Technical Trading Rules

The Econometrics of Predictability
This version: May 7, 2014

May 7, 2014

Overview

- Technical Trading Rules
- Filter Rules
- Moving Average Oscillator
- Trading Range Break Out
- Channel Breakout
- Moving Average Convergence/Divergence
- Relative Strength Indicator
- Stochastic Oscillator
- Simple Momentum
- On-Balance Volume
- Model Combination

Technical Trading

- Technical trading is one form or predictive modeling
- It is mostly a graphical, rather than statistical tool
- Constructs rules based on price movements
- Rules, while often used graphically, can usually be written down in mathematical expressions
- This can be used to formally allow for testing for technical trading rules
- Testing the rules is going to be the basis of the assignments this term
- Using appropriate methodology for evaluation will be important

Data

- Daily DJIA for 12 months
- Use high, low and close
- Compute the rules, but focus on the visualization of the rule
- Rule implementation
- Red dot is sell
- Green dot is buy

Filter Rules

Definition ($x \%$ Buy Filter Rule)

A $x \%$ filter rule buys when price has increased by $x \%$ from the previous low, and liquidates when the price has declined $x \%$ from the high measured since the position was opened.

Definition ($x \%$ Sell Filter Rule)

A $x \%$ filter rule sells when price has declined by $x \%$ from the previous high, and liquidates when the price has increased $x \%$ from the low measured since the position was opened.

- These are a momentum rule
- If using both rules with the same percentage, will always have an long or short position, since after a decline of $x \%$, a short is opened, and after a rise of $x \%$ a long is opened

Filter Rules

- A modified rule allows for periods where there is no long or short

Definition ($x \% / y \%$ Buy Filter Rule)

A $x \%$ filter rule buys when price has moved up by $x \%$ from the previous low, and liquidates when the price has declined $y \%$ from the high measured since the position was opened.

- The sell rule is similarly defined, only using the relative low
- $y \leq x$, and $y=x$ then reduces to previous rules
- Do not have to use both long and short rules

Filter Rules

Filter ($x=5 \%$)

Filter Rules

Filter ($x=2.5 \%$)

Moving-Average Oscillator

Definition (Moving-Average Oscillator)

The moving average oscillator requires two parameters, m and $n, n>m$,

$$
M A_{t}=m^{-1} \sum_{i=t-m+1}^{t} P_{i}-n^{-1} \sum_{i=t-n+1}^{t} P_{i}
$$

- This is obviously the difference between an m period MA and a n period MA
- Momentum rule
- It is used as an indicator to buy when positive or sell when negative
- Usually used to initiate a trade when it first crosses, not simply based on sign

Moving-Average Oscillator

- $M A_{t}$ is not enough to determine a buy rule, since the direction of the crossing matters
- Formally the buy and sell can be defined as the difference of $M A_{t}$

$$
\begin{array}{lc}
\text { Buy if } & \operatorname{sgn}\left(M A_{t}\right)-\operatorname{sgn}\left(M A_{t-1}\right)=2 \\
\text { Sell if } & \operatorname{sgn}\left(M A_{t}\right)-\operatorname{sgn}\left(M A_{t-1}\right)=-2
\end{array}
$$

- sgn is the signum function which returns $x /|x|$ for $x \neq 0$ and 0 for $x=0$

Moving Average Oscillator

Moving Average Oscillator ($m=12, n=26$)

Trading Range Breakout/Support and Resistance

Definition (Trading Range Breakout)

The trading range break out is takes one parameter, m, and is defined

$$
\operatorname{TRB}_{t}=\left(P_{t}>\max \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right)-\left(P_{t}<\min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right)
$$

- Positive values (1) indicate that the price is above the m-period moving maximum, negative values -1 indicate that it is below the m-period moving minimum.
- Momentum rule
- Buy on positive signals, sell on negative signals
- If no signal, then takes the value 0

Trading Range Breakout

Trading Range Breakout (m=26)

Channel Breakout

Definition ($\mathrm{x} \%$ Channel Breakout)

The $x \%$ channel breakout rule, using a m-day channel, is defined

$$
\begin{array}{ll}
\text { Buy if } & P_{t}>\max \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right) \cap \frac{\max \left(\left\{P_{i}\right\}_{i_{t-t-m}^{t-1}}^{\min \left(\left\{P_{i}^{t}\right\}_{i-t-m}^{t-1}\right)}<(1+x)\right.}{\text { Buy if }} \quad P_{t}<\min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right) \cap \frac{\max \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)}{\min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)}<(1+x)
\end{array}
$$

- Momentum rule
- $x \%$ denotes the channel
- Modification of trading range breakout with second condition which may reduce sensitivity to volatility

Channel Range Breakout

Channel Breakout ($x=5 \%, m=26$)

Moving Average Convergence/Divergence (MACD)

Definition (Moving Average Convergence/Divergence (MACD))

The moving-average convergence/divergence indicator takes three parameters, m, n and d, and is defined

$$
\begin{aligned}
& \delta_{t}=\left(1-\lambda_{m}\right) \sum_{i=0}^{\infty} \lambda_{m}^{i} P_{t-i}-\left(1-\lambda_{n}\right) \sum_{i=0}^{\infty} \lambda_{n}^{i} P_{t-i} \\
& S_{t}=\left(1-\lambda_{d}\right) \sum_{i=0}^{\infty} \lambda_{d}^{i} \delta_{t}
\end{aligned}
$$

- Pronounced MAK-D
- $\lambda_{m}=1-\frac{2}{m+1}, \lambda_{n}=1-\frac{2}{n+1}, \lambda_{d}=1-\frac{2}{d+1}$
- S_{t} is the signal line
- Plot often has δ and S, and a histogram to indicate the difference $\delta_{t}-S_{t}$
- Difference is used to predict trends

Buy if $\quad \operatorname{sgn}\left(\delta_{t}-S_{t}\right)-\operatorname{sgn}\left(\delta_{t-1}-S_{t-1}\right)=2$
Sell if $\operatorname{sgn}\left(\delta_{t}-S_{t}\right)-\operatorname{sgn}\left(\delta_{t-1}-S_{t-1}\right)=-2$

Moving Average Convergence/Divergence

Relative Strength Indicator

Definition (Relative Strength Indicator)

The relative strength indicator takes one parameter m and is defined as

$$
R S I=100-\frac{100}{1+\frac{\sum_{i=0}^{\infty} \lambda^{i}\left[\left[\left(P_{t-i}-P_{t-i-1}\right)\right)<0\right.}{\sum_{i=0}^{\infty} \lambda^{\lambda i}\left[\left(p_{t-i}-P_{t-i-1}\right)<0\right]}}, \quad \lambda=1-\frac{2}{m+1}
$$

- The core of the indicator are two EWMAs
- Each EWMA is based on indicator variables or positive (top) or negative (bottom) returns
- If all positive, then indicator will equal 100, if all negative, indicator will equal 0
- EWMA can be replaced with MA
- Buy signals are indicated if RSI is below some threshold (e.g. 30), sell if above a different threshold (e.g. 70)
- RSI is a reversal rule

Relative Strength Indicator (Reversal)

Stochastic Oscillator

Definition (Stochastic Oscillator)

A stochastic oscillator takes two parameters m and n and is defined as

$$
\begin{aligned}
\% K_{t} & =100 \times \frac{P_{t}-\min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)}{\max \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)-\min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)} \\
\% D_{t} & =\frac{1}{n} \sum_{i=1}^{n} \% K_{t-i+1}
\end{aligned}
$$

- Trading rules are based on intersections of the lines and the direction of of the intersection
- If $\% K_{t-1}<\% D_{t-1}$ and $\% K_{t}>\% D_{t}$, then a buy signal is indicated
- If $\% K_{t-1}>\% D_{t-1}$ and $\% K_{t}<\% D_{t}$, then a sell signal is indicated
- Often implemented using fast and slow periods, with feedback between the two

Stochastic Oscillator

Stochastic Oscillator

Bollinger Band

Definition (Bollinger Bands)

Bollinger bands plot the m-day moving average and the MA plus/minus 2 times the m-day moving standard deviation, where the moving averages are defined

$$
M A_{t}=m^{-1} \sum_{i=1}^{m} P_{t-i+1}, \sigma_{t}=\sqrt{m^{-1} \sum_{i=1}^{m}\left(\frac{\left(P_{t-i+1}-P_{t-i}\right)}{P_{t-i}}\right)^{2}}
$$

- Rules can be based on prices leaving the bands, and possibly then crossing of the moving average
- For example, buy when price hit bottom (reversal) and then sell when it hits the MA
- Alternatively buy when it hits the top (strong upward trend)

Bollinger Band

Bollinger Band (reversal, m=22)

Bollinger Band

Bollinger Band (momentum, m=10)

A Simple Momentum Rule

- Momentum is a common strategy
- Can construct a momentum rule as

$$
S_{t}= \begin{cases}1 & \text { if } P_{t}>P_{t-d} \\ 0 & \text { if } P_{t} \leq P_{t-d}\end{cases}
$$

- Technically (trivial) moving average rule with d-day delay filter

On-Balance Volume

Definition (On-Balance Volume)

On-Balance Volume (OBV) plots the difference between moving averages of signed daily volume, defined

$$
O B V_{t}=\sum_{s=1}^{t} V O L_{s} D_{s}
$$

where $V O L_{s}$ is the volume in period s, D_{s} is a dummy which is 1 if $P_{t}>P_{t-1}$ and -1 otherwise, and the trading signal is

$$
S_{t}= \begin{cases}1 & M A_{m, t}^{O B V}>M A_{n, t}^{O B V} \\ 0 & M A_{m, t}^{O B V} \leq M A_{n, t}\end{cases}
$$

where $M A_{q, t}^{O B V}=q^{-1} \sum_{i=1}^{q} O B V_{t-i-1}, q=m, n, m<n$.

- Most rules make use of price signals
- OBV mixes volume information with indicator variable

On-Balance Volume

Additional Filters

- Many ways rules can be modified
- MAs and EWMAs can be swapped
- Can use a d-day delay filter to stagger execution of trade from signal
- Can use $b \%$-band with some filters to reduce frequency of execution
- Requires the price price (or fast signal) to be $b \%$ above the band (or slow signal)
- Relevant for most rules
- Examples
- Moving-Average Oscillator: Requires fast MA to be larger than $1+b$ times slow for a buy signal, and smaller than $1-b$ for a sell signal
- Trading Range Breakout/Channel Breakout: Use $1+b$ times max and 1 - b times min
- Can use k-day holding period, so that positions are held for k-days and other signal are ignored

From Technical Indicators to Trading Rules

- Most technical rules are interpreted as buy, neutral or sell - 1, 0 or -1
- Essentially applies a step function to the trading signal
- Can use a other continuous, monotonic increasing functions, although not clear which ones
- One options is to run a regression

$$
r_{t+1}=\beta_{0}+\beta_{1} S_{t}+\epsilon_{t}
$$

- S_{t} is a signal is computed using information up-to and including t
- Can be discrete or continuous
- Maps to an expected return, which can then be used in Sharpe-optimization

Combining Multiple Technical Indicators

- Technical trading rules can be combined
- Not obvious how to combine when discrete
- Method 1: Majority vote
- Count number of rules with signs 1,0 or -1
- Method 2: Aggregation
- Compute sum of indicators divided by number of indicators

$$
\tilde{S}_{t}=\frac{\sum_{i=1}^{k} S_{k, t}}{k}
$$

and go long/short \tilde{S}_{t}

- Bound by 100% long and 100% short

Evaluating the Rules

- Obvious strategy it to look at returns, conditional on signal
- Important to have a benchmark model
- Often buy and hold, or some other much less dynamic strategy
- Obvious test is t-statistic of difference in mean return between the active strategy and the benchmark
- Can also examine predictability for other aspects of distribution
- Volatility
- Large declines

Brock, Lakonishok and LeBaron

- One of the first systematically test trading rules
- Focused on two rules:
- Moving Average Oscillator
- Trading Range Breakout
- (Controversially) documented evidence of excess returns to technical trading rules
- Returns were large enough to cover transaction costs

Moving Average Oscillator

- Moving Average Oscillators implemented for
- $m=1, n=50$
- $m=1, n=150$
- $m=5, n=150$
- $m=1, n=200$
- $m=2, n=200$
- Use both the standard rule and one with a 1%-band filter
- Standard is implemented by taking the position and holding for 10 days, ignoring all other signals
- b\%-band version:
- Requires an exceedence by 1% of the slow MA, but no crossing

$$
\text { Buy if }\left(\frac{M A_{t}}{n^{-1} \sum_{i=t-n+1}^{t} P_{i}}\right)>\frac{b}{100} \text {, Sell if }\left(\frac{M A_{t}}{n^{-1} \sum_{i=t-n+1}^{t} P_{i}}\right)<-\frac{b}{100}
$$

- If $b>0$ then some days may have no signal
- If $b=0$ then all days are buys or sells

Trading Range Breakout

- Trading range breakout is implemented for
- $m=50$
- $m=100$
- $m=150$
- Implemented using the standard and with a 1\% band
- $b \%$ band version is

$$
\begin{aligned}
T R B_{t}= & \left(P_{t}>\left(1+\frac{b}{100}\right) \max \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right) \\
& -\left(P_{t}<\left(1-\frac{b}{100}\right) \min \left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right)
\end{aligned}
$$

Empirical Application

- A total of 26 rules are created
- MAO: 5 (m, n) $\times 2$ (Fixed or Variable Window) $\times 2(b=0, .01)$
- TRB: $3(m) \times 2(b=0, .01)$
- DJIA from 1897 until 1986
- Main result is that there appears to be predictability using these rules
- Strongest results were for the fixed windows MAO with $m=1, n=200$ and $b=.01$
- TRB with $m=150$ and $b=.01$ also had a strong result
- Report
- Number of buy and sell signals
- Mean return during buy and sell signals
- Probability of positive return for buy and sell signals
- Mean return of a portfolio which both buys and sells

Moving Average Oscillator, Variable Length

Period	Test	N (Buy)	$N($ Sell $)$	Buy	Sell	Buy >0	Sell >0	Buy-Sell
1897-1986	$(1,50,0)$	14240	10531	0.00047	-0.00027	0.5387	0.4972	0.00075
				(2.68473)	(-3.54645)			(5.39746)
	$(1,50,0.01)$	11671	8114	0.00062	-0.00032	0.5428	0.4942	0.00094
				(3.73161)	(-3.56230)			(6.04189)
	$(1,150,0)$	14866	9806	0.00040	-0.00022	0.5373	0.4962	0.00062
				(2.04927)	(-3.01836)			(4.39500)
	$(1,150,0.01)$	13556	8534	0.00042	-0.00027	0.5402	0.4943	0.00070
				(2.20929)	(-3.28154)			(4.68162)
	$(5,150,0)$	14858	9814	0.00037	-0.00017	0.5368	0.4970	0.00053
				(1.74706)	(-2.61793)			(3.78784)
	$(5,150,0.01)$	13491	8523	0.00040	-0.00021	0.5382	0.4942	0.00061
				(1.97876)	(-2.78835)			(4.05457)
	$(1,200,0)$	15182	9440	0.00039	-0.00024	0.5358	0.4962	0.00062
				(1.93865)	(-3.12526)			(4.40125)
	$(1,200,0.01)$	14105	8450	0.00040	-0.00030	0.5384	0.4924	0.00070
				(2.01907)	(-3.48278)			(4.73045)
	($2,200,0$)	15194	9428	0.00038	-0.00023	0.5351	0.4971	0.00060
				(1.87057)	(-3.03587)			(4.26535)
	(2, 200, 0.01)	14090	8442	0.00038	-0.00024	0.5368	0.4949	0.00062
				(1.81771)	(-3.03843)			(4.16935)

Moving Average Oscillator, Fixed Length

Test	N (Buy)	$N($ Sell $)$	Buy	Sell	Buy >0	Sell >0	Buy-Sell
(1,50, 0)	340	344	$\begin{gathered} 0.0029 \\ (0.5796) \end{gathered}$	$\begin{gathered} -0.0044 \\ (-3.0021) \end{gathered}$	0.5882	0.4622	$\begin{gathered} 0.0072 \\ (2.6955) \end{gathered}$
$(1,50,0.01)$	313	316	$\begin{gathered} 0.0052 \\ (1.6809) \end{gathered}$	$\begin{gathered} -0.0046 \\ (-3.0096) \end{gathered}$	0.6230	0.4589	$\begin{gathered} 0.0098 \\ (3.5168) \end{gathered}$
($1,150,0$)	157	188	$\begin{gathered} 0.0066 \\ (1.7090) \end{gathered}$	$\begin{gathered} -0.0013 \\ (-1.1127) \end{gathered}$	0.5987	0.5691	$\begin{gathered} 0.0079 \\ (2.0789) \end{gathered}$
$(1,150,0.01)$	170	161	$\begin{gathered} 0.0071 \\ (1.9321) \end{gathered}$	$\begin{gathered} -0.0039 \\ (-1.9759) \end{gathered}$	0.6529	0.5528	$\begin{gathered} 0.0110 \\ (2.8534) \end{gathered}$
$(5,150,0)$	133	140	$\begin{gathered} 0.0074 \\ (1.8397) \end{gathered}$	$\begin{gathered} -0.0006 \\ (-0.7466) \end{gathered}$	0.6241	0.5786	$\begin{gathered} 0.0080 \\ (1.8875) \end{gathered}$
$(5,150,0.01)$	127	125	$\begin{gathered} 0.0062 \\ (1.4151) \end{gathered}$	$\begin{gathered} -0.0033 \\ (-1.5536) \end{gathered}$	0.6614	0.5520	$\begin{gathered} 0.0095 \\ (2.1518) \end{gathered}$
$(1,200,0)$	114	156	$\begin{gathered} 0.0050 \\ (0.9862) \end{gathered}$	$\begin{gathered} -0.0019 \\ (-1.2316) \end{gathered}$	0.6228	0.5513	$\begin{gathered} 0.0069 \\ (1.5913) \end{gathered}$
$(1,200,0.01)$	130	127	$\begin{gathered} 0.0058 \\ (1.2855) \end{gathered}$	$\begin{gathered} -0.0077 \\ (-2.9452) \end{gathered}$	0.6385	0.4724	$\begin{gathered} 0.0135 \\ (3.0740) \end{gathered}$
$(2,200,0)$	109	140	$\begin{gathered} 0.0050 \\ (0.9690) \end{gathered}$	$\begin{gathered} -0.0035 \\ (-1.7164) \end{gathered}$	0.6330	0.5500	$\begin{gathered} 0.0086 \\ (1.9092) \end{gathered}$
$(2,200,0.01)$	117	116	$\begin{gathered} 0.0018 \\ (0.0377) \end{gathered}$	$\begin{gathered} -0.0088 \\ (-3.1449) \end{gathered}$	0.5556	0.4397	$\begin{gathered} 0.0106 \\ (2.3069) \end{gathered}$

Trading Range Breakout

Test	N (Buy)	$N($ Sell $)$	Buy	Sell	Buy >0	Sell >0	Buy-Sell
$(1,50,0)$	722	415	0.0050	0.0000	0.5803	0.5422	0.0049
			(2.1931)	(-0.9020)			(2.2801)
$(1,50,0.01)$	248	252	0.0082	-0.0008	0.6290	0.5397	0.0090
			(2.7853)	(-1.0937)			(2.8812)
$(1,150,0)$	512	214	0.0046	-0.0030	0.5762	0.4953	0.0076
			(1.7221)	(-1.8814)			(2.6723)
$(1,150,0.01)$	159	142	0.0086	-0.0035	0.6478	0.4789	0.0120
			(2.4023)	(-1.7015)			(2.9728)
$(1,200,0)$	466	182	0.0043	-0.0023	0.5794	0.5000	0.0067
			(1.4959)	(-1.4912)			(2.1732)
$(1,200,0.01)$	146	124	0.0072	-0.0047	0.6164	0.4677	0.0119
			(1.8551)	(-1.9795)			(2.7846)
Average			0.0063	-0.0024			0.0087

The Standard Forecasting Model

- Standard forecasts are also popular for predicting economic variables
- Generically expressed

$$
y_{t+1}=\beta_{0}+\mathbf{x}_{t} \boldsymbol{\beta}+\epsilon_{t+1}
$$

- \mathbf{x}_{t} is a 1 by k vector of predictors ($k=1$ is common)
- Includes both exogenous regressors such as the term or default premium and also autoregressive models
- Forecasts are $\hat{y}_{t+1 \mid t}$
- Two level of aggregation in the combination problem

1. Summarize individual forecasters' private information in point forecasts $\hat{y}_{t+h, i \mid t}$

- Highlights that "inputs" are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure $C\left(\mathbf{y}_{t+h \mid t}, \mathbf{w}_{t+h \mid t}\right)$

- Obvious competitor is the "super-model" or "kitchen-sink" - a model built using all information in each forecasters information set
- Aggregation should increase the bias in the forecast relative to SM but may reduce the variance
- Similar to other model selection procedures in this regard

Why not use the "Super Model"

- Could consider pooling information sets

$$
\mathcal{F}_{t}^{c}=\cup_{i=1}^{n} \mathcal{F}_{t, i}
$$

- Would contain all information available to all forecasters
- Could construct consensus directly $C\left(\mathcal{F}_{t}^{c} ; \boldsymbol{\theta}_{t+h \mid t}\right)$
- Some reasons why this may not work
- Some information in individuals information sets may be qualitative, and so expensive to quantitatively share
- Combined information sets may have a very high dimension, so that finding the best super model may be hard
- Potential for lots of estimation error
- Classic bias-variance trade-off is main reason to consider forecasts combinations over a super model
- Higher bias, lower variance

Linear Combination under MSE Loss

- Models can be combined in many ways for virtually any loss function
- Most standard problem is for MSE loss using only linear combinations
- I will suppress time subscripts when it is clear that it is $t+h \mid t$
- Linear combination problem is

$$
\min _{\mathbf{w}} \mathrm{E}\left[e^{2}\right]=\mathrm{E}\left[\left(y_{t+h}-\mathbf{w}^{\prime} \hat{\mathbf{y}}\right)^{2}\right]
$$

- Requires information about first 2 moments of he joint distribution of the realization y_{t+h} and the time- t forecasts $\hat{\mathbf{y}}$

$$
\left[\begin{array}{c}
y_{t+h \mid t} \\
\hat{\mathbf{y}}
\end{array}\right] \sim F\left(\left[\begin{array}{c}
\mu_{y} \\
\mu_{\hat{y}}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{y y} & \boldsymbol{\Sigma}_{\mathrm{yy}}^{\prime} \\
\boldsymbol{\Sigma}_{y \hat{y}} & \boldsymbol{\Sigma}_{\hat{\mathrm{y}}}
\end{array}\right]\right)
$$

Linear Combination under MSE Loss

- The first order condition for this problem is

$$
\frac{\partial \mathrm{E}\left[e^{2}\right]}{\partial \mathbf{w}}=-\mu_{y} \mu_{\mathrm{y}}+\mu_{\mathrm{y}} \mu_{\mathrm{y}}^{\prime} \mathbf{w}+\Sigma_{\hat{y} \hat{\mathbf{y}}} \mathbf{w}-\Sigma_{y \hat{y}}=\mathbf{0}
$$

- The solution to this problem is

$$
\mathbf{w}^{\star}=\left(\mu_{\mathrm{y}} \mu_{\mathrm{y}}^{\prime}+\Sigma_{\hat{y} \hat{\mathbf{y}}}\right)^{-1}\left(\Sigma_{y \hat{y}}+\mu_{\mathrm{y}} \mu_{\mathrm{y}}\right)
$$

- Similar to the solution to the OLS problem, only with extra terms since the forecasts may not have the same conditional mean

Linear Combination under MSE Loss

- Can remove the conditional mean if the combination is allowed to include a constant, w_{c}

$$
\begin{aligned}
w_{c} & =\mu_{y}-\mathbf{w}^{\star} \boldsymbol{\mu}_{\hat{y}} \\
\mathbf{w}^{\star} & =\boldsymbol{\Sigma}_{\hat{\mathbf{y}}}^{-1} \boldsymbol{\Sigma}_{\mathrm{y} \hat{\mathbf{y}}}
\end{aligned}
$$

- These are identical to the OLS where w_{c} is the intercept and \mathbf{w}^{*} are the slope coefficients
- The role of w_{c} is the correct for any biases so that the squared bias term in the MSE is 0

$$
\operatorname{MSE}[e]=\mathrm{B}[e]^{2}+\mathrm{V}[e]
$$

Understanding the Diversification Gains

- Simple setup

$$
e_{1} \sim F_{1}\left(0, \sigma_{1}^{2}\right), e_{2} \sim F_{2}\left(0, \sigma_{2}^{2}\right), \operatorname{Corr}\left[e_{1}, e_{2}\right]=\rho, \operatorname{Cov}\left[e_{1} e_{2}\right]=\sigma_{12}
$$

- Assume $\sigma_{2}^{2} \leq \sigma_{1}^{2}$
- Assume weights sum to 1 so that $w_{1}=1-w_{2}$ (Will suppress the subscript and simply write w)
- Forecast error is then

$$
y-w \hat{y}_{1}-(1-w) \hat{y}_{2}
$$

- Error is given by

$$
e^{c}=w e_{1}+(1-w) e_{2}
$$

- Forecast has mean 0 and variance

$$
w^{2} \sigma_{1}^{2}+(1-w)^{2} \sigma_{2}^{2}+2 w(1-w) \sigma_{12}
$$

Understanding the Diversification Gains

- The optimal w can be solved by minimizing this expression, and is

$$
w^{\star}=\frac{\sigma_{2}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}}, 1-w^{\star}=\frac{\sigma_{1}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}}
$$

- Intuition is that the weight on a model is higher the
- Larger the variance of the other model
- Lower the correlation between the models
- 1 weight will be larger than 1 if $\rho \geq \frac{\sigma_{2}}{\sigma_{1}}$
- Weights will be equal if $\sigma_{1}=\sigma_{2}$ for any value of correlation
- Intuitively this must be the case since model 1 and 2 are indistinguishable from a MSE point-of-view
- When will "optimal" combinations out-perform equally weighted combinations? Any time $\sigma_{1} \neq \sigma_{2}$
- If $\rho=1$ then only select model with lowest variance (mathematical formulation is not well posed in this case)

Constrained weights

- The previous optimal weight derivation did not impose any restrictions on the weights
- In general some of the weights will be negative, and some will exceed 1
- Many combinations are implemented in a relative, constrained scheme

$$
\min _{\mathbf{w}} \mathrm{E}\left[e^{2}\right]=\mathrm{E}\left[\left(y_{t+h}-\mathbf{w}^{\prime} \hat{\mathbf{y}}\right)^{2}\right] \text { subject to } \mathbf{w}^{\prime} \boldsymbol{\iota}=1
$$

- The intercept is omitted (although this isn't strictly necessary)
- If the biases are all 0 , then the solution is dual to the usual portfolio minimization problem, and is given by

$$
\mathbf{w}^{\star}=\frac{\boldsymbol{\Sigma}_{\hat{\mathrm{y}} \hat{\mathrm{y}}}^{-1} \boldsymbol{\iota}}{\boldsymbol{\iota}^{\prime} \boldsymbol{\Sigma}_{\hat{\mathrm{y}} \mathrm{y}}^{-1} \iota}
$$

- This solution is the same as the Global Minimum Variance Portfolio

Combinations as Hedge against Structural Breaks oxfori

- One often cited advantage of combinations is (partial) robustness to structural breaks
- Best case is if two positively correlated variables have shifts in opposite directions
- Combinations have been found to be more stable than individual forecasts
- This is mostly true for static combinations
- Dynamic combinations can be unstable since some models may produce large errors from time-to-time

Weight Estimation

- All discussion has focused on "optimal" weights, which requires information on the mean and covariance of both y_{t+h} and $\hat{\mathbf{y}}_{t+h \mid t}$
- This is clearly highly unrealistic
- In practice weights must be estimated, which introduces extra estimation error
- Theoretically, there should be no need to combine models when all forecasting models are generated by the econometrician (e.g. when using \mathcal{F}^{c})
- In practice, this does not appear to be the case
- High dimensional search space for "true" model
- Structural instability
- Parameter estimation error
- Correlation among predictors

Clemen (1989): "Using a combination of forecasts amounts to an admission that the forecaster is unable to build a properly specified model"

Weight Estimation

- Whether a combination is needed is closely related to forecast encompassing tests
- Model averaging can be thought of a method to avoid the risk of model selection
- Usually important to consider models with a wide range of features and many different model selection methods
- Has been consistently documented that prescreening models to remove the worst performing is important before combining
- One method is to use the SIC to remove the worst models
- Rank models by SIC, and then keep the $x \%$ best
- Estimated weights are usually computed in a 3rd step in the usual procedure
- R: Regression
- P: Prediction
- S : Combination estimation
- $T=P+R+S$
- Many schemes have been examined

Weight Estimation

- Standard least squares with an intercept

$$
y_{t+h}=w_{0}+\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h}
$$

- Least squares without an intercept

$$
y_{t+h}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h}
$$

- Linearly constrained least squares

$$
y_{t+h}-\hat{y}_{t+h, n \mid t}=\sum_{i=1}^{n-1} w_{i}\left(\hat{y}_{t+h, i \mid t}-\hat{y}_{t+h, n \mid t}\right)+\epsilon_{t+h}
$$

- This is just a constrained regression where $\sum w_{i}=1$ has been implemented where $w_{n}=1-\sum_{i=1}^{n-1} w_{i}$
- Imposing this constraint is thought to help when the forecast is persistent

$$
e_{t+h \mid t}^{c}=-w_{0}+\left(1-\mathbf{w}^{\prime} \iota\right) y_{t+h}+\mathbf{w}^{\prime} \mathbf{e}_{t+h \mid t}
$$

- $\mathbf{e}_{t+h \mid t}$ are the forecasting errors from the n models
- Only matters if the forecasts may be biased

Weight Estimation

- Constrained least squares

$$
y_{t+h}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h} \text { subject to } \mathbf{w}^{\prime} \iota=1, w_{i} \geq 0
$$

- This is not a standard regression, but can be easily solved using quadratic programming (MATLAB quadprog)
- Forecast combination where the covariance of the forecast errors is assumed to be diagonal
- Produces weights which are all between 0 and 1
- Weight on forecast i is

$$
w_{i}=\frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}
$$

- May be far from optimal if ρ is large
- Protects against estimator error in the covariance

Weight Estimation

- Median
- Can use the median rather than the mean to aggregate
- Robust to outliers
- Still suffers from not having any reduction in parameter variance in the actual forecast
- Rank based schemes
- Weights are inversely proportional to model's rank

$$
w_{i}=\frac{\mathcal{R}_{t+h, i \mid t}^{-1}}{\sum_{j=1}^{n} \mathcal{R}_{t+h, j \mid t}^{-1}}
$$

- Highest weight to best model, ratio of weights depends only on relative ranks
- Places relatively high weight on top model
- Probability of being the best model-based weights
- Count the proportion that model i outperforms the other models

$$
\begin{aligned}
p_{t+h, i \mid t} & =T^{-1} \sum_{t=1}^{T} \cap_{j=1, j \neq i}^{n} I\left[L\left(e_{t+h, i \mid t}\right)<L\left(e_{t+h, j \mid t}\right)\right] \\
y_{t+h \mid t}^{c} & =\sum_{i=1}^{n} p_{t+h, i \mid t} \hat{y}_{t+h, i \mid t}
\end{aligned}
$$

Weight Estimation

- Time-varying weights
- These are ultimately based off of multivariate ARCH-type models
- Most common is EWMA of past forecast errors outer-products
- Often enforced that covariances are 0 so that combinations have only non-negative weights
- Can be implemented using rolling-window based schemes as well, both with and without a 0 correlation assumption
- Time-varying weights are thought to perform poorly when the DGP is stable since they place higher weight on models than a non-time varying scheme and so lead to more parameter estimation error

Broad Recommendations

- Simple combinations are difficult to beat
- $1 / n$ often outperforms estimated weights
- Constant usually beat dynamic
- Constrained outperform unconstrained (when using estimated weights)
- Not combining and using the best fitting performs worse than combinations - often substantially
- Trimming bad models prior to combining improves results
- Clustering similar models (those with the highest correlation of their errors) prior to combining leads to better performance, especially when estimating weights
- Intuition: Equally weighted portfolio of models with high correlation, weight estimation using a much smaller set with lower correlations
- Shrinkage improves weights when estimated
- If using dynamic weights, shrink towards static weights

Equal Weighting

- Equal weighting is hard to beat when the variance of the forecast errors are similar
- If the variance are highly heterogeneous, varying the weights is important
- If for nothing else than to down-weight the high variance forecasts
- Equally weighted combinations are thought to work well when models are unstable
- Instability makes finding "optimal" weights very challenging
- Trimmed equally-weighted combinations appear to perform better than equally weighted, at least if there are some very poor models
- May be important to trim both "good" and "bad" models (in-sample performance)
- Good models are over-fit
- Bad models are badly mis-specified

Shrinkage Methods

- Linear combination

$$
\hat{\mathbf{y}}_{t+h \mid t}^{c}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}
$$

Standard least squares estimates of combination weights are very noisy

- Often found that "shrinking" the weights toward a prior improves performance
- Standard prior is that $w_{i}=\frac{1}{n}$
- However, do not want to be dogmatic and so use a distribution for the weights
- Generally for an arbitrary prior weight \mathbf{w}_{0},

$$
\mathbf{w} \mid \tau^{2} \sim N\left(\mathbf{w}_{0}, \boldsymbol{\Omega}\right)
$$

- $\boldsymbol{\Omega}$ is a correlation matrix and τ^{2} is a parameter which controls the amount of shrinkage

Shrinkage Methods

- Leads to a weighted average of the prior and data

$$
\overline{\mathbf{w}}=\left(\boldsymbol{\Omega}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}\right)^{-1}\left(\boldsymbol{\Omega} \mathbf{w}_{0}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}} \hat{\mathbf{w}}\right)
$$

- $\hat{\mathbf{w}}$ is the usual least squares estimator of the optimal combination weight
- If $\boldsymbol{\Omega}$ is very large compared to $\mathbf{y}^{\prime} \mathbf{y}=\sum_{t=1}^{T} \mathbf{y}_{t+h \mid t} \mathbf{y}_{t+h \mid t}^{\prime}$ then $\overline{\mathbf{w}} \approx \mathbf{w}_{0}$
- On the other hand, if $\mathbf{y}^{\prime} \mathbf{y}$ dominates, then $\overline{\mathbf{w}} \approx \hat{\mathbf{w}}$
- Other implementation use a g-prior, which is scalar

$$
\overline{\mathbf{w}}=\left(g \hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}\right)^{-1}\left(g \hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}} \mathbf{w}_{0}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}} \hat{\mathbf{w}}\right)
$$

- Large values of $g \geq 0$ least to large amounts of shrinkage
- 0 corresponds to OLS

$$
\overline{\mathbf{w}}=\mathbf{w}_{0}+\frac{\hat{\mathbf{w}}-\mathbf{w}_{0}}{1+g}
$$

