr—1 + €5t

= One version of static factors are n; and f;_

> In this particular version, n; is not “dynamic” since it is WN
» f;_1 follows an AR(1) process

» Other rotations will have different dynamics
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Dynamic as Static Factor Models OXFORD ‘&2

= Basic simulation

Xi = Quft+ Qifi—1+€i
fo = Yf1+m:
= ¢ ~N(1,1),¢05 ~N(2,1)
» Smaller signal makes it harder to find second factor
= =05
» Higher persistence makes it harder since Corr [ft,ft_l} is larger

= Everything else standard normal
= k=100, T =100

» Also k = 200 and T = 200 (separately)
= All estimation using PCA on correlation

Number of Factors for Forecasting

Better to have r above r* than below
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Measuring Closeness of Estimate OXFORD &

= Factors are not point identified

» Can use an arbitrary rotation and model is equivalent

= Natural measure of similarity between original (GDP) factors and estimated
factors is global R?

fi = Afi+n,
T .14
RZ — 1 — Zt:l lrlll‘,nt
> fif:

= Note that A is a 2 by 2 matrix of regression coefficients
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Dynamic as Static Factor Models OXFORD ‘&%

IC) Selected r, T=100, k=100
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Dynamic as Static Factor Models OXFORD &

IC) Selected r, T=100, k=200
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Dynamic as Static Factor Models OXFORD ‘&%

IC) Selected r, T=200, k=100
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Dynamic as Static Factor Models OXFORD |

R? of factors on estimated factors
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Stock & Watson (2012) Data OXFORD &

Stock & Watson have been at the forefront of factor model development

Data is from 2012 paper “Disentangling the Channels of the 2007-2009
Recession”

Dataset consists of 137 monthly and 74 quarterly series

» Not all used for factor estimation
» Aggregates not used if disaggregated series available

Monthly series are aggregated to quarterly, which is frequency of data

Series with missing observations are dropped for simplicity

» Before dropping those with missing values data set has 132 series
» After 107 series remain
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The series OXFORD ‘€2

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6

Stock Prices, Wealth, Household Balance Sheets
Housing Prices

Exchange Rates

Other

N O N OO
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Data Transformation OXFORD ‘&

Monthly series were aggregated to quarterly using

» Average
» End-of-quarter

All series were transformed to be stationary using one of:

» No transform

» Difference

» Double-difference

» Log

» Log-difference

» Double-log-difference

Most series checked for outliers relative to IQR (rare)
Final series were Studentized in estimation of PC
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Raw Data Before Transform OXFORD

Untransformed SW Data (Studentized)
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Raw Data after Transform OXFORD

Transformed SW Data
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Studentized Data SXPORD ¢

Studentized SW Data
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First Component OXFORD ‘&
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First Three Components OXFORD

First Component (Standardized)

Second Component (Standardized)

Third Component (Standardized)
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Scree Plot (Log) OXFORD |

Scree Plot, Stock & Watson (Log)
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Scree Plot OXFORD

Scree Plot, Stock & Watson
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Information Criteria OXFORD

Information Criteria
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Individual Fit against r

Individual R? using r factors
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Forecast Methods OXFORD ‘€2

= Forecast problem is not meaningfully different from standard problem
= Interest is now in y;, which may or may not be in x;

> Note that stationary version of y; should be forecast, e.g. Ay, or A%y,

= Two methods to forecast

Unrestricted

p
Yer1 = o+ > @Y1+ 0'F + e
i=1

= Treats factors as observed data, only makes sense if k is large

» Uses an AR(P) to model residual dependence

» Choice of number of factors to use, may be different from r
» Can also use lags of f; (uncommon)

» Model selection is applicable as usual, e.g. BIC
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Forecast Methods OXFORD ‘€2

Restricted
= Whenvy;isin X, vy = ﬁft + €

€t =Vt — ﬁft

p
yt+l|t = ﬁft+l|t + Z Pi (Yt—i+1 - ﬁft—i+1)
i=1
R p
= Pl + Z Pi€t
i=1

VAR to forecast fm using lags of ft
Univariate AR for é;
Usually found to be less successful than unrestricted

Care is needed when using studentized data since forecasting recentered,
rescaled version of y
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Re-integrating forecasts OXFORD ‘&

= When forecasting Ayg,

E¢[Ver1]l = EelVer1 — Ve + Vil
= E/[Ay] + Ve

= At longer horizons,

h
B [Vern] = ) Ee[AYei] + Ve
i=1

= When forecasting A%y;

Et[Ver1] = EelVer1 = Ve = Ve + V-1 + 2V — Vi—1]
= E [AZYH—I] +2¥: — Vi1

>~ In many cases interest is in Ay; when forecasting A%y,

> For example CPI, inflation and change in inflation
> Same as reintegrating Ay; to y;
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Multistep Forecasting OXFORD

= Multistep can be constructed using either method
= Unrestricted requires additional VAR for f;
= Alternative use direct forecasting

h
p
N N A
Yerht = Qo + Y duiYe—iv1 + Ol
=1

> (h) used to denote explicit parameter dependence on horizon
> Yerhe €AN be either the period-h value, or the h-period cumulative forecast
(more common)

= Direct has been documented to be better than iterative in DFMs

» Problem dependent
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OXFORD <

= Used BIC search across models

= 3 setups

» GDP lags only (4), Components Only (6), Both

h 4 6
Z Agt+j = o + Z YsA8t—s+1 + Z Yn jt T €nt
s=1 n=1
Both
GDPOnly  R? Components Only ~ R? GDP  Components  R?

h=1 1,2,4 517 1,2,3,4,6 .662 1 1,2,3,4,6 .686
h=2 1,4 .597 1,2,3,4,6 .763 1 1,2,3,4,6 771
h=173 1,4 628 1,2,3,4,6 .785 1 1,2,3,4,6 .792
h=4 1,4 661 1,2,3,4,6 .805 - 1,2,3,4,6 .805
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Generalized Principal Components OXFORD ‘&

= Basic PCA makes use of the covariance or more commonly correlation
= Correlation is technically a special case of generalized PCA

T
ﬁI:If%,i.l.’.lft ; (x; — pf) =7 (x; — pfi) subjectto p'p =1,
= Clever choices of ¥, lead to difference estimators

» Using diag (67,...,6%) where 67 is variance of x; leads to correlation
» Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS )

1. Estimate é; = x; — B £: using r factors
2. Estimate 6% = T~'S" é2 and W = diag (wy, .. ., wy) where

l/é'ei

k
Zj:l 1/é-ej

Wi

3. Compute PCA-GLS using WX
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Other Generalized PCA Estimators OXFORD

= Absolute covariance weighting

1. Compute complete residual covariance 3¢ from residuals
2. Replace 67 in step 2 with 67 = 35 | |3 (i,))]

= Down-weights series which have both large idiosyncratic variance and
strong residual covariance

= Stock & Watson (2005) use more sophisticated method
1. Estimate AR(P) on é;; for all series

pi
€ir = Z Qj€ir—j + Sit
j=1
2. Construct quasi-differenced x; using coefficients

pi
Xit = Xit — E PiXie—j
=1

W

Estimate 6% using £
4. Re-estimate factors using quasi-differenced data and weighting, iterate if
needed
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Generalized Principal Components Inputs OXFORD &2

Normalized Residual Variance

1.5F

0.5

Normalized Residual Absolute Covariance

15

0.5
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Generalized Principal Components Weights OXFORD'

Generalized PCA Weights

1.5r °
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1.3F *
3 * o
S 1.2r °
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3 1.1f . *
g .. .: [} [ J ° ° [} °
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Residual Variance
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Redundant and repeated factors OXFORD &

Redundant factors can have adverse effects on common components

Exactly redundant factors are identical to increasing the variance of a
studentized data series

» Including x;; m-times is the same as using mx;

Some evidence that excluding highly correlated factors is useful (Boivin &
Ng 2006)

Method

1. For each series i find series with maximally correlated error, call index j;
2. Drop series in {j;} that are maximally correlated with more than 1 series
3. For series which are each other’s j;, drop series with lower R?

Can increase step 1 to two or even three series
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Prinicpal Component Analysis with Missing Data OXFORD

= Two obvious solutions to missing data in PCA

» Drop all series that have missing observations
» Impute values for the missing values

= Missing data structure in SW 2012
1960
1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

20 40 60 80 100 120 140 160 180 200
Series
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Expectations-Maximization (EM) Algorithm __ 6%idin &

= Some problem with unobserved states can be solved using the EM algorithm
= Consider problem of estimating means from an i.i.d. mixture

Xi=Yiur+(1-Y)us+2

\4

Y; is i.i.d. Bernoulli(p), Z; is standard normal
Y; was observable, trivial problem (OLS)
When Y; is not observable, much harder

EM algorithm will iterate across two steps:

\4

v

v

1. Construct “as-if” Y; using expectations of Y; given uq and uy
2. Compute

S Pr(Yi=1)X
X Pr(Y;=1)

3. Return to 1, stopping if the means are not changing much

S Pr(Y; = 0)X;
n— > Pr(Y;=1)

1 fo =

v

Algorithm is initialized with “guesses” about u; and us

> Example: Mean of data above median, mean of data below median

v

Consider case where u; = 10, uz = —10
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Imputing Missing Values in PCA )

= |deally would like to solve PCA problem only for observed data
= Difficult in practice, no know closed form estimator

= Expectation-Maximization (EM) algorithm can be used to simply impute
missing data

» Replace missing with r-factor expectation (E)
» Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define wy = I |y;; observed| and seti =0
2. Construct XO =W ® X + (1 — W)@ tX where vis a T by 1 vector of 1s

3. Until HX("“) ~x0|] < ¢

B9 from X0 using PCA

())

a. Estimate r factors and factor loadings, £0) an
b. Construct X)) =W o X + (1 - W)© ( 20
c. Seti=i+1

d
p
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Hierarchical Factors OXFORD ¢

= Can use partitioning to construct hierarchical factors
= Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors,
and extract 1 or more factors from residuals

» Country factors uncorrelated with Global, but not local from other
regions/countries
= Nominal and Real

1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract
factors from residuals
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