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Overview

� Technical Trading Rules
É Filter Rules
É Moving Average Oscillator
É Trading Range Break Out
É Channel Breakout
É Moving Average Convergence/Divergence
É Relative Strength Indicator
É Stochastic Oscillator
É Simple Momentum
É On-Balance Volume

� Model Combination
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Technical Trading

� Technical trading is one form or predictive modeling
� It is mostly a graphical, rather than statistical tool
� Constructs rules based on price movements
� Rules, while often used graphically, can usually be written down in
mathematical expressions

� This can be used to formally allow for testing for technical trading rules
É Testing the rules is going to be the basis of the assignments this term
É Using appropriate methodology for evaluation will be important
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Data

� Daily DJIA for 12 months
� Use high, low and close
� Compute the rules, but focus on the visualization of the rule
� Rule implementation

É Red dot is sell
É Green dot is buy
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Filter Rules

Definition (x% Buy Filter Rule)

A x% filter rule buys when price has increased by x% from the previous low, and
liquidates when the price has declined x% from the high measured since the
position was opened.

Definition (x% Sell Filter Rule)

A x% filter rule sells when price has declined by x% from the previous high, and
liquidates when the price has increased x% from the low measured since the
position was opened.

� These are a momentum rule
� If using both rules with the same percentage, will always have an long or
short position, since after a decline of x%, a short is opened, and after a rise
of x% a long is opened
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Filter Rules

� A modified rule allows for periods where there is no long or short

Definition (x%/y% Buy Filter Rule)

A x% filter rule buys when price has moved up by x% from the previous low, and
liquidates when the price has declined y% from the high measured since the
position was opened.

� The sell rule is similarly defined, only using the relative low
� y ≤ x, and y = x then reduces to previous rules
� Do not have to use both long and short rules
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Filter Rules
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Moving-Average Oscillator

Definition (Moving-Average Oscillator)

The moving average oscillator requires two parameters, m and n, n > m,

MAt = m−1
t∑

i=t−m+1

Pi − n−1
t∑

i=t−n+1

Pi

� This is obviously the difference between an m period MA and a n period MA
� Momentum rule
� It is used as an indicator to buy when positive or sell when negative

É Usually used to initiate a trade when it first crosses, not simply based on sign
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Moving-Average Oscillator

� MAt is not enough to determine a buy rule, since the direction of the
crossing matters

� Formally the buy and sell can be defined as the difference of MAt

Buy if sgn (MAt)− sgn (MAt−1) = 2
Sell if sgn (MAt)− sgn (MAt−1) = −2

� sgn is the signum function which returns x/|x| for x 6= 0 and 0 for x = 0
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Moving Average Oscillator
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Trading Range Breakout/Support and Resistance

Definition (Trading Range Breakout)

The trading range break out is takes one parameter, m, and is defined

TRBt =
(
Pt > max

(
{Pi}t−1i=t−m

))
−
(
Pt < min

(
{Pi}t−1i=t−m

))

� Positive values (1) indicate that the price is above the m-period moving
maximum, negative values −1 indicate that it is below the m-period moving
minimum.

� Momentum rule
� Buy on positive signals, sell on negative signals
� If no signal, then takes the value 0
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Trading Range Breakout
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Channel Breakout

Definition (x% Channel Breakout)

The x% channel breakout rule, using a m-day channel, is defined

Buy if Pt > max
(
{Pi}t−1i=t−m

)
∩

max
(
{Pi}t−1i=t−m

)
min
(
{Pi}t−1i=t−m

) < (1 + x)
Buy if Pt < min

(
{Pi}t−1i=t−m

)
∩

max
(
{Pi}t−1i=t−m

)
min
(
{Pi}t−1i=t−m

) < (1 + x)

� Momentum rule
� x% denotes the channel
� Modification of trading range breakout with second condition which may
reduce sensitivity to volatility
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Channel Range Breakout
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Moving Average Convergence/Divergence (MACD)

Definition (Moving Average Convergence/Divergence (MACD))
The moving-average convergence/divergence indicator takes three parameters,
m, n and d, and is defined

δt = (1− λm)
∞∑
i=0

λimPt−i − (1− λn)
∞∑
i=0

λinPt−i

St = (1− λd)
∞∑
i=0

λidδt

� Pronounced MAK-D
� λm = 1− 2

m+1 , λn = 1−
2
n+1 ,λd = 1−

2
d+1

� St is the signal line
� Plot often has δ and S, and a histogram to indicate the difference δt − St
� Difference is used to predict trends

Buy if sgn (δt − St)− sgn
(
δt−1 − St−1

)
= 2

Sell if sgn (δt − St)− sgn
(
δt−1 − St−1

)
= −2
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Moving Average Convergence/Divergence
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Relative Strength Indicator

Definition (Relative Strength Indicator)

The relative strength indicator takes one parameter m and is defined as

RSI = 100− 100

1 +
∑∞

i=0 λ
iI[(Pt−i−Pt−i−1)>0]∑∞

i=0 λ
iI[(Pt−i−Pt−i−1)<0]

, λ = 1− 2
m + 1

� The core of the indicator are two EWMAs
� Each EWMA is based on indicator variables or positive (top) or negative
(bottom) returns

� If all positive, then indicator will equal 100, if all negative, indicator will
equal 0

� EWMA can be replaced with MA
� Buy signals are indicated if RSI is below some threshold (e.g. 30), sell if
above a different threshold (e.g. 70)

� RSI is a reversal rule
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Relative Strength Indicator (Reversal)
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Stochastic Oscillator

Definition (Stochastic Oscillator)

A stochastic oscillator takes two parameters m and n and is defined as

%Kt = 100×
Pt −min

(
{Pi}t−1i=t−m

)
max

(
{Pi}t−1i=t−m

)
−min

(
{Pi}t−1i=t−m

)
%Dt =

1
n

n∑
i=1

%Kt−i+1

� Trading rules are based on intersections of the lines and the direction of of
the intersection

� If %Kt−1 < %Dt−1 and %Kt > %Dt, then a buy signal is indicated
� If %Kt−1 > %Dt−1 and %Kt < %Dt, then a sell signal is indicated
� Often implemented using fast and slow periods, with feedback between the
two
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Stochastic Oscillator
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Stochastic Oscillator
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Bollinger Band

Definition (Bollinger Bands)

Bollinger bands plot the m-day moving average and the MA plus/minus 2 times
the m-day moving standard deviation, where the moving averages are defined

MAt = m−1
m∑
i=1

Pt−i+1,σt =

√√√√m−1 m∑
i=1

((
Pt−i+1 − Pt−i

)
Pt−i

)2

� Rules can be based on prices leaving the bands, and possibly then crossing
of the moving average

� For example, buy when price hit bottom (reversal) and then sell when it hits
the MA

� Alternatively buy when it hits the top (strong upward trend)
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Bollinger Band
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Bollinger Band
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A Simple Momentum Rule

� Momentum is a common strategy
� Can construct a momentum rule as

St =

{
1 if Pt > Pt−d
0 if Pt ≤ Pt−d

� Technically (trivial) moving average rule with d-day delay filter
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On-Balance Volume

Definition (On-Balance Volume)

On-Balance Volume (OBV) plots the difference between moving averages of
signed daily volume, defined

OBVt =
t∑
s=1

VOLsDs

where VOLs is the volume in period s, Ds is a dummy which is 1 if Pt > Pt−1 and
-1 otherwise, and the trading signal is

St =

{
1 MAOBVm,t > MAOBVn,t

0 MAOBVm,t ≤ MAn,t

where MAOBVq,t = q−1
∑q

i=1OBVt−i−1, q = m, n, m < n.

� Most rules make use of price signals
� OBV mixes volume information with indicator variable
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On-Balance Volume
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Additional Filters

� Many ways rules can be modified
� MAs and EWMAs can be swapped
� Can use a d-day delay filter to stagger execution of trade from signal
� Can use b%-band with some filters to reduce frequency of execution

É Requires the price price (or fast signal) to be b% above the band (or slow signal)
É Relevant for most rules
É Examples

Â Moving-Average Oscillator: Requires fast MA to be larger than 1 + b times slow for
a buy signal, and smaller than 1− b for a sell signal

Â Trading Range Breakout/Channel Breakout: Use 1 + b times max and 1− b times
min

� Can use k-day holding period, so that positions are held for k-days and
other signal are ignored
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From Technical Indicators to Trading Rules

� Most technical rules are interpreted as buy, neutral or sell – 1, 0 or -1
� Essentially applies a step function to the trading signal
� Can use a other continuous, monotonic increasing functions, although not
clear which ones

� One options is to run a regression

rt+1 = β0 + β1St + εt

� St is a signal is computed using information up-to and including t
É Can be discrete or continuous

� Maps to an expected return, which can then be used in Sharpe-optimization
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Combining Multiple Technical Indicators

� Technical trading rules can be combined
� Not obvious how to combine when discrete
� Method 1: Majority vote

É Count number of rules with signs 1, 0 or -1

� Method 2: Aggregation
É Compute sum of indicators divided by number of indicators

S̃t =
∑k

i=1 Sk,t

k

and go long/short S̃t
É Bound by 100% long and 100% short
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Evaluating the Rules

� Obvious strategy it to look at returns, conditional on signal
� Important to have a benchmark model

É Often buy and hold, or some other much less dynamic strategy

� Obvious test is t-statistic of difference in mean return between the active
strategy and the benchmark

� Can also examine predictability for other aspects of distribution
É Volatility
É Large declines
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Brock, Lakonishok and LeBaron

� One of the first systematically test trading rules
� Focused on two rules:

É Moving Average Oscillator
É Trading Range Breakout

� (Controversially) documented evidence of excess returns to technical
trading rules

� Returns were large enough to cover transaction costs
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Moving Average Oscillator

� Moving Average Oscillators implemented for
É m = 1, n = 50
É m = 1, n = 150
É m = 5, n = 150
É m = 1, n = 200
É m = 2, n = 200

� Use both the standard rule and one with a 1%-band filter
� Standard is implemented by taking the position and holding for 10 days,
ignoring all other signals

� b%-band version:
É Requires an exceedence by 1% of the slow MA, but no crossing

Buy if
(

MAt
n−1

∑t
i=t−n+1 Pi

)
> b

100 , Sell if

(
MAt

n−1
∑t

i=t−n+1 Pi

)
< − b

100

É If b > 0 then some days may have no signal
É If b = 0 then all days are buys or sells
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Trading Range Breakout

� Trading range breakout is implemented for
É m = 50
É m = 100
É m = 150

� Implemented using the standard and with a 1% band
� b% band version is

TRBt =
(
Pt >

(
1 +

b
100

)
max

(
{Pi}t−1i=t−m

))
−
(
Pt <

(
1− b

100

)
min

(
{Pi}t−1i=t−m

))
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Empirical Application

� A total of 26 rules are created
É MAO: 5 (m, n)× 2 (Fixed or Variable Window) ×2 (b = 0, .01)
É TRB: 3 (m) × 2 (b = 0, .01)

� DJIA from 1897 until 1986
� Main result is that there appears to be predictability using these rules
� Strongest results were for the fixed windows MAO with m = 1, n = 200 and
b = .01

� TRB with m = 150 and b = .01 also had a strong result
� Report

É Number of buy and sell signals
É Mean return during buy and sell signals
É Probability of positive return for buy and sell signals
É Mean return of a portfolio which both buys and sells
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Moving Average Oscillator, Variable Length

Trading Rules and Stock Returns 1739 

Table II 

Standard Test Results for the Variable-Length Moving (VMA) Rules 
Results for daily data from 1897-1986. Rules are identified as (short, long, band) where short 

and long are the short and long moving averages respectively, and band is the percentage 

difference that is needed to generate a signaf. "N(Buy)" and "N(Sell)" are the number of buy and 

sell signals reported during the sample. Numbers in parentheses are standard t-ratios testing 

the difference of the mean buy and mean sell from the unconditional 1-day mean, and buy-sell 
from zero. "Buy > 0" and "Sell > 0" are the fraction of buy and sell returns greater than zero. 

The last row reports averages across all 10 rules. Results for subperiods are given in Panel B. 

Panel A: Full Sample 

Period Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

1897-1986 (1,50,0) 14240 10531 0.00047 -0.00027 0.5387 0.4972 0.00075 
(2.68473) (-3.54645) (5.39746) 

(1,50,0.01) 11671 8114 0.00062 -0.00032 0.5428 0.4942 0.00094 
(3.73161) (-3.56230) (6.04189) 

(1,150,0) 14866 9806 0.00040 - 0.00022 0.5373 0.4962 0.00062 
(2.04927) (-3.01836) (4.39500) 

(1,150,0.01) 13556 8534 0.00042 -0.00027 0.5402 0.4943 0.00070 
(2.20929) (-3.28154) (4.68162) 

(5,150,0) 14858 9814 0.00037 -0.00017 0.5368 0.4970 0.00053 
(1.74706) (-2.61793) (3.78784) 

(5,150,0.01) 13491 8523 0.00040 -0.00021 0.5382 0.4942 0.00061 
(1.97876) (-2.78835) (4.05457) 

(1,200,0) 15182 9440 0.00039 -0.00024 0.5358 0.4962 0.00062 
(1.93865) (-3.12526) (4.40125) 

(1,200,0.01) 14105 8450 0.00040 - 0.00030 0.5384 0.4924 0.00070 
(2.01907) (-3.48278) (4.73045) 

(2,200,0) 15194 9428 0.00038 - 0.00023 0.5351 0.4971 0.00060 
(1.87057) (-3.03587) (4.26535) 

(2,200,0.01) 14090 8442 0.00038 -0.00024 0.5368 0.4949 0.00062 
(L81771) (-3.03843) (4.16935) 

Average 0.00042 -0.00025 0.00067 

Panel B: Subperiods 

1897-1914 (1,150,0) 2925 2170 0.00039 -0.00025 0.5323 0.4959 0.00065 
(1.19348) (- 1.48213) (2.30664) 

1915-1938 (1, 150,0) 4092 2884 0.00048 -0.00045 0.5503 0.4941 0.00092 
(1.16041) (- 1.82639) (2.59189) 

1939-1962 (1,150,0) 4170 2122 0.00036 -0.00004 0.5422 0.5151 0.00040 
(1.06310) (- 1.26932) (1.98384) 

1962-1986 (1,150,0) 3581 2424 0.00037 -0.00012 0.5205 0.4777 0.00049 
(0.94029) (-1.49333) (2.11283) 

The mean buy and sell returns are reported separately in columns 3 and 4. 
The buy returns are all positive with an average one-day return of 0.042 

percent, which is about 12 percent at an annual rate. This compares with the 
unconditional one-day return of 0.017 percent from Table I. Six of the ten 
tests reject the null hypothesis that the returns equal the unconditional 
returns at the 5 percent significance level using a two-tailed test. The other 
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Moving Average Oscillator, Fixed Length

Trading Rules and Stock Returns 1741 

Table III 

Standard Test Results for the Fixed-Length Moving (FMA) Rules 
Results for daily data from 1897-1986. Cumulative returns are reported for fixed 10-day periods 
after signals. Rules are identified as (short, long, band) where short and long are the short and 
long moving averages respectively, and band is the percentage difference that is needed to 
generate a signal. "N(Buy)" and "N(Sell)" are the number of buy and sell signals reported during 
the sample. Numbers in parentheses are standard t-ratios testing the difference of the mean buy 
and mean sell from the unconditional 1-day mean, and buy-sell from zero. "Buy > 0" and 
"Sell > 0" are the fraction of buy and sell returns greater than zero. The last row reports 
averages across all 10 rules. 

Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

(1,50,0) 340 344 0.0029 - 0.0044 0.5882 0.4622 0.0072 
(0.5796) (-3.0021) (2.6955) 

(1,50,0.01) 313 316 0.0052 -0.0046 0.6230 0.4589 0.0098 
(1.6809) (-3.0096) (3.5168) 

(1,150,0) 157 188 0.0066 - 0.0013 0.5987 0.5691 0.0079 
(1.7090) (-1.1127) (2.0789) 

(1,150,0.01) 170 161 0.0071 -0.0039 0.6529 0.5528 0.0110 
(1.9321) (- 1.9759) (2.8534) 

(5,150,0) 133 140 0.0074 - 0.0006 0.6241 0.5786 0.0080 
(1.8397) (-0.7466) (1.8875) 

(5,150,0.01) 127 125 0.0062 -0.0033 0.6614 0.5520 0.0095 
(1.4151) (- 1.5536) (2.1518) 

(1,200,0) 114 156 0.0050 -0.0019 0.6228 0.5513 0.0069 
(0.9862) (- 1.2316) (1.5913) 

(1,200,0.01) 130 127 0.0058 - 0.0077 0.6385 0.4724 0.0135 
(1.2855) (-2.9452) (3.0740) 

(2,200,0) 109 140 0.0050 - 0.0035 0.6330 0.5500 0.0086 
(0.9690) (- 1.7164) (1.9092) 

(2,200,0.01) 117 116 0.0018 - 0.0088 0.5556 0.4397 0.0106 
(0.0377) (-3.1449) (2.3069) 

Average 0.0053 -0.0040 0.0093 

percent. For all the tests the fraction of buys greater than zero exceeds the 
fraction of sells greater than zero. 

The profits that can be derived from these trading rules depend, among 
other things, on the number of signals generated. The lowest number of 
signals is for the (2,200, 0.01) rule which generates an average of 2.8 signals 
per year over the 90 years of data. The largest number of signals is generated 
by the (1,50,0) rule with 7.6 signals per year. We explore the following 
strategy: upon a buy signal, we borrow and double the investment in the Dow 
Index; upon a sell signal, we sell shares and invest in a risk-free asset. Given 
that the number of buy and sell signals is similar we make the following 
assumptions: (1) the borrowing and lending rates are the same, and (2) the 
risk during buy periods is the same as the risk during sell periods. Under 
these assumptions such a strategy, ignoring transaction costs, should produce 
the same return as a buy and hold strategy. Using the (1, 50, 0.01) rule as an 
example, there are on average about 3.5 buy and sell signals per year. On the 
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Trading Range Breakout

1742 The Journal of Finance 

buy side, because of leverage, we gain on average, 1.8 percent (3.5 x 0.0052). 
On the sell side, by not being in the market, we gain 1.6 percent (3.5 x 0.0046). 
This results in an extra return of 3.4 percent, before transactions costs, which 
is substantial when compared to the 5 percent annual return on the Dow 
Index (excluding dividends). 

C. Trading Range Break 

Results for the trading range break rule are presented in Table IV. With 
this rule buy and sell signals are generated when the price level moves above 
or below local maximums and minimums. Local maximums and minimums 
are computed over the preceding 50, 150, and 200 days. We also use a band 
technique where the price level must exceed the local maximum by one 
percent, or fall below the minimum by one percent. For the trading range 
break rule we compute 10-day holding period returns following buy and sell 
signals. 

The results are presented in the same format as Table III. The average 
buy-sell return is 0.86 percent. Of the six tests, all reject the null hypothesis 
of the buy-sell difference being equal to zero. The buy return is positive across 
all the rules with an average of 0.55 percent. For 3 out of the 6 rules, the buy 
returns are significantly different from the unconditional 10-day return at 
the 5 percent level, and the remaining 3 rules are marginally significant. One 

Table IV 

Standard Test Results for the Trading Range Break (TRB) Rules 
Results for daily data from 1897-1986. Cumulative returns are reported for fixed 10-day periods 
after signals. Rules are identified as (short, long, band) where short and long are the short and 
long moving averages respectively, and band is the percentage difference that is needed to 
generate a signal. "N(Buy)" and "N(Sell)" are the number of buy and sell signals reported during 
the sample. Numbers in parentheses are standard t-ratios testing the difference of the mean buy 
and mean sell from the unconditional 1-day mean, and buy-sell from zero. "Buy > 0" and 
"Sell > 0" are the fraction of buy and sell returns greater than zero. The last row reports 
averages across all 6 rules. 

Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

(1,50,0) 722 415 0.0050 0.0000 0.5803 0.5422 0.0049 
(2.1931) (-0.9020) (2.2801) 

(1,50,0.01) 248 252 0.0082 - 0.0008 0.6290 0.5397 0.0090 
(2.7853) (- 1.0937) (2.8812) 

(1, 150,0) 512 214 0.0046 - 0.0030 0.5762 0.4953 0.0076 
(1.7221) (- 1.8814) (2.6723) 

(1,150,0.01) 159 142 0.0086 -0.0035 0.6478 0.4789 0.0120 
(2.4023) (- 1.7015) (2.9728) 

(1,200,0) 466 182 0.0043 - 0.0023 0.5794 0.5000 0.0067 
(1.4959) (-1.4912) (2.1732) 

(1,200,0.01) 146 124 0.0072 - 0.0047 0.6164 0.4677 0.0119 
(1.8551) (- 1.9795) (2.7846) 

Average 0.0063 -0.0024 0.0087 
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The Standard Forecasting Model

� Standard forecasts are also popular for predicting economic variables
� Generically expressed

yt+1 = β0 + xtβ + εt+1
� xt is a 1 by k vector of predictors (k = 1 is common)
� Includes both exogenous regressors such as the term or default premium
and also autoregressive models

� Forecasts are ŷt+1|t
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The forecast combination problem

� Two level of aggregation in the combination problem

1. Summarize individual forecasters’ private information in point forecasts
ŷt+h,i|t
É Highlights that “inputs” are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure C
(
yt+h|t,wt+h|t

)
� Obvious competitor is the “super-model” or “kitchen-sink” – a model built
using all information in each forecasters information set

� Aggregation should increase the bias in the forecast relative to SM but may
reduce the variance

� Similar to other model selection procedures in this regard

41 / 59



Why not use the “Super Model”

� Could consider pooling information sets

F ct = ∪ni=1Ft,i

� Would contain all information available to all forecasters
� Could construct consensus directly C

(
F ct ; θ t+h|t

)
� Some reasons why this may not work

É Some information in individuals information sets may be qualitative, and so
expensive to quantitatively share

É Combined information sets may have a very high dimension, so that finding the
best super model may be hard
Â Potential for lots of estimation error

� Classic bias-variance trade-off is main reason to consider forecasts
combinations over a super model
É Higher bias, lower variance
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Linear Combination under MSE Loss

� Models can be combined in many ways for virtually any loss function
� Most standard problem is for MSE loss using only linear combinations
� I will suppress time subscripts when it is clear that it is t + h|t
� Linear combination problem is

min
w
E
[
e2
]
= E

[(
yt+h −w′ŷ

)2]
� Requires information about first 2 moments of he joint distribution of the
realization yt+h and the time-t forecasts ŷ[

yt+h|t
ŷ

]
∼ F

([
µy
µŷ

]
,

[
σyy Σ

′
yŷ

Σyŷ Σŷŷ

])
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Linear Combination under MSE Loss

� The first order condition for this problem is

∂ E
[
e2
]

∂w
= −µyµŷ + µŷµ

′
ŷw + Σŷŷw− Σyŷ = 0

� The solution to this problem is

w? =
(
µŷµ

′
ŷ + Σŷŷ

)−1 (
Σyŷ + µyµŷ

)
� Similar to the solution to the OLS problem, only with extra terms since the
forecasts may not have the same conditional mean
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Linear Combination under MSE Loss

� Can remove the conditional mean if the combination is allowed to include a
constant, wc

wc = µy −w?µŷ
w? = Σ−1ŷŷ Σyŷ

� These are identical to the OLS where wc is the intercept and w∗ are the
slope coefficients

� The role of wc is the correct for any biases so that the squared bias term in
the MSE is 0

MSE [e] = B [e]2 + V [e]

45 / 59



Understanding the Diversification Gains

� Simple setup

e1 ∼ F1
(
0,σ21

)
, e2 ∼ F2

(
0,σ22

)
, Corr [e1, e2] = ρ, Cov [e1e2] = σ12

� Assume σ22 ≤ σ21
� Assume weights sum to 1 so that w1 = 1− w2 (Will suppress the subscript
and simply write w)

� Forecast error is then
y − wŷ1 − (1− w) ŷ2

� Error is given by
ec = we1 + (1− w) e2

� Forecast has mean 0 and variance

w2σ21 + (1− w)
2σ22 + 2w (1− w)σ12
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Understanding the Diversification Gains

� The optimal w can be solved by minimizing this expression, and is

w? =
σ22 − σ12

σ21 + σ
2
2 − 2σ12

, 1− w? = σ21 − σ12
σ21 + σ

2
2 − 2σ12

� Intuition is that the weight on a model is higher the
É Larger the variance of the other model
É Lower the correlation between the models

� 1 weight will be larger than 1 if ρ ≥ σ2
σ1

� Weights will be equal if σ1 = σ2 for any value of correlation
É Intuitively this must be the case since model 1 and 2 are indistinguishable
from a MSE point-of-view

É When will “optimal” combinations out-perform equally weighted combinations?
Any time σ1 6= σ2

� If ρ = 1 then only select model with lowest variance (mathematical
formulation is not well posed in this case)
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Constrained weights

� The previous optimal weight derivation did not impose any restrictions on
the weights

� In general some of the weights will be negative, and some will exceed 1
� Many combinations are implemented in a relative, constrained scheme

min
w
E
[
e2
]
= E

[(
yt+h −w′ŷ

)2] subject to w′ι = 1
� The intercept is omitted (although this isn’t strictly necessary)
� If the biases are all 0, then the solution is dual to the usual portfolio
minimization problem, and is given by

w? =
Σ−1ŷŷ ι

ι′Σ−1ŷŷ ι

� This solution is the same as the Global Minimum Variance Portfolio
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Combinations as Hedge against Structural Breaks

� One often cited advantage of combinations is (partial) robustness to
structural breaks

� Best case is if two positively correlated variables have shifts in opposite
directions

� Combinations have been found to be more stable than individual forecasts
É This is mostly true for static combinations
É Dynamic combinations can be unstable since some models may produce large
errors from time-to-time
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Weight Estimation

� All discussion has focused on “optimal” weights, which requires information
on the mean and covariance of both yt+h and ŷt+h|t
É This is clearly highly unrealistic

� In practice weights must be estimated, which introduces extra estimation
error

� Theoretically, there should be no need to combine models when all
forecasting models are generated by the econometrician (e.g. when using
F c)

� In practice, this does not appear to be the case
É High dimensional search space for “true” model
É Structural instability
É Parameter estimation error
É Correlation among predictors

Clemen (1989): “Using a combination of forecasts amounts to an admission
that the forecaster is unable to build a properly specified model”
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Weight Estimation

� Whether a combination is needed is closely related to forecast
encompassing tests

� Model averaging can be thought of a method to avoid the risk of model
selection
É Usually important to consider models with a wide range of features and many
different model selection methods

� Has been consistently documented that prescreening models to remove the
worst performing is important before combining

� One method is to use the SIC to remove the worst models
É Rank models by SIC, and then keep the x% best

� Estimated weights are usually computed in a 3rd step in the usual procedure
É R: Regression
É P: Prediction
É S: Combination estimation
É T = P + R + S

� Many schemes have been examined

51 / 59



Weight Estimation

� Standard least squares with an intercept

yt+h = w0 +w′ŷt+h|t + εt+h

� Least squares without an intercept

yt+h = w′ŷt+h|t + εt+h

� Linearly constrained least squares

yt+h − ŷt+h,n|t =
n−1∑
i=1

wi
(
ŷt+h,i|t − ŷt+h,n|t

)
+ εt+h

É This is just a constrained regression where
∑
wi = 1 has been implemented

where wn = 1−
∑n−1

i=1 wi
É Imposing this constraint is thought to help when the forecast is persistent

ect+h|t = −w0 +
(
1−w′ι

)
yt+h +w′et+h|t

É et+h|t are the forecasting errors from the n models
É Only matters if the forecasts may be biased
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Weight Estimation

� Constrained least squares

yt+h = w′ŷt+h|t + εt+h subject to w’ι=1, wi ≥ 0

É This is not a standard regression, but can be easily solved using quadratic
programming (MATLAB quadprog)

� Forecast combination where the covariance of the forecast errors is
assumed to be diagonal
É Produces weights which are all between 0 and 1
É Weight on forecast i is

wi =
1
σ2i∑n
j=1

1
σ2j

É May be far from optimal if ρ is large
É Protects against estimator error in the covariance
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Weight Estimation

� Median
É Can use the median rather than the mean to aggregate
É Robust to outliers
É Still suffers from not having any reduction in parameter variance in the actual
forecast

� Rank based schemes
É Weights are inversely proportional to model’s rank

wi =
R−1t+h,i|t∑n
j=1R

−1
t+h,j|t

É Highest weight to best model, ratio of weights depends only on relative ranks
É Places relatively high weight on top model

� Probability of being the best model-based weights
É Count the proportion that model i outperforms the other models

pt+h,i|t = T−1
T∑
t=1

∩nj=1,j6=iI
[
L
(
et+h,i|t

)
< L
(
et+h,j|t

)]
yct+h|t =

n∑
i=1

pt+h,i|t ŷt+h,i|t

54 / 59



Weight Estimation

� Time-varying weights
É These are ultimately based off of multivariate ARCH-type models
É Most common is EWMA of past forecast errors outer-products
É Often enforced that covariances are 0 so that combinations have only
non-negative weights

É Can be implemented using rolling-window based schemes as well, both with
and without a 0 correlation assumption

É Time-varying weights are thought to perform poorly when the DGP is stable
since they place higher weight on models than a non-time varying scheme and
so lead to more parameter estimation error
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Broad Recommendations

� Simple combinations are difficult to beat
É 1/n often outperforms estimated weights
É Constant usually beat dynamic
É Constrained outperform unconstrained (when using estimated weights)

� Not combining and using the best fitting performs worse than combinations
– often substantially

� Trimming bad models prior to combining improves results
� Clustering similar models (those with the highest correlation of their errors)
prior to combining leads to better performance, especially when estimating
weights
É Intuition: Equally weighted portfolio of models with high correlation, weight
estimation using a much smaller set with lower correlations

� Shrinkage improves weights when estimated
� If using dynamic weights, shrink towards static weights
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Equal Weighting

� Equal weighting is hard to beat when the variance of the forecast errors are
similar

� If the variance are highly heterogeneous, varying the weights is important
É If for nothing else than to down-weight the high variance forecasts

� Equally weighted combinations are thought to work well when models are
unstable
É Instability makes finding “optimal” weights very challenging

� Trimmed equally-weighted combinations appear to perform better than
equally weighted, at least if there are some very poor models
É May be important to trim both “good” and “bad” models (in-sample
performance)
Â Good models are over-fit
Â Bad models are badly mis-specified
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Shrinkage Methods

� Linear combination
ŷct+h|t = w

′ŷt+h|t

Standard least squares estimates of combination weights are very noisy
� Often found that “shrinking” the weights toward a prior improves
performance

� Standard prior is that wi = 1
n

� However, do not want to be dogmatic and so use a distribution for the
weights

� Generally for an arbitrary prior weight w0,

w|τ2 ∼ N (w0,Ω)

� Ω is a correlation matrix and τ2 is a parameter which controls the amount of
shrinkage
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Shrinkage Methods

� Leads to a weighted average of the prior and data

w̄ =
(
Ω + ŷ′ŷ

)−1 (
Ωw0 + ŷ′ŷŵ

)
� ŵ is the usual least squares estimator of the optimal combination weight
� If Ω is very large compared to y′y =

∑T
t=1 yt+h|ty

′
t+h|t then w̄ ≈ w0

� On the other hand, if y′y dominates, then w̄ ≈ ŵ
� Other implementation use a g-prior, which is scalar

w̄ =
(
gŷ′ŷ + ŷ′ŷ

)−1 (gŷ′ŷw0 + ŷ′ŷŵ)
� Large values of g ≥ 0 least to large amounts of shrinkage
� 0 corresponds to OLS

w̄ = w0 +
ŵ−w0
1 + g
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