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Notes

License

This software and documentation is provided "as is", without warranty of any kind, express or implied,

including but not limited to the warranties of merchantability, fitness for a particular purpose and non-

infringement. In no event shall the authors or copyright holders be liable for any claim, damages or other

liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the

software or the use or other dealings in the software.

Copyright

Except where explicitly noted, all contents of the toolbox and this documentation are ©2001-2018 Kevin

Sheppard.

MATLAB® is a registered trademark The Mathworks, Inc.

Bug Reports and Feedback

I welcome bug reports and feedback about the software. The best type of bug report should include the

command run that produced the errors, a description of the data used (a zipped .MAT file with the data

may be useful) and the version of MATLAB run. I am usually working on a recent version of MATLAB

(currently R2017b) and while I try to ensure some backward compatibility, it is likely that this code will

not run flawlessly on ancient versions of MATLAB.

Please do not ask me for code or advice finding code that I do not provide, unless that code is directly

related to my own original research (e.g. certain correlation models). Also, please do not ask for help with

your homework.

Notable Missing Documentation

• pca: Principal Component Analysis

• dccmvgarch: DCC Multivariate GARCH

• scalarvtvech: Scalar BEKK Multivariate GARCH
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Chapter 1

Included but not documented functions

The toolbox comes with a large number of functions that are used to support other functions, for example

functions that are used to compute numerical Hessians. Please consult the help contained within the

function for more details.

Data Files

• GDP.mat - US GDP data and dates from FRED II

General Support Functions

• convertmaroots - Convert MA roots to their invertible counterpart

• gradient2sided - 2 sided numerical gradient calculation

• hessian2sided - 2 sided numerical Hessian calculation

• inversearroots - Compute inverse AR roots

• ivech - Inverse vech

• mprint - Pretty printing of matrices

• newlagmatrix - Convert a vector to lagged values

• pca - Principal component analysis

• robustvcv - Automatic sandwich covariance estimation using numerical derivatives

• standardize - Standardizes residuals

• vech - Half-vec operator for a symmetric matrix.

Private Support Functions

• agarchcore - agarch support function.

• agarchdisplay - agarch support function.
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• agarchitransform - agarch support function.

• agarchlikelihood - agarch support function.

• agarchparametercheck - agarch support function.

• agarchstartingvalues - agarch support function.

• agarchtransform - agarch support function.

• aparchcore - aparch support function.

• aparchitransform - aparch support function.

• aparchlikelihood - aparch support function.

• aparchloglikelihood - aparch support function.

• aparchparametercheck - aparch support function.

• aparchstartingvalues - aparch support function.

• aparchtransform - aparch support function.

• armaxerrors - armaxfilter support function.

• armaxfiltercore- armaxfilter support function.

• armaxfilterlikelihood- armaxfilter support function.

• augdfcv - augdf support function.

• augdfcvsimtieup - augdf support function.

• egarchcore - egarch support function.

• egarchdisplay - egarch support function.

• egarchitransform - egarch support function.

• egarchlikelihood - egarch support function.

• egarchnlcon - egarch support function.

• egarchparametercheck - egarch support function.

• egarchstartingvalues - egarch support function.

• egarchtransform - egarch support function.

• igarchcore - igarch support function.

• igarchdisplay - igarch support function.

• igarchitransform - igarch support function.
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• igarchlikelihood - igarch support function.

• igarchparametercheck - igarch support function.

• igarchstartingvalues - igarch support function.

• igarchtransform - igarch support function.

• tarchcore - tarch support function.

• tarchdisplay - tarch support function.

• tarchitransform - tarch support function.

• tarchlikelihood - tarch support function.

• tarchparametercheck - tarch support function.

• tarchstartingvalues - tarch support function.

• tarchtransform - tarch support function.

Distributions and Random Variables

• betainv - Beta inverse CDF

• betapdf - Beta PDF

• gedcdf - Generalized Error Distribution CDF

• gedinv - Generalized Error Distribution inverse CDF

• gedloglik - Generalized Error Distribution Loglikelihood CDF

• gedpdf - Generalized Error Distribution PDF

• gedrnd - Generalized Error Random Number Generator PDF

• mvnormloglik

• skewtcdf - Skew t CDF

• skewtinv - Skew t inverse CDF

• skewtloglik - Skew t Loglikelihood

• skewtpdf - Skew t PDF

• skewtrnd - Skew t Random Number Generator

• stdtcdf - Standardized t CDF

• stdtinv - Standardized t inverse CDF

• stdtloglik - Standardized t Loglikelihood
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• stdtpdf - Standardized t PDF

• stdtrnd - Standardized t Random Number Generator

• tdisinv - Student’s t inverse CDF

MATLAB Compatability

These functions are work-a-like functions of a few MATLAB provided functions so that the statistics tool-

box may not be needed in some cases. If you have the Statistics toolbox, you should not use these func-

tions.

• chi2cdf

• kurtosis

• iscompatible

• normcdf

• norminv

• normloglik

• normpdf
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Cross Sectional Analysis

2.1 Regression

2.1.1 Regression: ols

Regression with both classical (homoskedastic) and White (heteroskedasticity robust) variance covariance

estimation, with an option to exclude the intercept.

β̂ =
(

X′X
)

X′y

where X is an n by k matrix of regressors and y is an n by 1 vector of regressands. If the intercept is included,

the R2and R̄2are calculated using centered versions,

R2
C = 1− ε̂

′ε̂

ỹ′ỹ

where ỹ = y− ȳ are the demeaned regressands and ε̂ = y−Xβ̂ are the estimated residuals. If the intercept

is excluded, these are computed using uncentered estimators,

R2
U = 1− ε̂

′ε̂

y′y

2.1.1.1 Examples

% Set up some experimental data

n = 100; y = randn(n,1); X = randn(n, 2);

% Regression with a constant

b = ols(y,X)

% Regression through the origin (uncentered)

b = ols(y,X,0)

2.1.1.2 Required Inputs

[outputs] = ols(Y,X)



6 Cross Sectional Analysis

The required inputs are:

• Y: An n by 1 vector containing the regressand.

• X: An n by k vector containing the regressors. X should be full rank and should not contain a constant

column.

2.1.1.3 Optional Inputs

[outputs] = ols(Y,X,C)

The optional inputs are:

• C: A scalar (0 or 1) indicating whether the regression should include a constant. If 1 the X data are

augmented by a columns of 1s before the regression coefficients are estimated. If omitted or empty,

the default value is 1. C determines whether centered or uncentered estimators of R2and R̄2are com-

puted.

2.1.1.4 Outputs

ols provides many other outputs than the estimated parameters. The full ols command can return

[B,TSTAT,S2,VCV,VCVWHITE,R2,RBAR,YHAT] = ols(inputs)

The outputs are:

• B: k by 1 vector of estimated parameters.

• TSTAT: k by 1 vector of t-stats computed using heteroskedasticity robust standard errors.

• S2: Estimated variance of the regression error. Computed using a degree of freedom adjustment

(n − k ).

• VCV: Classical variance-covariance matrix of the estimated parameters.

• VCVWHITE: White’s heteroskedasticity robust variance-covariance matrix.

• R2: R2. Centered if C is 1 or omitted.

• RBAR: R̄2. Centered if C is 1 or omitted.

• YHAT: Fit values of Y

2.1.1.5 Comments

Linear regression estimation with homoskedasticity and White heteroskedasticity robust standard

errors.

USAGE:

[B,TSTAT,S2,VCV,VCV_WHITE,R2,RBAR,YHAT] = ols(Y,X,C)
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INPUTS:

Y - N by 1 vector of dependent data

X - N by K vector of independent data

C - 1 or 0 to indicate whether a constant should be included (1: include constant)

OUTPUTS:

B - A K(+1 is C=1) vector of parameters. If a constant is included, it is the first

parameter.

TSTAT - A K(+1) vector of t-statistics computed using White heteroskedasticity robust

standard errors.

S2 - Estimated error variance of the regression.

VCV - Variance covariance matrix of the estimated parameters. (Homoskedasticity assumed)

VCVWHITE - Heteroskedasticity robust VCV of the estimated parameters.

R2 - R-squared of the regression. Centered if C=1.

RBAR - Adjusted R-squared. Centered if C=1.

YHAT - Fit values of the dependent variable

COMMENTS:

The model estimated is Y = X*B + epsilon where Var(epsilon)=S2

EXAMPLES:

Estimate a regression with a constant

b = ols(y,x)

Estimate a regression without a constant

b = ols(y,x,0)

See also OLSNW
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Stationary Time Series

3.1 ARMA Simulation

3.1.1 Simulation: armaxfilter_simulate

ARMA and ARMAX simulation using either normal innovations or user-provided residuals.

3.1.1.1 ARMA(P,Q) simulation

An ARMA(P,Q) model is expressed as

yt = φ0 +
P∑

p=1

φp yt−p +
Q∑

q=1

θqεt−q + εt .

ARMA(P,Q) simulation requires the orders for both the AR and MA portions to be defined. To simulate

an irregular AR(P) - an AR(P) with some coefficients 0 - simply simulate a regular AR(P) and insert 0 for

omitted lags.

3.1.1.2 Examples

The five examples below refer, in order, to

yt = 1 + .9yt−1 + εt (3.1)

yt = 1 + .8εt−1 + εt (3.2)

yt = 1 + 1.5yt−1 − .9yt−2 + .8εt−1 + .4εt−2 + εt (3.3)

yt = 1 + yt−1 − .8yt−3 + εt (3.4)

yt = 1 + .9yt−1 + ηt (3.5)

where εt
i.i.d.∼ N (0, 1) are standard normally distributed and ηt

i.i.d.∼ t6 are Student’s T with 6 degrees of

freedom distributed.

% Simulates 1000 draws from an AR(1) with phi0 = 1

T=1000; phi = .9; constant = 1; ARorder = 1;
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y = armaxfilter_simulate(T, constant, ARorder, phi);

% Simulates 1000 draws from an MA(1) with phi0 = 1

theta = .8; MAorder=1; Arorder=0;

y = armaxfilter_simulate(T, constant, 0, [], MAorder, theta);

% Simulates 1000 draws from an ARMA(2,2) with phi0 = 1.

% The parameters are ordered phi = [phi1 phi2] and theta = [theta1 theta2]

theta=[.8 .4]; phi = [1.5 -.9]; MAorder=2; ARorder=2;

y = armaxfilter_simulate(T, constant, ARorder, phi , MAorder, theta);

% Simulates and AR(3) with some coefficients 0 and phi0=0;

constant = 0; phi = [ 1 0 -.8]; ARorder = 3;

y = armaxfilter_simulate(T, constant, ARorder, phi);

% Simulates 1000 draws from an AR(1) with phi0 = 1 using Students-t innovations

e = trnd(6,1000,1);

e=e./sqrt(6/4); % Transforms the errors to have unit variance

T=1000; phi = .9; constant = 1; ARorder = 1;

y = armaxfilter_simulate(e,constant, ARorder, phi);

3.1.1.3 ARMAX(P,Q) simulation

ARMAX simulation extends standard ARMA(P,Q) simulation to include the possibility of exogenous re-

gressors, xk t for k = 1, . . . , K . An ARMAX(P,Q) model is specified

yt = φ0 +
P∑

p=1

φp yt−p +
K∑

k=1

βk xk ,t−1 +
Q∑

q=1

θqεt−q + εt

Note: While the xk ,t−1 terms are all written with a t −1 index, they can be from any time before t by simply

redefining xk ,t−1 to refer to some variable at t − j . For example, x1,t−1 = SP 500t−1, x2,t−1 = SP 500t−2

and so on.

3.1.1.4 Examples

The two examples below refer, in order, to

yt = 1 + .9yt−1 + .5xt−1 + εt (3.6)

yt = 1 + .9yt−1 + .5xt−1 − .2xt−2 + εt (3.7)

where εt
i.i.d.∼ N (0, 1) are standard normally distributed and xt = .8 ∗ xt−1 + εt .

% First simulate x

T=1001; phi = .8; constant = 0; ARorder = 1; % 1001 needed due to

% losses in lagging

x = armaxfilter_simulate(T, constant, ARorder, phi);

% Then lags x
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[x, xlags1] = newlagmatrix(x,1,0);

T=1000; phi = .9; constant = 1; ARorder = 1; Xp=.5; X=xlags1;

y = armaxfilter_simulate(T, constant, ARorder, phi, 0, [], X, Xp);

% First simulate x

T=1002; phi = .8; constant = 0; ARorder = 1; % 1002 needed due to

% losses in lagging

x = armaxfilter_simulate(T, constant, ARorder, phi);

% Then lags x

[x, xlags12] = newlagmatrix(x,2,0);

T=1000; phi = .9; constant = 1; ARorder = 1; Xp=[.5 -.2]; X=xlags12;

y = armaxfilter_simulate(T, constant, ARorder, phi, 0, [], X, Xp);

3.1.1.5 Required Inputs

[outputs] = armaxfilter_simulate(T,CONST)

• T: Either a scalar integer or a vector of random numbers. If scalar, T represents the length of the

time series to simulate. If a T by 1 vector of random numbers, these will be used to construct the

simulated time series.

• CONST: Scalar value containing the constant term in the simulated model

3.1.1.6 Optional Inputs

[outputs] = armaxfilter_simulate(T,CONST,AR,ARPARAMS,MA,MAPARAMS,X,XPARAMS)

• AR: Order of AR in simulated model

• ARPARAMS: Column vector containing AR elements containing the values of the parameters on the

AR terms. Ordered from smallest to largest.

• MA: Order of MA in simulated model

• MAPARAMS: Column vector containing MA elements containing the values of the parameters on the

MA terms. Ordered from smallest to largest.

• X: T by k matrix of exogenous variables

• XPARAMS: k by 1 vector of parameters for the exogenous variables.

3.1.1.7 Outputs

[Y,ERRORS] = armaxfilter_simulate(inputs)

• Y: T by 1 vector of simulated data

• ERRORS: T by 1 vector of errors used to construct the simulated data
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3.1.1.8 Comments

ARMAX(P,Q) simulation with normal errors. Also simulates AR, MA and ARMA models.

USAGE:

AR:

[Y,ERRORS]=armaxfilter_simulate(T,CONST,AR,ARPARAMS)

MA:

[Y,ERRORS]=armaxfilter_simulate(T,CONST,0,[],MA,MAPARAMS)

ARMA:

[Y,ERRORS]=armaxfilter_simulate(T,CONST,AR,ARPARAMS,MA,MAPARAMS);

ARMAX:

[Y,ERRORS]=armaxfilter_simulate(T,CONST,AR,ARPARAMS,MA,MAPARAMS,X,XPARAMS);

INPUTS:

T - Length of data series to be simulated OR

T by 1 vector of user supplied random numbers (e.g. rand(1000,1)-0.5)

CONST - Value of the constant in the model. To omit, set to 0.

AR - Order of AR in model. To include only selected lags, for example t-1 and t-3, use 3

and set the coefficient on 2 to 0

ARPARAMS - AR by 1 vector of parameters for the AR portion of the model

MA - Order of MA in model. To include only selected lags of the error, for example t-1

and t-3, use 3 and set the coefficient on 2 to 0

MAPARAMS - MA by 1 vector of parameters for the MA portion of the model

X - T by K matrix of exogenous variables

XPARAMS - K by 1 vector of parameters on the exogenous variables

OUTPUTS:

Y - A T by 1 vector of simulated data

ERRORS - The errors used in the simulation

COMMENTS:

The ARMAX(P,Q) model simulated is:

y(t) = const + arp(1)*y(t-1) + arp(2)*y(t-2) + ... + arp(P) y(t-P) +

+ ma(1)*e(t-1) + ma(2)*e(t-2) + ... + ma(Q) e(t-Q)

+ xp(1)*x(t,1) + xp(2)*x(t,2) + ... + xp(K)x(t,K)

+ e(t)

EXAMPLES:

Simulate an AR(1) with a constant

y = armaxfilter_simulate(500, .5, 1, .9)

Simulate an AR(1) without a constant

y = armaxfilter_simulate(500, 0, 1, .9)

Simulate an ARMA(1,1) with a constant

y = armaxfilter_simulate(500, .5, 1, .95, 1, -.5)

Simulate a MA(1) with a constant

y = armaxfilter_simulate(500, .5, [], [], 1, -.5)

Simulate a seasonal MA(4) with a constant

y = armaxfilter_simulate(500, .5, [], [], 4, [.6 0 0 .2])

See also ARMAXFILTER, HETEROGENEOUSAR
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3.2 ARMA Estimation

3.2.1 Estimation: armaxfilter

Provides ARMA and ARMAX estimation for time-series models.

3.2.1.1 AR(1) and AR(P)

As special cases of an ARMAX, AR(1) and AR(P), both regular and irregular, can be estimated using

armaxfilter. The AR(1),

yt = φ0 + φ1 yt−1 + εt

can be estimated using

parameters = armaxfilter(y,1,1)

where the first argument is the time series, the second argument takes the value 1 or 0 to indicate whether a

constant should be included in the model (i.e. if it were 0, the model yt = φ1 yt−1+εt would be estimated),

and the third argument contains the autoregressive lags to be included in the model. An AR(P),

yt = φ0 + φ1 yt−1 + . . . + φP yt−P + εt

can be similarly estimated

P = 3;

parameters = armaxfilter(y,1,[1:P])

which would estimate an AR(3). The final argument in armaxfilter is [1:3] because all three lags of y ,

yt−1, yt−2 and yt−3 should be included (Note that [1:3] = [1 2 3]). An irregular AR(3) that includes

only the first and third lag, yt = φ0 + φ1 yt−1 + φ3 yt−3 + εt can be fit using

parameters = armaxfilter(y,1,[1 3])

where the final argument changes from [1:3] to [1 3] to indicate that only lags 1 and 3 should be in-

cluded.

3.2.1.2 MA(1) and MA(P)

Estimation of MA(1) and MA(Q) models is similar to estimation of AR(P) models. The commands to the

MA coefficient in armaxfilter are identical and the AR coefficients are set to 0 (or empty, []). Estimation

of an MA(1),

yt = θ1εt−1 + εt

can be accomplished by calling

parameters = armaxfilter(y,1,[],1)
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where the empty argument ([]) indicates that no AR terms are to be included. Parameter estimates for an

MA(Q),

yt = φ0 + θ1εt−1 + . . . + θQεt−Q + εt

can be computed by calling

Q=3;

parameters = armaxfilter(y,1,[],[1:Q])

and an irregular MA(3) that only includes lags 1 and 3 can be estimated by replacing the final argument,

[1:3], with [1 3].

parameters = armaxfilter(y,1,[],[1 3])

3.2.1.3 ARMA(P,Q)

Regular and Irregular ARMA(P,Q) estimation simply combines the two above steps. For example, to esti-

mate a regular ARMA(1,1),

yt = φ0 + φ1 yt−1 + θ1εt−1 + εt

call

parameters = armaxfilter(y,1,1,1)

Estimation of regular ARMA(P,Q) is straightforward.

yt = φ0 + φ1 yt−1 + . . . + φP yt−P + θ1εt−1 + . . . + θQεt−Q + εt

is estimated using the command

P=3; Q=4;

parameters = armaxfilter(y,1,1:P,1:Q)

and irregular ARMA(P,Q) processes can be computed by replacing the regular arrays [1:P] and [1:Q]with

arrays of only the lags to be included,

parameters = armaxfilter(y,1,[1 3],[1 4])

3.2.1.4 ARX(P), MAX(Q) and ARMAX(P,Q)

Including exogenous variables in AR(P), MA(Q) and ARMA(P,Q) models is identical to the above save one

additional step needed to align the data. Suppose that two time series {yt } and {xt } are available and

that they are aligned, so that x1 and y1 are from the same point in time. To regress yt on one lag of itself

and a lag of xt , it is necessary to promote x so that the element in the sth position is actually xs−1 and thus
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that yt will be coupled with xt−1. This is simple to do using the command newlagmatrix. newlagmatrix

produces two outputs, a vector of contemporary values that has been adjusted to remove lags (i.e. if the

original series has T observations, and newlagmatrix is requested to produce 2 lags, the new series will

have T − 2.) and a matrix of lags of the form yt−1 yt−2 . . . yt−P . To estimate an ARX(P), it is necessary to

adjust both x and y so that they line up. For example, to estimate

yt = φ0 + φ1 yt−1 + β1 xt−1 + εt ,

call

[yadj, ylags] = newlagmatrix(y,1,0);

[xadj, xlags] = newlagmatrix(x,1,0);

% Regress the adjusted values of y on the lags of x

X = xlags;

parameters = armaxfilter(yadj,1,1,0,X);

Aside from the step needed to properly align the data, estimating ARX(P), MAX(Q) and ARMAX(P,Q) mod-

els is identical to AR(P), MA(Q) and ARMA(P,Q). Regular models can be estimated by including 1:P or 1:Q

and irregular models can be estimated using irregular arrays (e.g. [1 3] or [1 2 4]).

The key to estimating ARMAX(P,Q) models is to lags both y and x by as many lags of x as are included

in the model. Consider the final example of an ARMAX(1,1) where 3 lags of x are to be included,

yt = φ0 + φ1 yt−1 + β1 xt−1 + β2 xt−2 + β3 xt−3 + θ1εt−1 + εt .

Assuming that the original x and y data “line-up” - so that x(1) and y(1) occurred at the same point in

time - this model can be estimated using the following code:

[yadj, ylags] = newlagmatrix(y,3,0);

[xadj, xlags] = newlagmatrix(x,3,0);

% Regress the adjusted values of y on the lags of x

X = xlags;

parameters = armaxfilter(yadj,1,1,1,X);

3.2.1.5 Required Inputs

[outputs] = armaxfilter(Y,CONSTANT)

The required inputs are:

• Y: T by 1 vector containing the dependant variable.

• CONSTANT: Logical value indicating whether to include a constant (1 to include, 0 to exclude).

Note: The required inputs only estimate the (unconditional) mean, and so it will generally be necessary

to use some of the optional inputs.
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3.2.1.6 Optional Inputs

[outputs] = armaxfilter(Y,CONSTANT,P,Q,X,STARTINGVALS,OPTIONS,HOLDBACK)

The optional inputs are:

• P: Column vector containing indices for the AR component in the model.

• Q: Column vector containing indices for the MA component in the model

• X: T by k matrix of exogenous regressors. Should be aligned with Y so that the ith row of X is known

when the observation in the ith row of Y is observed.

• STARTINGVALS: Column vector containing starting values for estimation. Used only for models with

an MA component.

• OPTIONS: MATLAB options structure for optimization using lsqnonlin.

• HOLDBACK: Scalar integer indicating the number of observations to withhold at the start of the sam-

ple. Useful when testing models with different lag lengths to produce comparable likelihoods, AICs

and SBICs. Should be set to the highest lag length (AR or MA) in the models studied.

3.2.1.7 Outputs

armaxfilter provides many other outputs than the estimated parameters. The full armaxfilter com-

mand can return

[PARAMETERS, LL, ERRORS, SEREGRESSION, DIAGNOSTICS, VCVROBUST, VCV, LIKELIHOODS, SCORES]

=armaxfilter(inputs here)

The outputs are:

• PARAMETERS: A vector of estimated parameters. The size of parameters is determined by whether

the constant is included, the number of lags included in the AR and MA portions and the number

of exogenous variables included (if any).

• LL: The log-likelihood computed using the estimated residuals and assuming a normal distribution.

• ERRORS: A T by 1 vector of estimated errors from the model

• SEREGRESSION: Standard error of the regression. Estimated using a degree-of-freedom adjustment.

• DIAGNOSTICS: A MATLAB structure of output that may be useful. To access elements of a structure,

enter diagnostics.fieldname where fieldname is one of:

– P: The AR lags used in estimation

– Q: The MA lags used in estimation

– C: An indicator (1 or 0) indicating whether a constant was included.

– NX: The number of X variables in the regression
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– AIC: The Akaike Information Criteria (AIC) for the estimated model

– SBIC: The Schwartz/Bayesian Information Criteria (SBIC) for the estimated model

– T: The number of observations in the original data series

– ADJT: The number of observations used for estimation after adjusting for HOLDBACK or requires

AR lag adjustments.

– ARROOTS: The characteristic roots of the characteristic equation corresponding to the estimated

ARMA model.

– ABSARROOTS: The absolute value of the arroots

• VCVROBUST: Heteroskedasticity-robust covariance matrix for the estimated parameters. The square-

root of the ith diagonal element is the standard deviation of the ith element of PARAMETERS.

• VCV: Non-heteroskedasticity robust covariance matrix of the estimated parameters.

• LIKELIHOODS: A T by 1 vector of the log-likelihood of each observation.

• SCORES: A T by # parameters matrix of scores of the model. These are used in some advanced test.

3.2.1.8 Examples

See above.

3.2.1.9 Comments

ARMAX(P,Q) estimation

USAGE:

[PARAMETERS]=armaxfilter(Y,CONSTANT,P,Q)

[PARAMETERS, LL, ERRORS, SEREGRESSION, DIAGNOSTICS, VCVROBUST, VCV, LIKELIHOODS, SCORES]

=armaxfilter(Y,CONSTANT,P,Q,X,STARTINGVALS,OPTIONS,HOLDBACK)

INPUTS:

Y - A column of data

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

P - Non-negative integer vector representing the AR orders to include in the model.

Q - Non-negative integer vector representing the MA orders to include in the model.

X - [OPTIONAL] a T by K matrix of exogenous variables. These line up exactly with

the Y’s and if they are time series, you need to shift them down by 1 place,

i.e. pad the bottom with 1 observation and cut off the top row [ T by K].

For

example, if you want to include X(t-1) as a regressor, Y(t) should line up

with X(t-1)

STARTINGVALS - [OPTIONAL] A (CONSTANT+length(P)+length(Q)+K) vector of starting values.

[constant ar(1) ... ar(P) xp(1) ... xp(K) ma(1) ... ma(Q) ]’

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

HOLDBACK - [OPTIONAL] Scalar integer indicating the number of observations to withhold at

the start of the sample. Useful when testing models with different lag lengths
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to produce comparable likelihoods, AICs and SBICs. Should be set to the highest

lag length (AR or MA) in the models studied.

OUTPUTS:

PARAMETERS - A 1+length(p)+size(X,2)+length(q) column vector of parameters with

[constant ar(1) ... ar(P) xp(1) ... xp(K) ma(1) ... ma(Q) ]’

LL - The log-likelihood of the regression

ERRORS - A T by 1 length vector of errors from the regression

SEREGRESSION - The standard error of the regressions

DIAGNOSTICS - A structure of diagnostic information containing:

P - The AR lags used in estimation

Q - The MA lags used in estimation

C - Indicator if constant was included

nX - Number of X variables in the regression

AIC - Akaike Information Criteria for the estimated model

SBIC - Bayesian (Schwartz) Information Criteria for the

estimated model

ADJT - Length of sample used for estimation after HOLDBACK adjustments

T - Number of observations

ARROOTS - The characteristic roots of the ARMA

process evaluated at the estimated parameters

ABSARROOTS - The absolute value (complex modulus if

complex) of the ARROOTS

VCVROBUST - Robust parameter covariance matrix%

VCV - Non-robust standard errors (inverse Hessian)

LIKELIHOODS - A T by 1 vector of log-likelihoods

SCORES - Matrix of scores (# of params by T)

COMMENTS:

The ARMAX(P,Q) model is:

y(t) = const + arp(1)*y(t-1) + arp(2)*y(t-2) + ... + arp(P) y(t-P) +

+ ma(1)*e(t-1) + ma(2)*e(t-2) + ... + ma(Q) e(t-Q)

+ xp(1)*x(t,1) + xp(2)*x(t,2) + ... + xp(K)x(t,K)

+ e(t)

The main optimization is performed with lsqnonlin with the default options:

options = optimset(’lsqnonlin’);

options.MaxIter = 10*(maxp+maxq+constant+K);

options.Display=’iter’;

You should use the MEX file (or compile if not using Win64 Matlab) for armaxerrors.c as it

provides speed ups of approx 10 times relative to the m file version armaxerrors.m

EXAMPLE:

To fit a standard ARMA(1,1), use

parameters = armaxfilter(y,1,1,1)

To fit a standard ARMA(3,4), use

parameters = armaxfilter(y,1,[1:3],[1:4])

To fit an ARMA that includes lags 1 and 3 of y and 1 and 4 of the MA term, use
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parameters = armaxfilter(y,1,[1 3],[1 4])

See also ARMAXFILTER_SIMULATE, HETEROGENEOUSAR, ARMAXERRORS
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3.2.2 Heterogeneous Autoregression: heterogeneousar

Estimates heterogeneous autoregressions, which are restricted parameterizations of standard ARs. A HAR

is a model of the class

yt = φ0 +
P∑

i=1

φi ȳt−1:i + εt

where ȳt−1:i = i−1∑i
j=1 yt− j . If all lags are included from 1 to P then the HAR is just a re-parameterized

Pth order AR, and so it is generally the case that most lags are set to zero, as in the common volatility HAR,

yt = φ0 + φ1 yt−1 + φ5 ȳt−1:5 + φ22 ȳt−1:22 + εt

where ȳt−1:1 = yt−1.

3.2.2.1 Examples

% Simulate data from a HAR model

y = armaxfilter_simulate(1000,1,22,[.1 .3/4*ones(1,4) .55/17*ones(1,17)])

% Standard HAR with 1, 5 and 22 day lags

parameters = heterogeneousar(Y,1,[1 5 22]’)

% Standard HAR with 1, 5 and 22 days lags using matrix notation

parameters = heterogeneousar(Y,1,[1 1;1 5;1 22])

% Standard HAR with 1, 5 and 22 day lags using the non-overlapping reparameterization

parameters = heterogeneousar(Y,1,[1 5 22]’,[],’MODIFIED’)

% Standard HAR with 1, 5 and 22 day lags with Newey-West standard errors

[parameters, errors, seregression, diagnostics, vcvrobust, vcv] = ...

heterogeneousar(Y,1,[1 5 22]’,ceil(length(Y)^(1/3)))

% Nonstandard HAR with lags 1, 2 and 10-22 day lags

parameters = heterogeneousar(Y,1,[1 1;2 2;10 22])

3.2.2.2 Required Inputs

[outputs] = heterogeneousar(Y,CONSTANT,P)

The required inputs are:

• Y: T by 1 vector containing the dependant variable.

• CONSTANT: Logical value indicating whether to include a constant (1 to include, 0 to exclude).

• P: Vector or Matrix. If a vector, must be a column vector. The values are interpreted as the number

of lags to average in each term. For example, [1 5 22] would fit the HAR

yt = φ0 + φ1 yt−1 + φ5 ȳt−1:5 + φ22 ȳt−1:22 + εt .

If a matrix, must be number of terms by 2 where the first column indicates the start point and the
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second indicates the end point. The matrix equivalent to the above vector notation is 1 1

1 5

1 22

 .

The matrix notation allows a HAR with non-overlapping intervals to be specified, such as 1 1

2 5

10 22


which would fit the model

yt = φ0 + φ1 yt−1 + φ5 ȳt−2:5 + φ22 ȳt−10:22 + εt .

3.2.2.3 Optional Inputs

[outputs] = heterogeneousar(Y,CONSTANT,P,NW,SPEC)

The optional inputs are:

• NW: Number of lags to include when computing the covariance of the estimated parameters. Default

is 0.

• SPEC: String value, either ’STANDARD’ or ’MODIFIED’. Modified reparameterizes the usual HAR as a

series of non-overlapping intervals, and so

yt = φ0 + φ1 yt−1 + φ5 ȳt−1:5 + φ22 ȳt−1:22 + εt

would be reparameterized as

yt = φ0 + φ1 yt−1 + φ5 ȳt−2:5 + φ22 ȳt−6:22 + εt

when estimated. The model fits are identical, and the ’MODIFIED’ version is only helpful for presen-

tation and interpretation.

3.2.2.4 Outputs

[PARAMETERS, ERRORS, SEREGRESSION, DIAGNOSTICS, VCVROBUST, VCV] = heterogeneousar(inputs)

• PARAMETERS: A vector of estimated parameters. The size of parameters is determined by whether

the constant is included and the number of lags included in the HAR.

• ERRORS: A T by 1 vector of estimated errors from the model. The first max(max(P)) are set to 0.

• SEREGRESSION: Standard error of the regression. Estimated using a degree-of-freedom adjustment.

• DIAGNOSTICS: A MATLAB structure of output that may be useful. To access elements of a structure,

enter diagnostics.fieldname where fieldname is one of:
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– P: The AR lags used in estimation

– C: An indicator (1 or 0) indicating whether a constant was included.

– AIC: The Akaike Information Criteria (AIC) for the estimated model

– SBIC: The Schwartz/Bayesian Information Criteria (SBIC) for the estimated model

– T: The number of observations in the original data series

– ADJT: The number of observations used for estimation after adjusting for AR lag length.

– ARROOTS: The characteristic roots of the characteristic equation corresponding to the estimated

ARMA model.

– ABSARROOTS: The absolute value of the arroots

• VCVROBUST: Heteroskedasticity-robust covariance matrix for the estimated parameters. Also auto-

correlation robust if NW selected appropriately. The square-root of the ith diagonal element is the

standard deviation of the ith element of PARAMETERS.

• VCV: Non-heteroskedasticity robust covariance matrix of the estimated parameters.

3.2.2.5 Comments

Heterogeneous Autoregression parameter estimation

USAGE:

[PARAMETERS] = heterogeneousar(Y,CONSTANT,P)

[PARAMETERS, ERRORS, SEREGRESSION, DIAGNOSTICS, VCVROBUST, VCV]

= heterogeneousar(Y,CONSTANT,P,NW,SPEC)

INPUTS:

Y - A column of data

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

P - A column vector or a matrix.

If a vector, should include the indices to use for the lag length, such as in

the usual case for monthly volatility data P=[1; 5; 22]. This indicates that

the 1st lag, average of the first 5 lags, and the average of the first 22 lags

should be used in estimation. NOTE: When using the vector format, P MUST BE A

COLUMN VECTOR to avoid ambiguity with the matrix format. If P is a matrix, the

values indicate the start and end points of the averages. The above vector can

be equivalently expressed as P=[1 1;1 5;1 22]. The matrix notation allows for

the possibility of skipping lags, for example P=[1 1; 5 5; 1 22]; would have

the 1st lag, the 5th lag and the average of lags 1 to 22. NOTE: When using the

matrix format, P MUST be # Entries by 2.

NW - [OPTIONAL] Number of lags to use when computing the long-run variance of the

scores in VCVROBUST. Default is 0.

SPEC - [OPTIONAL] String value indicating which representation to use in parameter

estimation. May be:

’STANDARD’ - Usual representation with overlapping lags

’MODIFIED’ - Modified representation with non-overlapping lags
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OUTPUTS:

PARAMETERS - A 1+length(p) column vector of parameters with

[constant har(1) ... har(P)]’

ERRORS - A T by 1 length vector of errors from the regression with 0s in first max(max(P))

places

SEREGRESSION - The standard error of the regressions

DIAGNOSTICS - A structure of diagnostic information containing:

P - List of HAR lags used in estimation

C - Indicator if constant was included

AIC - Akaike Information Criteria for the estimated model

SBIC - Bayesian (Schwartz) Information Criteria for the

estimated model

T - Number of observations

ADJT - Length of sample used for estimation

ARROOTS - The characteristic roots of the ARMA

process evaluated at the estimated parameters

ABSARROOTS - The absolute value (complex modulus if

complex) of the ARROOTS

VCVROBUST - Robust parameter covariance matrix, White if NW = 0,

Newey-West if NW>0

VCV - Non-robust standard errors (inverse Hessian)

EXAMPLES:

Simulate data from a HAR model

y = armaxfilter_simulate(1000,1,22,[.1 .3/4*ones(1,4) .55/17*ones(1,17)])

Standard HAR with 1, 5 and 22 day lags

parameters = heterogeneousar(Y,1,[1 5 22]’)

Standard HAR with 1, 5 and 22 days lags using matrix notation

parameters = heterogeneousar(Y,1,[1 1;1 5;1 22])

Standard HAR with 1, 5 and 22 day lags using the non-overlapping reparameterization

parameters = heterogeneousar(Y,1,[1 5 22]’,[],’MODIFIED’)

Standard HAR with 1, 5 and 22 day lags with Newey-West standard errors

[parameters, errors, seregression, diagnostics, vcvrobust, vcv] = ...

heterogeneousar(Y,1,[1 5 22]’,ceil(length(Y)^(1/3)))

Nonstandard HAR with lags 1, 2 and 10-22 day lags

parameters = heterogeneousar(Y,1,[1 1;2 2;10 22])

See also ARMAXFILTER, TARCH
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3.2.3 Residual Plotting: tsresidualplot

Provides a convenient tool to quickly plot errors from ARMA models.

3.2.3.1 Examples

T=1000; phi = .9; constant = 1; ARorder = 1;

y = armaxfilter_simulate(T, constant, ARorder, phi);

% ARMA(1,1) with a constant;

[parameters, LL, errors] = armaxfilter(y, 1, 1, 1);

tsresidualplot(y,errors)

% With dates for 1000 days beginning at Jan 1 2007

dates = datenum(’Jan-01-2007’):datenum(’Jan-01-2007’)+999;

% ARMA(1,1) with a constant;

[parameters, LL, errors] = armaxfilter(y, 1, 1, 1);

tsresidualplot(y,errors, dates)

The output of tsresidualplot is in figure 3.1 (this was generated suing the second command above):

3.2.3.2 Required Inputs

[outputs] = tsresidualplot(Y,ERRORS)

• Y: T by 1 vector of modeled data

• ERRORS: T by 1 vector of residuals

3.2.3.3 Optional Inputs

[outputs] = tsresidualplot(Y,ERRORS,DATES)

• DATES: T by 1 vector of MATLAB serial dates

3.2.3.4 Outputs

[HAXIS,HFIG] = tsresidualplot(inputs)

• HAXIS: 2 by 1 vector of handles to the plot axes

• HFIG: Handle to the figure containing the residual plot
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Figure 3.1: The output of tsresidplot generated using the code in the second example.

3.2.3.5 Comments

Produces a plot for visualizing time series data and residuals from a time series model

USAGE:

tsresidualplot(Y,ERRORS)

[HAXIS,HFIG] = tsresidualplot(Y,ERRORS,DATES)

INPUTS:

Y - A T by 1 vector of data
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ERRORS - A T by 1 vector of residuals, usually produced by ARMAXFILTER

DATES - [OPTIONAL] A T by 1 vector of MATLAB dates (i.e. should be 733043 rather than ’1-1-2007’).

If provided, the data and residuals will be plotted against the date rather than the

observation index

OUTPUTS:

HAXIS - A 2 by 1 vector axis handles to the top subplots

HFIG - A scalar containing the figure handle

COMMENTS:

HAXIS can be used to change the format of the dates on the x-axis when MATLAB dates are provides

by calling

datetick(HAXIS(j),’x’,DATEFORMAT,’keeplimits’)

where j is 1 (top) or 2 (bottom subplot) and DATEFORMAT is a numeric value between 28. See doc

datetick for more details. For example,

datetick(HAXIS(1),’x’,25,’keeplimits’)

will change the top subplot’s x-axis labels to the form yy/mm/dd.

EXAMPLES:

Estimate a model and produce a plot of fitted and residuals

[parameters, LL, errors] = armaxfilter(y, 1, 1, 1);

tsresidualplot(y, errors)

Estimate a model and produce a plot of fitted and residuals with dates

[parameters, LL, errors] = armaxfilter(y, 1, 1, 1);

dates = datenum(’01Jan2007’) + (1:length(y));

tsresidualplot(y, errors, dates)

See also ARMAXFILTER, DATETICK
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3.2.4 Characteristic Roots: armaroots

Computes the characteristic roots (and their absolute values) of the characteristic equation that corre-

spond to an ARMAX(P,Q) equation. It is usually called after or during armaxfilter.

3.2.4.1 Examples

armaroots can be used with either the output of armaxfilter or with hypothetical parameters. The first

example shows how to use them with armaxfilter while the second and third demonstrate their use

with hypothetical ARMA parameters. Note that the AR and MA lag lengths are identical to those used in

armaxfilter, so a regular ARMA(P,Q) requires [1:P] and [1:Q] to be input. This allows roots of irregular

ARMA(P,Q) to be computed by including the indices of the lags used (i.e. [1 3]).

T=1000; phi = .9; constant = 1; ARorder = 1;

y = armaxfilter_simulate(T, constant, ARorder, phi);

% ARMA(1,1) with a constant;

[parameters, LL, errors] = armaxfilter(y, 1, 1, 1);

[arroots, absarroots] = armaroots(parameters, 1, 1, 1)

arroots =

0.9023

absarroots =

0.9023

% An ARMA(2,2)

phi = [1.3 -.35]; theta = [.4 .3]; parameters=[1 phi theta]’;

[arroots, absarroots] = armaroots(parameters, 1, [1 2], [1 2])

arroots =

0.9193

0.3807

absarroots =

0.9193

0.3807

% An irregular AR(3)

% Note that phi contains phi1 and phi3 and that there is no phi2

phi = [1.3 -.35]; parameters = [1 phi]’;

% There will be three roots

[arroots, absarroots] = armaroots(parameters, 1, [1 3],[])

arroots =

0.8738 + 0.1364i

0.8738 - 0.1364i

-0.4475

absarroots =
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0.8843

0.8843

0.4475

3.2.4.2 Required Inputs

[outputs] = armaroots(PARAMETERS,CONSTANT,P,Q)

• PARAMETERS: A vector of parameters. The size of parameters is determined by whether the constant

is included, the number of lags included in the AR and MA portions and the number of exogenous

variables included (if any).

• CONSTANT: Logical value indicating whether to include a constant (1 to include, 0 to exclude).

• P: Column vector containing indices for the AR component in the model.

• Q: Column vector containing indices for the MA component in the model

3.2.4.3 Optional Inputs

[outputs] = armaroots(PARAMETERS,CONSTANT,P,Q,X)

• X: T by k matrix of exogenous regressors

3.2.4.4 Outputs

[ARROOTS,ABSARROOTS] = armaroots(inputs)

• ARROOTS: Vector containing roots of characteristic function associated with AR. The highest lag in P

determines the number of roots.

• ABSARROOTS: Complex modulus of the characteristic roots.

3.2.4.5 Comments

Computes the roots of the characteristic equation of an ARMAX(P,Q) as parameterized by ARMAXFILTER

USAGE:

[ARROOTS] = armaroots(PARAMETERS,CONSTANT,P,Q)

[ARROOTS,ABSARROOTS] = armaroots(PARAMETERS,CONSTANT,P,Q,X)

INPUTS:

PARAMETERS - A CONSTANT+length(P)+length(Q)+size(X,2) by 1 vector of parameters, usually an

output from ARMAXFILTER

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

P - Non-negative integer vector representing the AR orders to include in the model.

Q - Non-negative integer vector representing the MA orders to include in the model.
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X - [OPTIONAL] A T by K matrix of exogenous variables.

OUTPUTS:

ARROOTS - A max(P) by 1 vector containing the roots of the characteristic equation

corresponding to the ARMA model input

ABSARROOTS - Absolute value or complex modulus of the autoregressive roots

COMMENTS:

EXAMPLES:

Compute the AR roots of an ARMA(2,2)

phi = [1.3 -.35]; theta = [.4 .3]; parameters=[1 phi theta]’;

[arroots, absarroots] = armaroots(parameters, 1, [1 2], [1 2])

Compute the AR roots of an irregular AR(3)

phi = [1.3 -.35]; parameters = [1 phi]’;

[arroots, absarroots] = armaroots(parameters, 1, [1 3],[])

See also ARMAXFILTER, ROOTS



30 Stationary Time Series

3.2.5 Information Criteria: aicsbic

Computes the Akaike Information Criteria (AIC) and the Schwartz/Bayes Information Criterion for an

ARMAX(P,Q). The AIC is given by

AI C = ln σ̂2 +
2k

T

where k is the number of parameters in the model, including the constant, AR coefficients, MA coefficient

and any X variables. The SBIC is given by

S B I C = ln σ̂2 +
ln T k

T
.

3.2.5.1 Examples

% This example continues the examples from the ARMAXFILTER section

T=1000; phi = .9; constant = 1; ARorder = 1;

y = armaxfilter_simulate(T, constant, ARorder, phi);

p=1; q=0; constant =1;

% AR(1) with a constant;

[parameters, LL, errors] = armaxfilter(y, constant, p, q);

[aic,sbic] = aicsbic(errors,constant,p,q)

p=1; q=1; constant =1;

% AR(1) with a constant;

[parameters, LL, errors] = armaxfilter(y, constant, p, q);

[aic,sbic] = aicsbic(errors,constant,p,q)

%AR(1), the smaller one (also true model)

aic =

-0.0334

sbic =

-0.0235

% ARMA(1,1)

aic =

-0.0327

sbic =

-0.0179

% If using exogenous variables,

[aic,sbic] = aicsbic(errors,constant,p,q,X)

3.2.5.2 Required Inputs

[outputs] = aicsbic(ERRORS,CONSTANT,P,Q)

• ERRORS: A T by 1 vector of estimated errors from the ARMAX model

• CONSTANT: Logical value indicating whether to include a constant (1 to include, 0 to exclude).
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• P: Column vector containing indices for the AR component in the model.

• Q: Column vector containing indices for the MA component in the model

3.2.5.3 Optional Inputs

[outputs] = aicsbic(ERRORS,CONSTANT,P,Q,X)

• X: T by k matrix of exogenous regressors used in ARMAX estimation

3.2.5.4 Outputs

[AIC,SBIC] = aicsbic(inputs)

• AIC: Akaike Information Criteria

• SBIC: Schwartz/Bayesian Information Criteria

3.2.5.5 Comments

Computes the Akaike and Schwartz/Bayes Information Criteria for an ARMA(P,Q) as parameterized in

ARMAXFILTER

USAGE:

[AIC] = aicsbic(ERRORS,CONSTANT,P,Q)

[AIC,SBIC] = aicsbic(ERRORS,CONSTANT,P,Q,X)

INPUTS:

ERRORS - A T by 1 length vector of errors from the regression

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

P - Non-negative integer vector representing the AR orders to include in the model.

Q - Non-negative integer vector representing the MA orders to include in the model.

X - [OPTIONAL] a T by K matrix of exogenous variables.

OUTPUTS:

AIC - The Akaike Information Criteria

SBIC - The Schwartz/Bayes Information Criteria

COMMENTS:

This is a helper for ARMAXFILTER and uses the same inputs, CONSTANT, P, Q and X. ERRORS should

be the errors returned from a call to ARMAXFILTER with the same values of P, Q, etc.

EXAMPLES:

Compute AIC and SBIC from an ARMA

[parameters, LL, errors] = armaxfilter(y, constant, p, q);

[aic,sbic] = aicsbic(errors,constant,p,q)

See also ARMAXFILTER, HETEROGENEOUSAR
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3.3 ARMA Forecasting

3.3.1 Forecasting: arma_forecaster

Produces h-step ahead forecasts from an ARMA(P,Q) model. arma_forecaster also computed h-step

ahead forecast standard deviation, aligns yt+h and ŷt+h |t (so that they both appear at time t ) and com-

putes forecast errors.

arma_forecaster produces ŷt+h |t , the h-step ahead forecast of y starting at time t , starting at obser-

vation R and continuing until the end of the sample. The function will return a vector containing R “NaN”

values (since there are no forecasts for the first R observations) followed by T − R elements forming the

sequence ŷr+h |r , ŷr+h+1|r+1, . . . , ŷT+h |T . The function will also return yt+h shifted back h places. The first

R elements of y t+h will also be “NaN”. The next T − R − h will be yr+h , yr+h+1, . . . , yT+h and the final h

are also “NaN”. The h-NaNs at the end of the sample are present because yT+1, . . . yT+h are not available

(since by construction the series end at observation T ). The function also produces the forecast errors

which are simply êt+h |t = yt+h − ŷt+h |t , with the error from the forecast computed at time-t placed in

the t th element of the vector. The final output of this function is the forecast standard deviation which is

computed assuming homoskedasticity

3.3.1.1 Examples

T=1000; phi = .9; constant = 1; ARorder = 1;

y = armaxfilter_simulate(T, constant, ARorder, phi);

% AR(1) with a constant;

[parameters, LL, errors] = armaxfilter(y(1:500), 1, 1, 0);

% Produces the 1-step ahead forecast from an AR(1) starting from observation 500

[yhattph,yhat,forerr,ystd]=arma_forecaster(y,parameters,1,1,[],500,1);

% Produces the 10-step ahead forecast starting from observation 500

ystd

ystd =

1

[yhattph, yhat, forerr, ystd]=arma_forecaster(y, parameters, 1, 1, [] , 500, 10, 1);

ystd

ystd =

1.9002

3.3.1.2 Comments

Produces h-step ahead forecasts from ARMA(P,Q) models starting at some point

in the sample, R, and ending at the end of the sample. Also shifts the

data to align y(t+h) with y(t+ht) in slot t, computes the theoretical

forecast standard deviation (assuming homoskedasticity) and the forecast

errors.

USAGE:

[YHATTPH] = arma_forecaster(Y,PARAMETERS,CONSTANT,P,Q,R,H)

[YHATTPH,YTPH,FORERR,YSTD] =
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arma_forecaster(Y,PARAMETERS,CONSTANT,P,Q,R,H,SEREGRESSION)

INPUTS:

Y - A column of data

CONSTANT - Scalar variable: 1 if the model includes a constant, 0 to exclude

P - Non-negative integer vector representing the AR orders

included in the model.

Q - Non-negative integer vector representing the MA orders

included in the model.

R - Length of sample used in estimation. Sample is split

up between R and P, where the first R (regression) are

used for estimating the model and the remainder are

used for prediction (P) so that R+P=T.

H - The forecast horizon

SEREGRESSION - [OPTIONAL] The standard error of the regression. Used

to compute confidence intervals. If omitted,

SEREGRESSION is set to 1.

OUTPUTS:

YHATTPH - h-step ahead forecasts of Y. The element in position t

of YHATTPH is the time t forecast of Y(t+h). The

first R elements of YHATTPH are NaN. The next T-R-H

are pseudo in-sample forecasts while the final H are

out-of-sample.

YTPH - Value of original data at time t+h shifted to position

t. The first R elements of YTPH are NaN. The next

T-R-H are the values y(R+H),...,y(T), and the final H

are NaN since there is no data available for comparing

to the final H forecasts.

FORERR - The forecast errors, YHATTPH-YTPH

YSTD - The theoretical standard deviation of the h-step ahead

forecast (assumed homoskedasticity)

COMMENTS:

Values not relevant for the forecasting exercise have NaN returned.

See also armaxfilter
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3.4 Sample autocorrelation and partial autocorrelation

3.4.1 Sample Autocorrelations: sacf

Computes the sample autocorrelations and standard errors. Standard errors can be computed under as-

sumptions of homoskedasticity or heteroskedasticity. The sth sample autocorrelation is computed using

the regression

yt = ρs yt−s + εt

where the mean has been subtracted from the data and the standard errors use the usual OLS covariance

estimators, either the homoskedastic form or White’s.

3.4.1.1 Examples

x=randn(1000,1);% Define x to be a 1000 by 1 vector or random data

[ac, acstd] = sacf(x,5) % Results will vary based on the random numbers used

ac =

-0.0250

-0.0608

-0.0080

0.0123

-0.0067

acstd =

0.0331

0.0332

0.0312

0.0310

0.0323

[ac, acstd] = sacf(x,5,0) % Non-heteroskedasticity robust result

ac =

-0.0250

-0.0608

-0.0080

0.0123

-0.0067

acstd =

0.0316

0.0317

0.0317

0.0317

0.0317

3.4.1.2 Comments
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Computes sample autocorrelations and standard deviation using either

heteroskedasticity robust standard errors or classic (homoskedastic)

standard errors

USAGE:

[AC,ACSTD] = sacf(DATA,LAGS)

[AC,ACSTD] = sacf(DATA,LAGS,ROBUST)

INPUTS:

DATA - A T by 1 vector of data

LAGS - The number of autocorrelations to compute

ROBUST - [OPTIONAL] Logical variable (0 (non-robust) or 1 (robust)) to

indicate whether heteroskedasticity robust standard errors

should be used. Default is to use robust standard errors

(ROBUST=1).

OUTPUTS:

AC - A LAGS by 1 vector of autocorrelations

PVAL - A LAGS by 1 vector of standard deviations

COMMENTS:

Sample autocorrelations are computed using the maximum number of

observations for each lag. For example, if DATA has 100 observations,

the first autocorrelation is computed using 99 data points, the second

with 98 data points and so on.
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3.4.2 Sample Partial Autocorrelations: spacf

Computes the partial sample autocorrelations and standard errors. Standard errors can be computed un-

der assumptions of homoskedasticity or heteroskedasticity. The sth sample autocorrelation is computed

using the regression

yt = φ1 yt−1 + . . . + φs−1 yt−s+1 + ϕs yt−s + εt

and the standard errors use the usual OLS covariance estimators, either the homoskedastic form or White’s.

3.4.2.1 Examples

x=randn(1000,1);% Define x to be a 1000 by 1 vector or random data

[pac, pacstd] = spacf(x,5) % Results will vary based on the random numbers used

pac =

0.0098

0.0015

0.0432

0.0006

0.0768

pacstd =

0.0316

0.0313

0.0315

0.0311

0.0324

[pac, pacstd] = spacf(x,5,0) % Non-heteroskedasticity robust result

pac =

0.0098

0.0015

0.0432

0.0006

0.0768

pacstd =

0.0316

0.0316

0.0316

0.0316

0.0316

3.4.2.2 Comments

Computes sample partial autocorrelations and standard deviation using

either heteroskedasticity robust standard errors or classic

(homoskedastic) standard errors
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USAGE:

[PAC,PACSTD] = spacf(DATA,LAGS)

[PAC,PACSTD] = spacf(DATA,LAGS,ROBUST)

INPUTS:

DATA - A T by 1 vector of data

LAGS - The number of autocorrelations to compute

ROBUST - [OPTIONAL] Logical variable (0 (non-robust) or 1 (robust)) to

indicate whether heteroskedasticity robust standard errors

should be used. Default is to use robust standard errors

(ROBUST=1).

OUTPUTS:

PAC - A LAGS by 1 vector of partial autocorrelations

PACSTD - A LAGS by 1 vector of standard deviations

COMMENTS:

Sample partial autocorrelations computed from autocorrelations that are

computed using the maximum number of observations for each lag. For

example, if DATA has 100 observations, the first autocorrelation is

computed using 99 data points, the second with 98 data points and so on.
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3.5 Theoretical autocorrelation and partial autocorrelation

3.5.1 ARMA Autocorrelations: acf

Computes the theoretical autocorrelations from an ARMA(P,Q) by solving the Yule-Walker equations.

3.5.1.1 Examples

The two examples correspond to an AR(1) withφ1 = .9 and an ARMA(1,1) withφ1 = .9 and θ1 = .9.

ac = acf(.9,0,5)

ac =

1.0000

0.9000

0.8100

0.7290

0.6561

0.5905

ac = acf(.9,.9,5)

ac =

1.0000

0.9499

0.8549

0.7694

0.6924

0.6232

3.5.1.2 Comments

Computes the theoretical autocorrelations and long-run variance of

an ARMA(p,q) process

USAGE:

[AUTOCORR, SIGMA2_T] = acf(PHI,THETA,N)

[AUTOCORR, SIGMA2_T] = acf(PHI,THETA,N,SIGMA2_E)

INPUTS:

PHI - Autoregressive parameters, in the order t-1,t-2,...

THETA - Moving average parameters, in the order t-1,t-2,...

N - Number of autocorrelations to be computed

SIGMA2_E - [OPTIONAL] Variance of errors. If omitted, sigma2_e=1

OUTPUTS:

AUTOCORR - N+1 by 1 vector of autocorrelation. To recover the

autocovariance of an ARMA(P,Q), use AUTOCOV = AUTOCORR * SIGMA2_Y
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SIGMA2_Y - Long-run variance, denoted gamma0 of ARMA process with

innovation variance SIGMS2_E

COMMENTS:

Note: The ARMA model is parameterized as follows:

y(t)=phi(1)y(t-1)+phi(2)y(t-2)+...+phi(p)y(t-p)+e(t)+theta(1)e(t-1)

+theta(2)e(t-2)+...+theta(q)e(t-q)

To compute the autocorrelations for an ARMA that does not include all

lags 1 to P, insert 0 for any excluded lag. For example, if the model

was y(t) = phi(2)y(t-1), THETA = [0 phi(2)]
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3.5.2 ARMA Partial Autocorrelations: pacf

Computes the theoretical partial autocorrelations from an ARMA(P,Q). The function uses acf to produce

the theoretical autocorrelations and then transforms them to partial autocorrelations by noting that the

sth partial autocorrelation is given byφs in the regression

yt = φ1 yt−1 + φ2 yt−2 + . . . + φs yt−s + εt

and is computed using the first s + 1 autocorrelations and the population regression coefficients.

3.5.2.1 Examples

The two examples correspond to an AR(1) withφ1 = .9 and an ARMA(1,1) withφ1 = .9 and θ1 = .9.

pac = pacf(.9,0,5)

pac =

1.0000

0.9000

0

0

0

0

pac = pacf(.9,.9,5)

pac =

1.0000

0.9499

-0.4843

0.3226

-0.2399

0.1892

3.5.2.2 Comments

Computes the theoretical partial autocorrelations an ARMA(p,q) process

USAGE:

[PAUTOCORR] = pacf(PHI,THETA,N)

INPUTS:

PHI - Autoregressive parameters, in the order t-1,t-2,...

THETA - Moving average parameters, in the order t-1,t-2,...

N - Number of autocorrelations to be computed

OUTPUTS:

PAUTOCORR - N+1 by 1 vector of partial autocorrelations.
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COMMENTS:

Note: The ARMA model is parameterized as follows:

y(t)=phi(1)y(t-1)+phi(2)y(t-2)+...+phi(p)y(t-p)+e(t)+theta(1)e(t-1)

+theta(2)e(t-2)+...+theta(q)e(t-q)

To compute the autocorrelations for an ARMA that does not include all

lags 1 to P, insert 0 for any excluded lag. For example, if the model

was y(t) = phi(2)y(t-1), THETA = [0 phi(2)]
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3.6 Testing for serial correlation

3.6.1 Ljung-Box Q Statistic: ljungbox

The Ljung-Box statistic tests whether the first k autocorrelations are zero against an alternative that at

least one is non-zero. The Ljung-Box Q is computed

Q = T (T + 2)
k∑

i=1

ρ̂i

T − K

where ρ̂i is the kth sample autocorrelation. This test statistic has an asymptotic χ2
K distribution. Note:

The Ljung-Box statistic is not appropriate for heteroskedastic data.

3.6.1.1 Examples

x = randn(1000,1); % Define x to be a 1000 by 1 vector or random data

[Q, pval] = ljungbox(x,5) % Results will vary based on the random numbers used

Q =

0.2825

1.2403

2.0262

2.0316

3.8352

pval =

0.4049

0.4621

0.4330

0.2701

0.4266

3.6.1.2 Comments

Ljung-Box tests for the presence of serial correlation in up to q lags.

Returns LAGS Ljung-Box statistics tests, one for tests for each lag between 1

and LAGS. Under the null of no serial correlation and assuming homoskedasticity,

the Ljung-Box test statistic is asymptotically distributed X2(q)

USAGE:

[Q,PVAL] = ljungbox(DATA,LAGS)

INPUTS:

DATA - A T by 1 vector of data

LAGS - The maximum number of lags to compute the LB. The statistic and

pval will be returned for all sets of lags up to and

including LAGS
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OUTPUTS:

Q - A LAGS by 1 vector of Q statistics

PVAL - A LAGS by 1 set of appropriate pvals

COMMENTS:

This test statistic is common but often inappropriate since it assumes

homoskedasticity. For a heteroskedasticity consistent serial

correlation test, see lmtest1

SEE ALSO:

lmtest1, lmtest2
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3.6.2 LM Serial Correlation Test: lmtest1

Conducts an LM test that there is no evidence of serial correlation up to an including Q lags of the de-

pendant variable. The test is an LM-test for testing the null that all of the regression coefficients are zero

in

yt = φ0 + φ1 yt−1 + φ2 yt−2 + . . . + φQ yt−Q + εt .

The null tested is H0 : φ1 = φ2 = . . . = φQ = 0 and the test is computed as an LM test of the form

LM = T ŝŜ−1ŝ

where s = T −1X′ε̃ and S = T −1∑T
t=1 ε̃t xt x′t where xt = [yt−1 yt−2 . . . yt−Q ] and ε̃t = yt − ȳ . The function

is called by passing the data and the number of lags to test into the function

LM = lmtest1(data, Q)

and returns a Q by 1 vector of LM tests where the first value tests 1 lag, the second value tests 2 lags, and

so on up to the Q th which returns the Q -lag LM test for serial correlation. lmtest1 can take an optional

third argument which determines the covariance estimator (Ŝ): 0 uses a non-heteroskedasticity robust

estimator while 1 (default) uses a heteroskedasticity robust estimator. To use the alternative form, use the

three parameter form

LM = lmtest1(data, Q, robust)

where robust is either 0 or 1. lmtest1 also returns an optional second output, the p-values of each test

statistic computed using a χ2
j where j is the number of lags used in that test, so 1 for the first value of LM,

2 for the second and so on up to a χ2
Q for the final value.

[LM, pval] = lmtest1(data, Q, robust)

3.6.2.1 Examples

x = randn(1000,1); % Define x to be a 1000 by 1 vector or random data

[LM, pval] = lmtest1(x,5) % Results will vary based on the random numbers used

LM =

0.0223

0.1279

0.5606

0.7200

0.5851

pval =

0.8813

0.9381

0.9054

0.9488
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0.9887

[LM, pval] = lmtest1(x,5,0) % Non-robust standard errors

LM =

0.0229

0.1256

0.5827

0.7308

0.5879

pval =

0.8798

0.9391

0.9004

0.9475

0.9886

3.6.2.2 Comments

LM tests for the presence of serial correlation in q lags, with or without

heteroskedasticity. Returns Q LM tests, one for tests for each lag between 1

and Q. Under the null of no serial correlation, the LM-test is asymptotically

distributed X2(q)

USAGE:

[LM,PVAL] = lmtest1(DATA,Q)

[LM,PVAL] = lmtest1(DATA,Q,ROBUST)

INPUTS:

DATA - A set of deviates from a process with or without mean

Q - The maximum number of lags to regress on. The statistic and

pval will be returned for all sets of lags up to and including q

ROBUST - [OPTIONAL] Logical variable (0 (non-robust) or 1 (robust)) to

indicate whether heteroskedasticity robust standard errors

should be used. Default is to use robust standard errors

(ROBUST=1).

OUTPUTS:

LM - A Qx1 vector of statistics

PVAL - A Qx1 set of appropriate pvals

COMMENTS:

To increase power of this test, the variance estimator is computed under

the alternative. As a result, this test is an LR-class test but, aside

from the variance estimator, is identical to the usual LM test for serial

correlation
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3.7 Filtering

3.7.1 Baxter-King Filtering: bkfilter

The Baxter-King filter for extracting the trend and cyclic component from macroeconomic time series

(Baxter and King, 1999).

3.7.1.1 Examples

% Load US GDP data

load GDP

% Standard BK Filter with periods of 6 and 32

[trend, cyclic] = bkfilter(log(GDP),6,32)

% BK Filter for low pass filtering only at 40 period, CYCLIC will be 0

[trend, cyclic] = bkfilter(log(GDP),40,40)

% BK Filter using a 2-sided 20 point approximation

trend = bkfilter(log(GDP),6,32,20)

3.7.1.2 Required Inputs

[outputs] = bkfilter(Y,P,Q)

The required inputs are:

• Y: T by k matrix of data to be filtered

• P: Number of periods for the high pass filter

• Q: Number of periods for the low pass filter

3.7.1.3 Optional Inputs

[outputs] = bkfilter(Y,P,Q,K)

The required inputs are:

• K: Number of points to use in the approximate optimal filter. Larger number of points provide more

accurate approximations, although the first and last K data points will not be filtered. The default is

12.

3.7.1.4 Outputs

[TREND,CYCLIC,NOISE] = bkfilter(Y,P,Q,K)

• TREND: The filtered trend, which is the signal with a period larger than Q. The first and last K points

of TREND will be equal to Y.

• CYCLIC: The cyclic component, which is the signal with a period between P and Q. The first and last

K points of CYCLIC will be 0.

• NOISE: The high frequency noise component, which is the signal with a period shorter than P. The

first and last K points of NOISE will be 0.
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3.7.1.5 Comments

Baxter-King filtering of multiple time series

USAGE:

[TREND,CYCLIC,NOISE] = bkfilter(Y,P,Q,K)

INPUTS:

Y - A T by K matrix of data to be filtered.

P - Number of periods to use in the higher frequency filter (e.g. 6 for quarterly data).

Must be at least 2.

Q - Number of periods to use in the lower frequency filter (e.g. 32 for quarterly data). Q

can be inf, in which case the low pass filter is a 2K+1 moving average.

K - [OPTIONAL] Number of points to use in the finite approximation bandpass filter. The

default value is 12. The filter throws away the first and last K points.

OUTPUTS:

TREND - A T by K matrix containing the filtered trend. The first and last K points equal Y.

CYCLIC - A T by K matrix containing the filtered cyclic component. The first and last K points are 0.

NOISE - A T by K matrix containing the filtered noise component. The first and last K points are 0.

COMMENTS:

The noise component is simply the original data minus the trend and cyclic component, NOISE = Y -

TREND - CYCLIC where the trend is produces by the low pass filter and the cyclic component is

produced by the difference of the high pass filter and the low pass filter. The recommended

values of P and Q are 6 and 32 or 40 for quarterly data, or 18 and 96 or 120 for monthly data.

Setting Q=P produces a single bandpass filer and the cyclic component will be 0.

EXAMPLES:

Load US GDP data

load GDP

Standard BK Filter with periods of 6 and 32

[trend, cyclic] = bkfilter(log(GDP),6,32)

BK Filter for low pass filtering only at 40 period, CYCLIC will be 0

[trend, cyclic] = bkfilter(log(GDP),40,40)

BK Filter using a 2-sided 20 point approximation

trend = bkfilter(log(GDP),6,32,20)

See also HP_FILTER, BEVERIDGENELSON
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3.7.2 Hodrick-Prescott Filtering: hp_filter

The Hodrick-Prescott filter for extracting the trend and cyclic component from macroeconomic time se-

ries (Hodrick and Prescott, 1997). The HP filter identifies the trend as the solution to

min
{µt }

T∑
t=1

(yt − µt )2 + λ (µt−1 − µt − µt + µt+1)

where λ is a parameter which determines the cutoff frequency of the filter and any trend points outside

of 1, . . . , T are dropped. If λ = 0 then µt = yt and as λ→∞ µt limits to a least squares linear trend fit.

3.7.2.1 Examples

% Load US GDP data

load GDP

% Standard HP Filter with lambda = 1600

[trend, cyclic] = hp_filter(log(GDP),1600)

3.7.2.2 Required Inputs

[outputs] = hp_filter(Y,LAMBDA)

The required inputs are:

• Y: T by k matrix of data to be filtered

• LAMBDA: Smoothing parameter for HP filter. Values above 1010 produce unstable matrix inverses

and so a linear trend is forced at this point.

3.7.2.3 Outputs

[TREND,CYCLIC] = hp_filter(inputs)

• TREND: The filtered trend.

• CYCLIC: The cyclic component.

3.7.2.4 Comments

Hodrick-Prescott filtering of multiple time series

USAGE:

[TREND,CYCLIC] = hp_filter(Y,LAMBDA)

INPUTS:

Y - A T by K matrix of data to be filtered.

LAMBDA - Positive, scalar integer containing the smoothing parameter of the HP filter.
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OUTPUTS:

TREND - A T by K matrix containing the filtered trend

CYCLIC - A T by K matrix containing the filtered cyclic component

COMMENTS:

The cyclic component is simply the original data minus the trend, CYCLIC = Y - TREND. 1600 is

the recommended value of LAMBDA for Quarterly Data while 14400 is the recommended value of LAMBDA

for monthly data.

EXAMPLES:

Load US GDP data

load GDP

Standard HP Filter with lambda = 1600

[trend, cyclic] = hp_filter(log(GDP),1600)

See also BKFILTER, BEVERIDGENELSON
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3.8 Regression with Time Series Data

3.8.1 Regression with time-series data: olsnw

Regression with Newey-West variance-covariance estimation. Aside from the difference variance-covariance

estimator, is virtually identical to ols.

3.8.1.1 Examples

% Set up some experimental data

T = 500;

e = armaxfilter_simulate(T,0,1,.8);

x = armaxfilter_simulate(T,0,1,.8);

y = x + e;

% Regression with a constant

b = olsnw(y,x)

% Regression through the origin (uncentered)

b = olsnw(y,x,0)

% Regression using 10 lags in the NW covariance estimator

b = olsnw(y,x,1,10)

3.8.1.2 Required Inputs

[outputs] = ols(Y,X)

The required inputs are:

• Y: A T by 1 vector containing the regressand.

• X: A T by k vector containing the regressors. X should be full rank and should not contain a constant

column.

3.8.1.3 Optional Inputs

[outputs] = olsnw(Y,X,C,NWLAGS)

The optional inputs are:

• C: A scalar (0 or 1) indicating whether the regression should include a constant. If 1 the X data are

augmented by a columns of 1s before the regression coefficients are estimated. If omitted or empty,

the default value is 1. C determines whether centered or uncentered estimators of R2and R̄2are com-

puted.

• NWLAGS: Number of lags to use when computing the variance-covariance matrix of the estimated

parameters. The default value is bT
1
3 c.
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3.8.1.4 Outputs

olsnw provides many other outputs than the estimated parameters. The full olsnw command can return

[B,TSTAT,S2,VCVNW,R2,RBAR,YHAT] = olsnw(inputs)

The outputs are:

• B: k by 1 vector of estimated parameters.

• TSTAT: k by 1 vector of t-stats computed using heteroskedasticity robust inference.

• S2: Estimated variance of the regression error. Computed using a degree of freedom adjustment

(n − k ).

• VCVNW: Newey-West variance-covariance matrix

• R2: R2. Centered if C is 1 or omitted.

• RBAR: R̄2. Centered if C is 1 or omitted.

• YHAT: Fit values of Y

3.8.1.5 Comments

Linear regression estimation with Newey-West HAC standard errors.

USAGE:

[B,TSTAT,S2,VCVNW,R2,RBAR,YHAT] = olsnw(Y,X,C,NWLAGS)

INPUTS:

Y - T by 1 vector of dependent data

X - T by K vector of independent data

C - 1 or 0 to indicate whether a constant should be included (1: include constant)

NWLAGS - Number of lags to included in the covariance matrix estimator. If omitted or empty,

NWLAGS = floor(T^(1/3)). If set to 0 estimates White’s Heteroskedasticity Consistent

variance-covariance.

OUTPUTS:

B - A K(+1 is C=1) vector of parameters. If a constant is included, it is the first parameter

TSTAT - A K(+1) vector of t-statistics computed using Newey-West HAC standard errors

S2 - Estimated error variance of the regression, estimated using Newey-West with NWLAGS

VCVNW - Variance-covariance matrix of the estimated parameters computed using Newey-West

R2 - R-squared of the regression. Centered if C=1

RBAR - Adjusted R-squared. Centered if C=1

YHAT - Fit values of the dependent variable

COMMENTS:

The model estimated is Y = X*B + epsilon where Var(epsilon)=S2.

EXAMPLES:
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Regression with automatic BW selection

b = olsnw(y,x)

Regression without a constant

b = olsnw(y,x,0)

Regression with a pre-specified lag-length of 10

b = olsnw(y,x,1,10)

Regression with White standard errors

b = olsnw(y,x,1,0)

See also OLS
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3.9 Long-run Covariance Estimation

3.9.1 Newey-West covariance estimation covnw

covnw computes the Newey-West covariance estimator defined

σ̂2
N W = Γ̂ 0 +

L∑
i=1

wi (Γ̂ i + Γ̂
′
i )

where wi = (L − i + 1)/(L + 1) for i = 1, 2, . . . , L and Γ̂ i =
∑T

t=i+1 x̃t x̃t−i where x̃t = xt − x̄ are the

(optionally) demeaned data.

3.9.1.1 Examples

y = armaxfilter_simulate(1000,0,1,.9);

% Newey-West covariance with automatic BW selection

lrcov = covnw(y)

% Newey-West covariance with 10 lags

lrcov = covnw(y, 10)

% Newey-West covariance with 10 lags and no demeaning

lrcov = covnw(y, 10, 0)

3.9.1.2 Required Inputs

[outputs] = covnw(DATA)

The required inputs are:

• DATA: T by k matrix of time-series data.

3.9.1.3 Optional Inputs

[outputs] = covnw(DATA, NLAGS, DEMEAN)

The optional inputs are:

• NLAGS: Number of lags to use in the Newey-West estimator. If omitted, NLAGS = bT
1
3 c.

• DEMEAN: Logical value indicating whether the demean the data (1) or to compute the long-run co-

variance of the data directly. Default is to demean.

3.9.1.4 Outputs

[V] = covnw(inputs)

• V: k by k covariance matrix.
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3.9.1.5 Comments

Long-run covariance estimation using Newey-West (Bartlett) weights

USAGE:

V = covnw(DATA)

V = covnw(DATA,NLAG,DEMEAN)

INPUTS:

DATA - T by K vector of dependent data

NLAG - Non-negative integer containing the lag length to use. If empty or not included,

NLAG=min(floor(1.2*T^(1/3)),T) is used

DEMEAN - Logical true or false (0 or 1) indicating whether the mean should be subtracted when

computing the covariance

OUTPUTS:

V - A K by K covariance matrix estimated using Newey-West (Bartlett) weights

COMMENTS:

EXAMPLES:

y = armaxfilter_simulate(1000,0,1,.9);

% Newey-West covariance with automatic BW selection

lrcov = covnw(y)

% Newey-West covariance with 10 lags

lrcov = covnw(y, 10)

% Newey-West covariance with 10 lags and no demeaning

lrcov = covnw(y, 10, 0)

See also COVVAR
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3.9.2 Den Hann-Levin covariance estimation covvar

Long-run covariance estimation using the VAR-based estimator of Haan and Levin 2000. The basic idea of

their estimator is the compute the long-run variance of a process from a Vector Autoregression. Suppose

a vector of data yt follows a stationary VAR,

(yt − µ) = Φ1 (yt−1 − µ) + . . . + Φk (yt−k − µ) + εt

where µ = E [yt ], then the variance of yt can be computed

(yt − µ)− Φ1 (yt−1 − µ)− . . .− Φk (yt−k − µ) = εt

from the VAR as

V [yt ] = [I− Φ1 − . . .− ΦK ]−1 Σ
[

I− Φ′1 − . . .− Φ′K
]−1

where Σ = E
[
εt ε
′
t

]
is the unconditional covariance of the residuals (assumed to be a vector White Noise

process).

Note: This function differs slightly from the procedure of Den Haan and Levin in that it only conduct a

global lag length search, and so the resultant VAR will not have any zero elements. Den Haan and Levin

recommend using a series-by-series search with the possibility of having different lag lengths of own lags

and other lags. Changing to their procedure is something that may happen in future releases. Despite this

difference, the estimator in the code is still consistent as long as the maximum lag length

3.9.2.1 Examples

y = armaxfilter_simulate(1000,0,1,.9);

% VAR HAC covariance with automatic BW selection

lrcov = covvar(y)

% VAR HAC with at most 10 lags

lrcov = covvar(y, 10)

% VAR HAC with at most 10 lags selected using AIC

lrcov = covnw(y, 10, 3)

3.9.2.2 Required Inputs

[outputs] = covvar(DATA)

The required inputs are:

• DATA: T by k matrix of time-series data.

3.9.2.3 Optional Inputs

[outputs] = covnw(DATA, MAXLAGS, METHOD)

The optional inputs are:

• MAXLAGS: The maximum number of lags to consider when selecting the VAR lag length. If omitted is

set to b1.2T
1
3 c or T /K , whichever is less.
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• METHOD: A scalar numeric value indicating the method to use when searching:

1. Use MAXLAGS in the VAR and do not search

2. Use up to MAXLAG and select the VAR order using SIC. This is the default.

3. Use up to MAXLAG and select the VAR order using AIC.

4. Use up to MAXLAG and select the VAR order using SIC using a global search. This option differs

from option 2 in that it can select an irregular VAR order (e.g. select lags 1 and 4 rather than 1,

2, 3 and 4.).

5. Use up to MAXLAG and select the VAR order using AIC using a global search.

3.9.2.4 Outputs

[V,LAGSUSED] = covvar(inputs)

• V: k by k covariance matrix.

• LAGSUSED: A vector indicating the lags used in estimating the covariance.

3.9.2.5 Comments

Long-run covariance estimation using Newey-West (Bartlett) weights

USAGE:

V = covnw(DATA)

V = covnw(DATA,NLAG,DEMEAN)

INPUTS:

DATA - T by K vector of dependent data

NLAG - Non-negative integer containing the lag length to use. If empty or not included,

NLAG=min(floor(1.2*T^(1/3)),T) is used

DEMEAN - Logical true or false (0 or 1) indicating whether the mean should be subtracted when

computing the covariance

OUTPUTS:

V - A K by K covariance matrix estimated using Newey-West (Bartlett) weights

COMMENTS:

EXAMPLES:

y = armaxfilter_simulate(1000,0,1,.9);

% Newey-West covariance with automatic BW selection

lrcov = covnw(y)

% Newey-West covariance with 10 lags

lrcov = covnw(y, 10)

% Newey-West covariance with 10 lags and no demeaning

lrcov = covnw(y, 10, 0)

See also COVVAR



Chapter 4

Nonstationary Time Series

4.1 Unit Root Testing

4.1.1 Augmented Dickey-Fuller testing: augdf

Estimates an Augmented Dickey-Fuller regression and returns the appropriate p-value for the assumption

made on the model and data generating process. The estimated model is

yt = α + ρyt−1 + γt + δ1∆yt−1 + ... + δP∆yt−p

The deterministic terms, α and γmay be included or excluded depending on which case it used and

the number of lags used in the estimation can be specified. augdf supports 4 cases:

• Case 0: DGP and estimated model contain no deterministic trends

• Case 1: DGP contains no deterministic time trend but estimated model includes a constant and a

time-trend

• Case 2: DGP contains a constant or a time trend. Estimated model includes both a constant and a

time trend.

• Case 3: DGP and estimated model contain a constant

A basic DF with no deterministic component can be estimated

[ADFstat, ADFpval] = augdf(y,0,0)

Other versions including lags in the ADF and deterministic trends can be estimated using

lags = 10; %set the number of ADF lags

p = 1;% Case 1

[ADFstat, ADFpval] = augdf(y,p,lags)

p = 2;

[ADFstat, ADFpval] = augdf(y,p,lags)

P-values were computed form 2 million simulations using gaussian errors. The function augdfcv returns

the appropriate critical values and p-values for the choice of case and size of the data sample (T ).
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4.1.1.1 Examples

x = cumsum(randn(1000,1)); % Define x to be a 1000 by 1 random walk

[ADFstat, ADFpval] = augdf(x,0,0) % Results will vary based rand. num. used

ADFstat =

-0.3941

ADFpval =

0.5472

[ADFstat, ADFpval] = augdf(x,1,0) % Assume a constant

ADFstat =

-2.3527

ADFpval =

0.1584

x = cumsum(1+randn(1000,1)); % Define x to be a 1000 by 1 random walk

% Case 3, Results will vary based on the random numbers used

[ADFstat, ADFpval] = augdf(x,3,0)

ADFstat =

0.6028

ADFpval =

0.7267

x = cumsum(randn(1000,1)); % Define x to be a 1000 by 1 random walk

[ADFstat, ADFpval, critval] = augdf(x,1,0) % Get the critical values

% for the 1%, 5%, 10%, 90%, 95% and 99% of the case-specific distribution

ADFstat =

-3.3738

ADFpval =

-0.0139

critval =

-3.4494

-2.8739

-2.5769

-0.4366

-0.0758

0.6123

4.1.1.2 Comments
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Dickey-Fuller and Augmented Dickey Fuller testing

USAGE:

[ADFSTAT,PVAL,CRITVAL] = augdf(Y,P,LAGS)

[ADFSTAT,PVAL,CRITVAL,RESID] = augdf(Y,P,LAGS)

INPUTS:

Y - A T by 1 vector of data

P - Order of the polynomial of include in the ADF regression:

0 : No deterministic terms

1 : Constant

2 : Time Trend

3 : Constant, DGP assumed to have a time trend

LAGS - The number of lags to include in the ADF test (0 for DF test)

OUTPUTS:

ADFSTAT - Dickey-Fuller statistic

PVAL - Probability the series is a unit root

CRITVALS - A 6 by 1 vector with the [.01 .05 .1 .9 .95 .99] values from the DF distribution

RESID - Residual (adjusted for lags) from the ADF regression

COMMENTS:

See also AUGDFAUTOLAG
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4.1.2 Augmented Dickey-Fuller testing with automated lag selection: augdfautolag

Conducts an ADF test using up to a maximum number of lags where the lag length is automatically se-

lected according to the AIC or BIC. All of the actual testing is done by augdf.

4.1.2.1 Examples

% Simulate an MA(3)

x = armaxfilter_simulate(1000,0, 0, [], 3, [.8 .3 .9]);

x = cumsum(x); % Integrate x

maxlag = 24;

% Default is to use AIC

[ADFstat, ADFpval, critval,resid, lags] = augdfautolag(x,1,maxlag);

lags

lags =

15

% Can also use BIC

[ADFstat, ADFpval, critval,resid, lags] = augdfautolag(x,1,maxlag,’BIC’);

lags

lags =

9

4.1.2.2 Comments

Dickey-Fuller and Augmented Dickey Fuller with automatic lag selection

USAGE:

[ADFSTAT,PVAL,CRITVAL] = augdfautolag(Y,P,LAGS,IC)

[ADFSTAT,PVAL,CRITVAL,RESID,LAGS] = augdfautolag(Y,P,LAGS,IC)

INPUTS:

Y - A T by 1 vector of data

P - Order of the polynomial of include in the ADF regression:

0 : No deterministic terms

1 : Constant

2 : Time Trend

3 : Constant, DGP assumed to have a time trend

MAXLAGS - The maximum number of lags to include in the ADF test

IC - [OPTIONAL] String, either ’AIC’ (default) or ’BIC’ to choose the criteria to select

the model

OUTPUTS:

ADFSTAT - Dickey-Fuller statistic

PVAL - Probability the series is a unit root

CRITVALS - A 6 by 1 vector with the [.01 .05 .1 .9 .95 .99] values from the DF distribution

LAGS - The selected number of lags
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COMMENTS:

See also AUGDF
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Chapter 5

Vector Autoregressions

5.1 Stationary Vector Autoregression

5.1.1 Vector Autoregression estimation: vectorar

Estimates Pth order (regular and irregular) vector autoregressions. The options for vectorar include the

ability to include or exclude a constant, choose the lag order, and to specify which assumptions should

be made for computing the covariance matrix of the estimated parameters. The parameter covariance

matrix can be estimated under 4 sets of assumptions on the errors:

• Uncorrelated and Homoskedastic

• Correlated and Homoskedastic

• Uncorrelated and Heteroskedastic

• Correlated and Heteroskedastic

To examine the outputs and choices of the covariance estimator consider a regular bivariate VAR(2),

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + εt

[
y1,t

y2,t

]
=

[
φ1,0

φ2,0

]
+

[
φ11,1 φ12,1

φ21,1 φ22,1

][
y1,t−1

y2,t−1

]
+

[
φ11,2 φ12,2

φ21,2 φ22,2

][
y1,t−2

y2,t−1

]
+

[
ε1,t−2

ε2,t−1

]

The first four outputs of vectorar all share a common structure, cell arrays. Cell arrays are structures

of other MATLAB elements. In this function, each of these are cell arrays of P elements where each element

is a k by k matrix of parameters. (2 by 2 in the bivariate case). To estimate a bivariate VAR with a constant

in MATLAB , call

[parameters,stderr,tstat,pval] = vectorar(y,1,[1 2]);

where the first input is the T by k matrix of y data, the second is either 1 (include a constant) or 0 and the

their is a vector of lags to include in the model. The outputs are cell arrays with P elements where each

element is composed of a k by k matrix. Suppose y was T by 2, then
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[parameters,stderr,tstat,pval] = vectorar(y,1,[1 2]);

parameters % Tells you this is a cell structure of 2 by 2s

parameters =

[2x2 double] [2x2 double]

parameters{1} % Access Phi(1)

ans =

0.6885 0.1621

0.1038 0.7500

parameters{2} % Access Phi(2)

ans =

0.0267 0.0473

0.0503 -0.0031

The elements of parameters are identical to the elements of Φ j above. Thus, the (i,j) element of Φ1 will be

contained n the (i,j) element of parameters{1} and the (i,j) element of Φ2 will be in the (i,j) element of

parameters{2}. The other four outputs in the function call above return similar cell structures of standard

errors, T-statistics and the corresponding p-values, all with the same ordering.

The full call to vectorar returns some additional information including the complete parameter co-

variance matrix.

[parameters,stderr,tstat,pval,const,conststd,r2,errors,s2,paramvec,vcv] ...

= vectorar(y,1,[1 2]);

The new outputs have the following structure:

• const: k by 1 vector containingΦ0. If no constant is included in the model, this value will be empty

([]).

• conststd: k by 1 vector containing the standard errors or the estimated intercept parameters. If no

constant is included in the model, this value will be empty ([]).

• r2: k by 1 vector of R 2 values for each data vector, y1,y2,. . .,yK .

• errors: T by k matrix of estimated errors.

• s2: k by k matrix containing the estimated covariance matrix of the residuals, Σ̂.

• paramvec: A K× number of lags by 1 (no constant) or K× number of lags +1 by 1 (constant) vector

of estimated parameters. paramvec reports the elements as if you were reading across a VAR. In the

bivariate VAR above, the 10 elements of paramvec are

[φ̂1,0 φ̂11,1 φ̂12,1 φ̂11,2 φ̂12,2 φ̂2,0 φ̂21,1 φ̂22,1 φ̂21,2 φ̂22,2]′

• vcv: A square matrix where each dimension is as large as the length of paramvec. The covariance

matrix has the same order as the elements of paramvec. In the bivariate VAR, the (1,1) element of
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vcv would contain the estimated variance of φ̂1,0, the (1,2) is the covariance between φ̂1,0 and φ̂11,1

and so on. The estimation strategy for vcv depends on the values on het and uncorr (see below).

The complete specification with all input options is given by

[parameters] = vectorar(y,constant,lags,het,uncorr);

where

• y: T by k vector of data.

• constant: Scalar value of either 1 (include a constant) or 0 (exclude a constant)

• lags: Vector of lags to include. A standard Pth order VAR can be called by setting lags to [1:P]. An

irregular Pth order VAR can be called by leaving out some of the lags. For example [1 2 4] would

produce an irregular 4th order VAR excluding lag 3.

• het: Scalar value of either 1 (assume heteroskedasticity) or 0 (assume homoskedasticity). The de-

fault value for this optional parameters is 1.

• uncorr: Scalar value of either 0 (assume the errors are correlated) or 1 (assume no error correlation).

The default value for this optional parameters is 0.

The primary options are choosing het and uncorr. Since each can take one of 4 values, there are 4 com-

bination.

5.1.1.1 Uncorrelated and Homoskedastic

This is the simplest estimator. This estimator assumes thatΣ is diagonal. The estimated covariance matrix

is given by

Ω̂ = Σ̂⊗ (X′X)−1

where Σ̂ is a diagonal matrix with the variance of ε̂i ,t on the ith diagonal and X is a T by P K (or P K + 1

if a constant is included) matrix of regressors in the regular VAR case. To understand the structure of X,

decompose it as

X =


x1

x2
...

xT


where x1 is the set of regressors in any of the k regression equations in a VAR. In the bivariate example

above,

xt = [1 y1,t−1 y2,t−1 y1,t−2 y2,t−2

The choice of X is motivated by noticing that a Pth order VAR can be consistently estimated using OLS

by regressing the k yi vector on X, θ̂ i = (X′X)−1X′yi where θ̂ i is the estimated “row” of parameters in a

VAR. In the bivariate VAR(2) above,

Ω̂ =

[
σ̂11(X′X)−1 0M M

0M M σ̂22(X′X)−1

]
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where σ̂i i is the estimated variance of εi ,t . and M is the length of xt .

5.1.1.2 Correlated and Homoskedastic

The correlated homoskedastic case is similar to the previous case with the change that Σ̂ is no longer

assumed to be diagonal. Once this change has been made, the variance covariance estimator is identical

Ω̂ = Σ̂⊗ (X′X)−1

In the bivariate VAR(2) above,

Ω̂ =

[
σ̂11(X′X)−1 σ̂12(X′X)−1

σ̂21(X′X)−1 σ̂22(X′X)−1

]
where σ̂i j is the estimated covariance between εi ,t and ε j ,t and σ̂12 = σ̂21.

5.1.1.3 Uncorrelated and Heteroskedastic

When residuals are heteroskedastic a White (or sandwich) -style covariance estimator is required. The two

parts of the sandwich are denoted Â and B̂. Â is given by

Â = (
X′X
T
)⊗ IK

and

B̂ = T −1
T∑

t=1

εt ε
′
t ⊗ xt x′t

Once these two components have been computed,

Ω̂ = T −1Â−1B̂Â−1

The assumption that the errors are uncorrelated in this form imposes that T −1∑T
t=1 εi ,t ε j ,t xt x′t

p→
0M M and so B̂ is a “block diagonal” matrix where all of the elements in the off diagonal blocks are 0. In the

bivariate VAR(2) above,

Â =

[
X′X
T 0M M

0M M
X′X
T

]
and

B̂ =

[
T −1∑T

t=1 ε
2
1,t ⊗ xt x′t 0M M

0M M T −1∑T
t=1 ε

2
2,t ⊗ xt x′t

]
.

Finally the T −1 is present int he formula for Ω̂ since Â and B̂ both converge to constants although the

variance of the estimated coefficients should be decreasing with T .
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5.1.1.4 Correlated and Heteroskedastic

The correlated heteroskedastic case is essentially identical to the uncorrelated heteroskedastic case where

the assumption that T −1∑T
t=1 εi ,t ε j ,t xt x′t

p→ 0M M is not made. In the VAR(2) from above, Â is unchanged

and B̂ is now

B̂ =

[
T −1∑T

t=1 ε
2
1,t ⊗ xt x′t T −1∑T

t=1 ε1,t ε2,t ⊗ xt x′t
T −1∑T

t=1 ε1,t ε2,t ⊗ xt x′t T −1∑T
t=1 ε

2
2,t ⊗ xt x′t

]
.

Using the new value of B̂,

Ω̂ = T −1Â−1B̂Â−1.

5.1.1.5 Examples

% To estimate a VAR(1)

parameters = vectorar(y,1,1);

% To estimate a regular VAR(P)

P=5;parameters = vectorar(y,1,[1:P]);

% To estimate an irregular VAR(4)

parameters = vectorar(y,1,[1 2 4]);

% To estimate a VAR(1) assuming homoskedastic and correlated errors

parameters = vectorar(y,1,1,0); % Or

parameters = vectorar(y,1,1,0,0);

% To estimate a VAR(1) assuming homoskedastic but uncorrelated errors

parameters = vectorar(y,1,1,0,1);

% To estimate a VAR(1) assuming heteroskedastic but uncorrelated errors

parameters = vectorar(y,1,1,[],1);

% Or

parameters = vectorar(y,1,1,1,1);

5.1.1.6 Comments

Estimate a Vector Autoregression and produce the parameter variance-covariance matrix under a

variety of assumptions on the covariance of the errors:

* Conditionally Homoskedastic and Uncorrelated

* Conditionally Homoskedastic but Correlated

* Heteroskedastic but Conditionally Uncorrelated

* Heteroskedastic and Correlated

USAGE:

[PARAMETERS]=vectorar(Y,CONSTANT,LAGS)

[PARAMETERS,STDERR,TSTAT,PVAL,CONST,CONSTSTD,R2,ERRORS,S2,PARAMVEC,VEC]
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= vectorar(Y,CONSTANT,LAGS,HET,UNCORR)

INPUTS:

Y - A T by K matrix of data

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

LAGS - Non-negative integer vector representing the VAR orders to include in the model.

HET - [OPTIONAL] A scalar integer indicating the type of covariance estimator

0 - Homoskedastic

1 - Heteroskedastic [DEFAULT]

UNCORR - [OPTIONAL] A scalar integer indicating the assumed structure of the error covariance

matrix

0 - Correlated errors [DEFAULT]

1 - Uncorrelated errors

OUTPUTS:

PARAMETERS - Cell structure containing K by K matrices in the position of the indicated in

LAGS. For example if LAGS = [1 3], PARAMETERS{1} would be the K by K

parameter matrix for the 1st lag and PARAMETERS{3} would be the K by K matrix

of parameters for the 3rd lag

STDERR - Cell structure with the same form as PARAMETERS containing parameter standard

errors estimated according to UNCORR and HET

TSTAT - Cell structure with the same form as PARAMETERS containing parameter t-stats

computed using STDERR

PVAL - P-values of the parameters

CONST - K by 1 vector of constants

CONSTSTD - K by 1 vector standard errors corresponding to constant

R2 - K by 1 vector of R-squares

ERRORS - K by T vector of errors

S2 - K by K matrix containing the estimated error variance

PARAMVEC - K*((# lags) + CONSTANT) by 1 vector of estimated parameters. The first (# lags

+ CONSTANT) correspond to the first row in the usual var form:

[CONST(1) P1(1,1) P1(1,2) ... P1(1,K) P2(1,1) ... P2(1,K) ...]

The next (# lags + CONSTANT) are the 2nd row

[CONST(1) P1(2,1) P1(2,2) ... P1(2,K) P2(2,1) ... P2(2,K) ...]

and so on through the Kth row

[CONST(K) P1(K,1) P1(K,2) ... P1(K,K) P2(K,1) ... P2(K,K) ...]

VCV - A K*((# lags) + CONSTANT) by K*((# lags) + CONSTANT) matrix of estimated

parameter covariances computed using HET and UNCORR

COMMENTS:

Estimates a VAR including any lags.

y(:,t)’ = CONST + P(1) * y(:,t-1) + P(2)*y(:,t-2) + ... + P(1)*y(:,t-K)’

where P(j) are K by K parameter matrices and CONST is a K by 1 parameter matrix (if CONSTANT==1)

EXAMPLE:

To fit a VAR(1) with a constant

parameters = vectorar(y,1,1)

To fit a VAR(3) with no constant

parameters = armaxfilter(y,0,[1:3])
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To fit a VAR that includes lags 1 and 3 with a constant

parameters = armaxfilter(y,1,[1 3])

See also IMPULSERESPONSE, GRANGERCAUSE, VECTORARVCV
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5.1.2 Granger Causality Testing: grangercause

Granger Causality testing in a VAR. Most of the choices ingrangercause are identical to those invectorar

and knowledge of the features of vectorar is recommended. The only new options are the ability to

choose one of the three test statistics:

• Likelihood Ratio: If the data are assumed to be homoskedastic, the classic likelihood ratio presented

in the notes is used. If the data are heteroskedastic, an LM-type test based on the scores under the

null but using a covariance estimator computed under the alternative is computed.

• Lagrange Multiplier: Computes the LM test using the scores and errors estimated under the null.

The assumption about the heteroskedasticity of the residuals and whether the residuals are corre-

lated are imposed when estimating the score covariance.

• Wald: Computes the GC test statistics using a Wald test where the parameter covariance matrix

is estimated under the assumptions about heteroskedasticity and correlation of the residuals. For

more on covariance matrix estimation, see vectorar.

Aside from these three changes, the inputs are identical to those in vectorar

[stat,pval]=grangercause(y,constant,lags,het,uncorr,inference)

The function has two outputs, the computed statistics, one for each yi begin caused (in rows) and one for

each yj -lags causing. For example in a bivariate VAR(2),

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + εt

[
y1,t

y2,t

]
=

[
φ1,0

φ2,0

]
+

[
φ11,1 φ12,1

φ21,1 φ22,1

][
y1,t−1

y2,t−1

]
+

[
φ11,2 φ12,2

φ21,2 φ22,2

][
y1,t−2

y2,t−1

]
+

[
ε1,t−2

ε2,t−1

]

the (1,1) value of stat contains the GC test statistic for the exclusion restriction of φ11,1 = φ11,2 = 0, the

(1,2) value contains the test statistic for the exclusion restriction of φ12,1 = φ12,2 = 0 and so on. pval

contains a matching matrix of p-values of the null of no Granger Causality.

5.1.2.1 Examples

% GC testing in a VAR(1) using the LR assuming hetero-corr residuals

[stat, pval] = grangercause(y,1,1);

% GC testing in a regular VAR(P) using the LR assuming hetero-corr residuals

P=5;[stat, pval] = grangercause(y,1,[1:P]);

% GC testing in an irregular VAR(4) using the LR assuming hetero-corr residuals

[stat, pval] = grangercause(y,1,[1 2 4]);

% GC testing in a VAR(1) using the LR assuming homo-corr residuals

[stat, pval] = grangercause(y,1,1,0);
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% GC testing in a VAR(1) using the LR assuming homo-uncorr residuals

[stat, pval] = grangercause(y,1,1,0,1);

% GC testing in a VAR(1) using the LR assuming hetero-uncorr residuals

[stat, pval] = grangercause(y,1,1,1,1);

% or

[stat, pval] = grangercause(y,1,1,[],1);

% GC testing in a VAR(1) using the LM assuming hetero-corr residuals

[stat, pval] = grangercause(y,1,1,1,0,2);

% or

[stat, pval] = grangercause(y,1,1,[],[],2);

% GC testing in a VAR(1) using the Wald assuming hetero-corr residuals

[stat, pval] = grangercause(y,1,1,1,0,3);

% or

[stat, pval] = grangercause(y,1,1,[],[],3);

5.1.2.2 Comments

Granger causality testing with a variance-covariance matrix estimated under a variety of

assumptions on the covariance of the errors:

* Conditionally Homoskedastic and Uncorrelated

* Conditionally Homoskedastic but Correlated

* Heteroskedastic but Conditionally Uncorrelated

* Heteroskedastic and Correlated

USAGE:

[STAT] = grangercause(Y,CONSTANT,LAGS)

[STAT,PVAL] = grangercause(Y,CONSTANT,LAGS,HET,UNCORR,INFERENCE)

INPUTS:

Y - A T by K matrix of data

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

LAGS - Non-negative integer vector representing the VAR orders to include in the model.

HET - [OPTIONAL] A scalar integer indicating the type of covariance estimator

0 - Homoskedastic

1 - Heteroskedastic [DEFAULT]

UNCORR - [OPTIONAL] A scalar integer indicating the assumed structure of the error

covariance matrix

0 - Correlated errors [DEFAULT]

1 - Uncorrelated errors

INFERENCE - [OPTIONAL] Inference method

1 - Likelihood ratio

2 - LM test

3 - Wald test
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OUTPUTS:

STAT - K by K matrix of Granger causality statistics computed using the specified

covariance estimator and inference method STAT(i,j) corresponds to a test that

y(i) is caused by y(j)

PVAL - K by K matrix of p-values corresponding to STAT

COMMENTS:

Granger causality tests based on a VAR including any lags.

y(:,t)’ = CONST + P(1) * y(:,y-1) + P(2)*y(:,y-2) + ... + P(1)*y(:,t-K)’

where P(j) are K by K parameter matrices and CONST is a K by 1 parameter matrix (if CONSTANT==1)

EXAMPLE:

Conduct GC testing in a VAR(1) with a constant

parameters = grangercause(y,1,1)

Conduct GC testing in a VAR(3) with no constant

parameters = grangercause(y,0,[1:3])

Conduct GC testing in a VAR that includes lags 1 and 3 with a constant

parameters = grangercause(y,1,[1 3])

See also VECTORAR, VECTORARVCV
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5.1.3 Impulse Response function calculation: impulseresponse

Impulse response function, standard errors and plotting. impulseresponsederives heavily fromvectorar

and uses much of the same syntax. The important new options to impulseresponse are the number if

impulses to compute, leads, and the assumption used for decomposing the error covariance, sqrttype.

impulseresponse always returns leads+1 impulses and standard errors since the 0th is included. leads

is a positive integer. sqrttype can be any one of:

• 0: Use non-scaled (unit) shocks

• 1: Use scaled but assume the correlation is zero. The scaling is the estimated standard deviation

from the VAR specification used. This is the default.

• 2: Use a Choleski decomposition.

• 3: Use a Spectral decomposition.

• k by k positive definite user provided square root matrix. This option was provided to allow the user

to impose a block spectral structure on the square root should they choose.

The general form of impulseresponse is

[impulses,impulsesstd,hfig] = impulseresponse(y,constant,lags,leads,...

sqrttype,graph,het,uncorr)

where y, constant, lags, het and uncorr are the same as in vectorar. leads and sqrttype are as de-

scribed above and graph is a 1 (produce plot) or 0 variable indicating whether a plot with 95% confidence

bands should be produced. The outputs are:

• impulses: A k by k by leads 3-D matrix of impulse responses. The element in position (i,j,l) is the

impulse response of yi to a shock to ε j , l -periods in the future.

• impulsesstd: A k by k by leads 3-D matrix of impulse response standard errors. These correspond

directly to the impulse response in the same position.

• hfig: A handle to the plot produced. Empty if graph is 0.

5.1.3.1 Examples

% 12 Impulse responses for a VAR(1) assuming hetero-corr residuals

[impulses,impulsesstd] = impulseresponse(y,1,1,12);

% 12 Impulse responses for a VAR(P) assuming hetero-corr residuals

P=5;[impulses,impulsesstd] = impulseresponse(y,1,1:P,12);

% 12 Impulse responses for am irregular VAR(P) assuming hetero-corr residuals

P=5;[impulses,impulsesstd] = impulseresponse(y,1,[1 2 4],12);

% 12 Impulse responses for a VAR(1), no graphs

[impulses,impulsesstd] = impulseresponse(y,1,1,12,[],0);
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% 12 Impulse responses for a VAR(1), Choleski

[impulses,impulsesstd] = impulseresponse(y,1,1,12,2);

% 12 Impulse responses for a VAR(1), Spectral

[impulses,impulsesstd] = impulseresponse(y,1,1,12,3);

% 12 Impulse responses for a VAR(1), Unit shocks

[impulses,impulsesstd] = impulseresponse(y,1,1,12,0);

% 12 Impulse responses for a VAR(1), assuming homoskedastic, uncorrelated residuals

[impulses,impulsesstd] = impulseresponse(y,1,1,12,[],[],0,1);

5.1.3.2 Comments

Computes impulse responses for a VAR(P) or irregular VAR(P) and standard

errors under a variety of assumptions on the covariance of the errors:

* Conditionally Homoskedastic and Uncorrelated

* Conditionally Homoskedastic but Correlated

* Heteroskedastic but Conditionally Uncorrelated

* Heteroskedastic and Correlated

USAGE:

[IMPULSES]=impulseresponse(Y,CONSTANT,LAGS,LEADS)

[IMPULSES,IMPULSESTD,HFIG]=impulseresponse(Y,CONSTANT,LAGS,LEADS,SQRTTYPE,GRAPH,HET,UNCORR)

INPUTS:

Y - A T by K matrix of data

CONSTANT - Scalar variable: 1 to include a constant, 0 to exclude

LAGS - Non-negative integer vector representing the VAR orders to include in the model.

LEADS - Number of leads to compute the impulse response function

SQRTTYPE - [OPTIONAL] Either a scalar or a K by K positive definite matrix. This input

determines the type of covariance decomposition used. If it is a scalar if must

be one of:

0 - Unit (unscaled) shocks, covariance assumed to be an identity matrix

1 - [DEFAULT] Scaled but uncorrelated shocks. Scale is based on estimated

error standard deviations.

2 - Scaled and correlated shocks, Choleski decomposition. Scale is based on

estimated error standard deviations.

3 - Scaled and correlated shocks, spectral decomposition. Scale is based on

estimated error standard deviations.

If the input is a K by K positive definite matrix, it is used as the

covariance square root for computing the impulse response function.

GRAPH - [OPTIONAL] Logical variable (0 (no graph) or 1 (graph)) indicating whether the

function should produce a bar plot of the sample autocorrelations and confidence

intervals. Default is to produce a graphic (GRAPH=1).

HET - [OPTIONAL] A scalar integer indicating the type of

covariance estimator

0 - Homoskedastic



5.1 Stationary Vector Autoregression 75

1 - Heteroskedastic [DEFAULT]

UNCORR - [OPTIONAL] A scalar integer indicating the assumed structure of the error

covariance matrix

0 - Correlated errors [DEFAULT]

1 - Uncorrelated errors

OUTPUTS:

IMPULSES - Cell structure containing K by K matrices in the position of the indicated in

LAGS. For example if LAGS = [1 3], PARAMETERS{1} would be the K by K parameter

matrix for the 1st lag and PARAMETERS{3} would be the K by K matrix of

parameters for the 3rd lag

IMPULSESSTD - Cell structure containing K by K matrices in the containing parameter standard

errors estimated according to UNCORR and HET

HFIG - Figure handle to the bar plot of the autocorrelations

COMMENTS:

Estimates a VAR including any lags.

y(:,t)’ = CONST + P(1) * y(:,y-1) + P(2)*y(:,y-2) + ... + P(1)*y(:,t-K)’

where P(j) are K by K parameter matrices and CONST is a K by 1 parameter matrix (if CONSTANT==1)

EXAMPLE:

To produce the IR for 12 leads form a VAR(1) with a constant

impulses = impulserepsonse(y,1,1,12)

To produce the IR for 12 leads form a VAR(3) without a constant

impulses = impulserepsonse(y,0,[1:3],12)

To produce the IR for 12 leads form an irregular VAR(3) with only lags 1 and 3 with a constant

impulses = impulserepsonse(y,1,[1:3],12)

See also VECTORAR VECTORARVCV GRANGERCAUSE



76 Vector Autoregressions



Chapter 6

Volatility Modeling

6.1 GARCH Model Simulation

6.1.1 ARCH/GARCH/AVARCH/TARCH/ZARCH Simulation: tarch_simulate

ARCH/GARCH/AVARCH/TARCH/ZARCH model simulation with normal, Student’s t , Generalized Error

Distribution, Skew t or user supplied innovations.

6.1.1.1 Examples

% GARCH(1,1) simulation

simulatedData = tarch_simulate(1000, [1 .1 .8], 1, 0, 1)

% GJR-GARCH(1,1,1) simulation

simulatedData = tarch_simulate(1000, [1 .1 .1 .8], 1, 1, 1)

% GJR-GARCH(1,1,1) simulation with standardized Student’s T innovations

simulatedData = tarch_simulate(1000, [1 .1 .1 .8 6], 1, 1, 1, ’STUDENTST’)

% TARCH(1,1,1) simulation

simulatedData = tarch_simulate(1000, [1 .1 .1 .8], 1, 1, 1, [], 1)

6.1.1.2 Required Inputs

[outputs] = tarch_simulate(T, PARAMETERS, P, O, Q)

• T: Either a scalar integer or a vector of random numbers. If scalar, T represents the length of the

time series to simulate. If a T by 1 vector of random numbers, these will be used to construct the

simulated time series.

• PARAMETERS: 1 + P+O+Q by 1 vector of parameters in the order

[ωα1 . . . αP γ1 . . . γO β1 . . . βQ ]′

• P: Order of symmetric innovations in model

• O: Order of asymmetric innovations in model

• Q: Order of lagged variances in model
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6.1.1.3 Optional Inputs

[outputs] = tarch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE, TARCH_TYPE)

• ERRORTYPE: Sting value indicating distribution of standardized shock.

– ’NORMAL’: Normal

– ’STUDENTST’: Standardized Student’s t . Parameters should contain 1 additional parameter

containing the shape of the distribution.

– ’GED’: Generalized Error Distribution. Parameters should contain 1 additional parameter con-

taining the shape of the distribution.

– ’SKEWT’: Skewed t . Parameters should contain 2 additional parameters containing the skew-

ness and tail parameters, with skewness first.

• TARCHTYPE: 1 for AVGARCH/TARCH/ZARCH, 2 for GARCH/GJR-GARCH. 2 is the default.

6.1.1.4 Outputs

[SIMULATEDATA, HT] = tarch_simulate(inputs)

• SIMULATEDATA: T by 1 vector of simulated data

• HT: T by 1 vector containing the conditional variance of the simulated data.

6.1.1.5 Comments

TARCH(P,O,Q) time series simulation with multiple error distributions

USAGE:

[SIMULATEDATA, HT] = tarch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE, TARCH_TYPE)

INPUTS:

T - Length of the time series to be simulated OR

T by 1 vector of user supplied random numbers (i.e. randn(1000,1))

PARAMETERS - a 1+P+O+Q (+1 or 2, depending on error distribution) x 1 parameter vector

[omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]’.

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes)

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

TARCH_TYPE - [OPTIONAL] The type of variance process, either
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1 - Model evolves in absolute values

2 - Model evolves in squares [DEFAULT]

OUTPUTS:

SIMULATEDATA - A time series with ARCH/GARCH/GJR/TARCH variances

HT - A vector of conditional variances used in making the time series

COMMENTS:

The conditional variance, h(t), of a TARCH(P,O,Q) process is modeled as follows:

g(h(t)) = omega

+ alpha(1)*f(r_{t-1}) + ... + alpha(p)*f(r_{t-p})

+ gamma(1)*I(t-1)*f(r_{t-1}) +...+ gamma(o)*I(t-o)*f(r_{t-o})

+ beta(1)*g(h(t-1)) +...+ beta(q)*g(h(t-q))

where f(x) = abs(x) if tarch_type=1

g(x) = sqrt(x) if tarch_type=1

f(x) = x^2 if tarch_type=2

g(x) = x if tarch_type=2

NOTE: This program generates 2000 more than required to minimize any starting bias

See also TARCH
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6.1.2 EGARCH Simulation: egarch_simulate

EGARCH simulation with normal, Student’s t , Generalized Error Distribution, Skew t or user supplied

innovations.

6.1.2.1 Examples

% Simulate a symmetric EGARCH(1,0,1) process

simulatedData = egarch_simulate(1000,[0 .1 .95],1,0,1);

% Simulate a standard EGARCH(1,1,1) process

simulatedData = egarch_simulate(1000,[0 .1 -.1 .95],1,1,1);

% Simulate a standard EGARCH(1,1,1) process with Student’s T innovations

simulatedData = egarch_simulate(1000,[0 .1 -.1 .95 6],1,1,1,’STUDENTST’);

% Simulate a standard EGARCH(1,1,1) process with GED innovations

simulatedData = egarch_simulate(1000,[0 .1 -.1 .95 1.5],1,1,1,’GED’);

6.1.2.2 Required Inputs

[outputs] = egarch_simulate(T, PARAMETERS, P, O, Q)

• T: Either a scalar integer or a vector of random numbers. If scalar, T represents the length of the

time series to simulate. If a T by 1 vector of random numbers, these will be used to construct the

simulated time series.

• PARAMETERS: 1 + P+O+Q by 1 vector of parameters in the order

[ωα1 . . . αP γ1 . . . γO β1 . . . βQ ]′

• P: Order of symmetric innovations in model

• O: Order of asymmetric innovations in model

• Q: Order of lagged variances in model

6.1.2.3 Optional Inputs

[outputs] = egarch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE)

• ERRORTYPE: Sting value indicating distribution of standardized shock.

– ’NORMAL’: Normal

– ’STUDENTST’: Standardized Student’s t . Parameters should contain 1 additional parameter

containing the shape of the distribution.

– ’GED’: Generalized Error Distribution. Parameters should contain 1 additional parameter con-

taining the shape of the distribution.

– ’SKEWT’: Skewed t . Parameters should contain 2 additional parameters containing the skew-

ness and tail parameters, with skewness first.
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6.1.2.4 Outputs

[SIMULATEDATA, HT] = egarch_simulate(inputs)

• SIMULATEDATA: T by 1 vector of simulated data

• HT: T by 1 vector containing the conditional variance of the simulated data.

6.1.2.5 Comments

EGARCH(P,O,Q) time series simulation with multiple error distributions

USAGE:

[SIMULATEDATA, HT] = egarch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE)

INPUTS:

T - Length of the time series to be simulated OR

T by 1 vector of user supplied random numbers (i.e. randn(1000,1))

PARAMETERS - a 1+P+O+Q (+1 or 2, depending on error distribution) x 1 parameter vector

[omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]’.

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes)

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

OUTPUTS:

SIMULATEDATA - A time series with EGARCH variances

HT - A vector of conditional variances used in making the time series

COMMENTS:

The conditional variance, h(t), of a EGARCH(P,O,Q) process is modeled as follows:

ln(h(t)) = omega

+ alpha(1)*(abs(e_{t-1})-C) + ... + alpha(p)*(abs(e_{t-p})-C)+...

+ gamma(1)*e_{t-1} +...+ e_{t-o} +...

beta(1)*ln(h(t-1)) +...+ beta(q)*ln(h(t-q))

where: ln is natural log

e_t = r_t/sqrt(h_t)

C = 1/sqrt(pi/2)

NOTE: This program generates 2000 more than required to minimize any starting bias

EXAMPLES:
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See also EGARCH
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6.1.3 APARCH Simulation: aparch_simulate

ARARCH simulation with normal, Student’s t , Generalized Error Distribution, Skew t or user supplied

innovations.

6.1.3.1 Examples

% Simulate a GARCH(1,1)

simulatedData = aparch_simulate(1000, [.1 .1 .85 2], 1, 0, 1)

% Simulate an AVARCH(1,1)

simulatedData = aparch_simulate(1000, [.1 .1 .85 1], 1, 0, 1)

% Simulate a GJR-GARCH(1,1,1)

simulatedData = aparch_simulate(1000, [.1 .1 .1 .8 2], 1, 1, 1)

% Simulate a TARCH(1,1,1)

simulatedData = aparch_simulate(1000, [.1 .1 .1 .8 1], 1, 1, 1)

% Simulate an APARCH(1,1,1)

simulatedData = aparch_simulate(1000, [.1 .1 .1 .8 .8], 1, 1, 1)

% Simulate an APARCH(1,1,1) with Student’s T innovations

simulatedData = aparch_simulate(1000, [.1 .1 .85 2 6], 1, 0, 1, ’STUDENTST’)

6.1.3.2 Required Inputs

[outputs] = aparch_simulate(T, PARAMETERS, P, O, Q)

• T: Either a scalar integer or a vector of random numbers. If scalar, T represents the length of the

time series to simulate. If a T by 1 vector of random numbers, these will be used to construct the

simulated time series.

• PARAMETERS: 1 + P+O+Q by 1 vector of parameters in the order

[ωα1 . . . αP γ1 . . . γO β1 . . . βQ ]′

• P: Order of symmetric innovations in model

• O: Order of asymmetric innovations in model

• Q: Order of lagged variances in model

6.1.3.3 Optional Inputs

[outputs] = aparch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE)

• ERRORTYPE: Sting value indicating distribution of standardized shock.

– ’NORMAL’: Normal

– ’STUDENTST’: Standardized Student’s t . Parameters should contain 1 additional parameter

containing the shape of the distribution.
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– ’GED’: Generalized Error Distribution. Parameters should contain 1 additional parameter con-

taining the shape of the distribution.

– ’SKEWT’: Skewed t . Parameters should contain 2 additional parameters containing the skew-

ness and tail parameters, with skewness first.

6.1.3.4 Outputs

[SIMULATEDATA, HT] = aparch_simulate(inputs)

• SIMULATEDATA: T by 1 vector of simulated data

• HT: T by 1 vector containing the conditional variance of the simulated data.

6.1.3.5 Comments

APARCH(P,O,Q) time series simulation with multiple error distributions

USAGE:

[SIMULATEDATA, HT] = aparch_simulate(T, PARAMETERS, P, O, Q, ERROR_TYPE)

INPUTS:

T - Length of the time series to be simulated OR

T by 1 vector of user supplied random numbers (i.e. randn(1000,1))

PARAMETERS - a 1+P+O+Q (+1 or 2, depending on error distribution) x 1 parameter vector

[omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) delta

[nu lambda]]’

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes). Must be less than or equal to P

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

OUTPUTS:

SIMULATEDATA - A time series with APARCH variances

HT - A vector of conditional variances used in making the time series

COMMENTS:

The conditional variance, h(t), of a APARCH(P,O,Q) process is modeled as follows:

h(t)^(delta/2) = omega

+ alpha(1)*(abs(r(t-1))+gamma(1)*r(t-1))^delta + ...

alpha(p)*(abs(r(t-p))+gamma(p)*r(t-p))^delta +

beta(1)*h(t-1)^(delta/2) +...+ beta(q)*h(t-q)^(delta/2)
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Required restrictions on parameters:

delta > 0

-1<gamma<1

-1<lambda<1

nu>2 for T

nu>1 for GED

alpha(i) > 0

NOTE: This program generates 2000 more than required to minimize any starting bias

EXAMPLES:

Simulate a GARCH(1,1)

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 .85 2], 1, 0, 1)

Simulate an AVARCH(1,1)

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 .85 1], 1, 0, 1)

Simulate a GJR-GARCH(1,1,1)

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 -.1 .8 2], 1, 1, 1)

Simulate a TARCH(1,1,1)

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 -.1 .8 1], 1, 1, 1)

Simulate an APARCH(1,1,1)

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 -.1 .8 .8], 1, 1, 1)

Simulate an APARCH(1,1,1) with Student’s T innovations

[SIMULATEDATA, HT] = aparch_simulate(1000, [.1 .1 -.1 .85 2 6], 1, 1, 1, ’STUDENTST’)

See also APARCH, TARCH_SIMULATE, EGARCH_SIMULATE
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6.1.4 FIGARCH Simulation: figarch_simulate

FIGARCH(p , d , q ) simulation with normal, Student’s t , Generalized Error Distribution, Skew t or user

supplied innovations for p ∈ {0, 1} and q ∈ {0, 1}where d is the fractional integration order.

6.1.4.1 Examples

% FIGARCH(0,d,0) simulation

simulatedData = figarch_simulate(2500, [.1 .42],0,0)

% FIGARCH(1,d,1) simulation

simulatedData = figarch_simulate(2500, [.1 .1 .42 .4],1,1)

% FIGARCH(0,d,0) simulation with Student’s T errors

simulatedData = figarch_simulate(2500, [.1 .42],0,0,’STUDENTST’)

% FIGARCH(0,d,0) simulation with a truncation lag of 5000

simulatedData = figarch_simulate(2500, [.1 .42],0,0,[],5000)

6.1.4.2 Required Inputs

[outputs] = figarch_simulate(T, PARAMETERS, P, Q)

• T: Either a scalar integer or a vector of random numbers. If scalar, T represents the length of the

time series to simulate. If a T by 1 vector of random numbers, these will be used to construct the

simulated time series.

• PARAMETERS: 2 + P + Q by 1 vector of parameters in the order

[ωα d β ]′

• P: Order of symmetric innovations in model. Must be 0 or 1.

• Q: Order of lagged variances in model. Must be 0 or 1.

6.1.4.3 Optional Inputs

[outputs] = figarch_simulate(T, PARAMETERS, P, Q, ERRORTYPE, TRUNCLAG, BCLENGTH)

• ERRORTYPE: Sting value indicating distribution of standardized shock.

– ’NORMAL’: Normal

– ’STUDENTST’: Standardized Student’s t . Parameters should contain 1 additional parameter

containing the shape of the distribution.

– ’GED’: Generalized Error Distribution. Parameters should contain 1 additional parameter con-

taining the shape of the distribution.

– ’SKEWT’: Skewed t . Parameters should contain 2 additional parameters containing the skew-

ness and tail parameters, with skewness first.

• TRUNCLAG: Truncation point for ARCH(∞) representation.

• BCLENGTH: Length of additional data points. May need to be large if d is large.
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6.1.4.4 Outputs

[SIMULATEDATA, HT, LAMBDA] = figarch_simulate(inputs)

• SIMULATEDATA: T by 1 vector of simulated data

• HT: T by 1 vector containing the conditional variance of the simulated data.

• LAMBDA: TRUNCLAG by 1 vector containing the ARCH(∞) weights on lagged squared returns

6.1.4.5 Comments

FIGARCH(Q,D,P) time series simulation with multiple error distributions for P={0,1} and Q={0,1}

USAGE:

[SIMULATEDATA, HT, LAMBDA] = figarch_simulate(T, PARAMETERS, P, Q, ERRORTYPE, TRUNCLAG, BCLENGTH)

INPUTS:

T - Length of the time series to be simulated OR

T by 1 vector of user supplied random numbers (i.e. randn(1000,1))

PARAMETERS - a 2+P+Q (+1 or 2, depending on error distribution) x 1 parameter vector

[omega phi d beta [nu lambda]]’. Parameters should satisfy conditions in

FIGARCH_ITRANSFORM

P - 0 or 1 indicating whether the autoregressive term is present in the model (phi)

Q - 0 or 1 indicating whether the moving average term is present in the model (beta)

ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

TRUNCLAG - [OPTIONAL] Truncation lag for use in the construction of lambda. Default value is

2500.

BCLENGTH - [OPTIONAL] Number of extra observations to produce to reduce start up bias.

Default value is 2500.

OUTPUTS:

SIMULATEDATA - A time series with ARCH/GARCH/GJR/TARCH variances

HT - A vector of conditional variances used in making the time series

LAMBDA - TRUNCLAG by 1 vector of weights used when computing the conditional variances

COMMENTS:

The conditional variance, h(t), of a FIGARCH(1,d,1) process is modeled as follows:

h(t) = omega + [1-beta L - phi L (1-L)^d] epsilon(t)^2 + beta * h(t-1)

which is estimated using an ARCH(oo) representation,

h(t) = omega + sum(lambda(i) * epsilon(t-1)^2)
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where lambda(i) is a function of the fractional differencing parameter, phi and beta

EXAMPLES:

FIGARCH(0,d,0) simulation

simulatedData = figarch_simulate(2500, [.1 .42],0,0)

FIGARCH(1,d,1) simulation

simulatedData = figarch_simulate(2500, [.1 .1 .42 .4],1,1)

FIGARCH(0,d,0) simulation with Student’s T errors

simulatedData = figarch_simulate(2500, [.1 .42],0,0,’STUDENTST’)

FIGARCH(0,d,0) simulation with a truncation lag of 5000

simulatedData = figarch_simulate(2500, [.1 .42],0,0,[],5000)

See also FIGARCH, FIGARCH_TRANSFORM, FIGARCH_ITRANSFORM
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6.2 GARCH Model Estimation

6.2.1 ARCH/GARCH/GJR-GARCH/TARCH/AVGARCH/ZARCH Estimation: tarch

Many ARCH-family models can be estimated using the function tarch. This function allows estimation

of ARCH, GARCH, TARCH, ZARCH and AVGARCH models all by restricting the lags included in the model.

The evolution of the conditional variance in the generic process is given by

σ2
δ = ω +

P∑
p=1

αp |εt−p |δ +
O∑

o=1

γo |εt−o |δI[εt−o<0] +
Q∑

q=1

βqσ
δ
t−q

where δ is either 1 (TARCH, AVGARCH or ZARCH) or 2 (ARCH, GARCH or GJR-GARCH). The basic form of

tarch is

parameters = tarch(resid,p,o,q)

where resid is a T by 1 vector of mean 0 residuals from some conditional mean model and p, o and q

are the (scalar integer) orders for the symmetric, asymmetric and lagged variance terms respectively. This

function only estimated regular models so it is necessary to include the first lag to include the second of

any variable. The output parameters are ordered

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq

]′
If the distribution is specified as something other than a normal, the type hyper-parameters, ν and λ

are appended to parameters

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq ν

]′
or

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq ν λ

]′
The complete input specification is given by

[outputs] = tarch(EPSILON,P,O,Q,ERROR_TYPE,TARCH_TYPE,STARTINGVALS,OPTIONS)

where

• ERROR_TYPE: The variable specifies the error distribution as a string and can take the values

– ’NORMAL’: Normal errors

– ’STUDENTST’: Standardized Students T errors

– ’GED’: Generalized Error Distribution errors

– ’SKEWT’: Hansen’s Skew-T errors

if omitted or blank, the default is ’NORMAL’. Specifying ’STUDENTST’or ’GED’will result in one extra

output (ν). Specifying ’SKEWT’ will result in 2, ν (first additional output) and λ (second additional

output).
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• TARCH_TYPE: This variable is either 1 or 2. 1 indicates a ZARCH-subfamily model should be esti-

mated while 2 indicates a GJR-GARCH-subfamily model should be estimated. If not input, or if

tarch_type is empty ([]), the default is 2.

• STARTINGVALS: A 1+p+o+q vector of starting values. If ERROR_TYPE is ’STUDENTST’ or ’GED’, an

additional starting value is needed. If ERROR_TYPE is ’SKEWT’ two additional starting values are

needed. If startingvals is empty or omitted, a simple grid search is used for starting values.

• OPTIONS: A valid fminunc options structure. The defaults are listed in the comments. This options

is useful for preventing output from being displayed if calling the routine many times.

The complete output specification is given by

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] = tarch(inputs)

where

• PARAMETERS: A 1+p+o+q vector of estimated parameters. If ERROR_TYPE is ’STUDENTST’ or ’GED’,

an additional parameter (ν) is returned. If ERROR_TYPE is ’SKEWT’, two additional parameters will

be returned, ν (first additional output) and λ (second additional output).

• LL: Log-likelihood at the optimum.

• HT: T by 1 vector of fit conditional variances

• VCVROBUST: The Bollerslev-Wooldridge robust covariance matrix of the estimated parameters.

• VCV: The maximum likelihood covariance matrix (inverse Hessian) of the estimated parameters.

• SCORES: A T by number of parameters matrix of scores of the parameters. Used in some diagnostic

tests.

• DIAGNOSTICS: A structure that contains information about the status of the optimizer. Useful for

checking if there are convergence problems.

6.2.1.1 Some behind the scenes choices

This function has a number of behind the scenes choices that have been made based on my experience.

These include:

• Parameter restrictions: The estimation routine used, fminunc, is unconstrained but this is decep-

tive. The parameters are constrained to satisfy:

– αp > 0, p = 1, 2, . . . P

– αp + γo > 0, p = 1, 2, . . . P , o = 1, 2, . . . O

– βq > 0, q = 1, 2, . . . Q

–
∑P

p=1 α + 0.5
∑O

o=1 γ +
∑Q

q=1 β < 1

– ν > 2.1 for a Student’s T or Skew T
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– ν > 1.05 for a GED

– −.995 < λ < .995 for a Skew T .

Some of these are necessary but the βq > 0 is not when Q > 1. This may lead to issues in estimating

models with Q > 1 and the function will return constrained QML estimates.

• Starting Values: The starting values are computed using a grid of reasonable values (experience

driven). The log-likelihood is evaluated on this grid and the best fit is used to start. If the optimizer

fails to converge, other starting values will be tried to see of a convergent LL can be found. This said,

tarch will never return parameter estimates from anything but the largest LL.

• Back Casts: Back casts are computed using a local algorithm using T 1/2 data points, b a c k c a s t =∑bT 1/2c
i=1 wi |ri |δ where δ is 1 or 2 depending on the model specification.

• Covariance Estimates: The covariance estimated are produces using 2-sided numerical scores and

Hessian.

6.2.1.2 Examples

% ARCH(5) estimation

parameters = tarch(y,5,0,0);

% GARCH(1,1) estimation

parameters = tarch(y,1,0,1);

% GJR-GARCH(1,1,1) estimation

parameters = tarch(y,1,1,1);

% ZARCH(1,1,1) estimation

parameters = tarch(y,1,1,1,[],1);

% ZARCH(1,1,1) estimation with SKEWT errors

parameters = tarch(y,1,1,1,’SKEWT’,1);

% ZARCH(1,1,1) estimation with user supplied options

options = optimset(’fminunc’);

options.Display = ’iter’;

parameters = tarch(y,1,1,1,[],[],[],options);

% ZARCH(1,1,1) estimation with user supplied starting values

parameters = tarch(y,1,1,1,[],[],[.1 .1 .1 .8]’);

6.2.1.3 Comments

TARCH(P,O,Q) parameter estimation with different error distributions:

Normal, Students-T, Generalized Error Distribution, Skewed T

Estimation of ARCH or GARCH models if o=0 and tarch_type=2

Estimation of TARCH or GJR asymmetric models if o>0 and tarch_type=1 or 2
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USAGE:

[PARAMETERS] = tarch(EPSILON,P,O,Q)

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] =

tarch(EPSILON,P,O,Q,ERROR_TYPE,TARCH_TYPE,STARTINGVALS,OPTIONS)

INPUTS:

EPSILON - A column of mean zero data

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes)

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

TARCH_TYPE - [OPTIONAL] The type of variance process, either

1 - Model evolves in absolute values

2 - Model evolves in squares [DEFAULT]

STARTINGVALS - [OPTIONAL] A (1+p+o+q), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT

(nu,lambda), vector of starting values.

[omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]’.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A 1+p+o+q column vector of parameters with

[omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]’.

LL - The log likelihood at the optimum

HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence problems

COMMENTS:

The following (generally wrong) constraints are used:

(1) omega > 0

(2) alpha(i) >= 0 for i = 1,2,...,p

(3) gamma(i) + alpha(i) > 0 for i=1,...,o

(3) beta(i) >= 0 for i = 1,2,...,q

(4) sum(alpha(i) + 0.5*gamma(j) + beta(k)) < 1 for i = 1,2,...p and

j = 1,2,...o, k=1,2,...,q

(5) nu>2 of Students T and nu>1 for GED

(6) -.99<lambda<.99 for Skewed T

The conditional variance, h(t), of a TARCH(P,O,Q) process is modeled as follows:
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g(h(t)) = omega

+ alpha(1)*f(r_{t-1}) + ... + alpha(p)*f(r_{t-p})+...

+ gamma(1)*I(t-1)*f(r_{t-1}) +...+ gamma(o)*I(t-o)*f(r_{t-o})+...

beta(1)*g(h(t-1)) +...+ beta(q)*g(h(t-q))

where f(x) = abs(x) if tarch_type=1

g(x) = sqrt(x) if tarch_type=1

f(x) = x^2 if tarch_type=2

g(x) = x if tarch_type=2

Default Options

options = optimset(’fminunc’);

options = optimset(options , ’TolFun’ , 1e-005);

options = optimset(options , ’TolX’ , 1e-005);

options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’Diagnostics’ , ’on’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , ’400*numberOfVariables’);

See also TARCH_LIKELIHOOD, TARCH_CORE, TARCH_PARAMETER_CHECK, TARCH_STARTING_VALUES,

TARCH_TRANSFORM, TARCH_ITRANSFORM

You should use the MEX files (or compile if not using Win64 Matlab) as they provide speed ups of

approx 100 times relative to the m file.
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6.2.2 EGARCH Estimation: egarch

EGARCH estimation is identical to the estimation of GJR-GARCH models except uses the function egarch

and no parameter constraints are imposed. The EGARCH model estimated is

lnσ2 = ω +
P∑

p=1

αp |εt−p −
√

2/π| +
O∑

o=1

γoεt−o +
Q∑

q=1

βq lnσ2
t−q

where δ is estimated along with the other parameters. The basic form of egarch is

parameters = egarch(resid,p,o,q)

where the inputs and outputs are identical to tarch. The extended inputs

parameters = egarch(resid,p,o,q,error_type,startingvals,options)

and the extended outputs

[parameters,ll,ht,vcvrobust,vcv,scores,diagnostics] = egarch(resid,p,o,q)

are also identical with the exclusion of tarch_type which is not available.

6.2.2.1 Examples

% Symmetric EGARCH(1,0,1) estimation

parameters = egarch(y,1,0,1);

% Standard EGARCH(1,1,1) estimation

parameters = egarch(y,1,1,1);

% EGARCH(1,1,1) estimation with SKEWT errors

parameters = egarch(y,1,1,1,’SKEWT’);

% EGARCH(1,1,1) estimation with user supplied options

options = optimset(’fmincon’);

options.Display = ’iter’;

parameters = egarch(y,1,1,1,[],[],options);

% EGARCH(1,1,1) estimation with user supplied starting values

parameters = egarch(y,1,1,1,[],[.1 .1 -.1 .8]’);

6.2.2.2 Comments

EGARCH(P,O,Q) parameter estimation with different error distributions:

Normal, Students-T, Generalized Error Distribution, Skewed T

USAGE:

[PARAMETERS] = egarch(DATA,P,O,Q)
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[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS]

= egarch(DATA,P,O,Q,ERROR_TYPE,STARTINGVALS,OPTIONS)

INPUTS:

DATA - A column of mean zero data

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes)

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

STARTINGVALS - [OPTIONAL] A (1+p+o+q), plus 1 for STUDENTST OR GED (nu),

plus 2 for SKEWT (nu,lambda), vector of starting values.

[omega alpha(1)...alpha(p) gamma(1)...gamma(o) beta(1)...beta(q) [nu lambda]]’.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A 1+p+o+q column vector of parameters with

[omega alpha(1)...alpha(p) gamma(1)...gamma(o) beta(1)...beta(q) [nu lambda]]’.

LL - The log likelihood at the optimum

HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence

problems

COMMENTS:

(1) Roots of the characteristic polynomial of beta are restricted to be less than 1

The conditional variance, h(t), of an EGARCH(P,O,Q) process is modeled as follows:

ln(h(t)) = omega

+ alpha(1)*(abs(e_{t-1})-C) + ... + alpha(p)*(abs(e_{t-p})-C)+...

+ gamma(1)*e_{t-1} +...+ e_{t-o} +...

beta(1)*ln(h(t-1)) +...+ beta(q)*ln(h(t-q))

where: ln is natural log

e_t = r_t/sqrt(h_t)

C = 1/sqrt(pi/2)

Default Options

options = optimset(’fmincon’);

options = optimset(options , ’TolFun’ , 1e-005);

options = optimset(options , ’TolX’ , 1e-005);
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options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , 200*(2+p+q));

options = optimset(options , ’MaxSQPIter’ , 500);

options = optimset(options , ’Algorithm’ ,’active-set’);

See also EGARCH_LIKELIHOOD, EGARCH_CORE, EGARCH_PARAMETER_CHECK, EGARCH_STARTING_VALUES,

EGARCH_TRANSFORM, EGARCH_ITRANSFORM, EGARCH_NLCOM

You should use the MEX files (or compile if not using Win64 Matlab) as they provide speed ups of

approx 100 times relative to the m file
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6.2.3 APARCH Estimation: aparch

APARCH estimation, like EGARCH estimation, is identical to the estimation of GJR-GARCH models except

that it uses the function aparch, one extra parameter is returned and there is a user option to provide a

fixed value of δ (in which case the number of parameters returned is the same as tarch). The APARCH

model estimated is

σδt = ω +
max(P,O )∑

j=1

α j
(
|εt− j | + γ jεt− j

)δ + Q∑
q=1

βqσ
δ
t−q

The basic form of is

parameters = aparch(resid,p,o,q)

where the inputs are nearly identical to tarch and the output parameters are ordered

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq δ

]′
If the distribution is specified as something other than a normal, the type hyper-parameters, ν and λ

are appended to parameters

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq δ ν

]′
or

[
ω α1 . . . αp γ1 . . . γo β1 . . .βq δ ν λ

]′
.

The extended inputs are

[outputs] = aparch(DATA,P,O,Q,ERRORTYPE,USERDELTA,STARTINGVALS,OPTIONS)

where USERDELTA is an input that lets the model be estimated for a fixed value of δ. This may be useful

for testing against TARCH and GJR-GARCH. TARCH_TYPE is not applicable and hence not available. The

extended outputs,

[parameters,ll,ht,vcvrobust,vcv,scores,diagnostics] = aparch(resid,p,o,q)

are identical.

6.2.3.1 Examples

% Symmetric APARCH(1,0,1) estimation

parameters = aparch(y,1,0,1);

% Standard APARCH(1,1,1) estimation

parameters = aparch(y,1,1,1);
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% APARCH(1,1,1) estimation with SKEWT errors

parameters = aparch(y,1,1,1,’SKEWT’);

% APARCH(1,1,1) estimation with fixed delta of 1.5

parameters = aparch(y,1,1,1,[],1.5);

% APARCH(1,1,1) estimation with user supplied options

options = optimset(’fmincon’);

options.Display = ’iter’;

parameters = aparch(y,1,1,1,[],[],[],options);

% APARCH(1,1,1) estimation with user supplied starting values

parameters = aparch(y,1,1,1,[],[],[.1 .1 -.1 .8 1]’);

6.2.3.2 Comments

APARCH(P,O,Q) parameter estimation with different error distributions:

Normal, Students-T, Generalized Error Distribution, Skewed T

USAGE:

[PARAMETERS] = aparch(DATA,P,O,Q)

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS]

= aparch(DATA,P,O,Q,ERRORTYPE,USERDELTA,STARTINGVALS,OPTIONS)

INPUTS:

DATA - A column of mean zero data

P - Positive, scalar integer representing the number of symmetric innovations

O - Non-negative scalar integer representing the number of asymmetric innovations (0

for symmetric processes)

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH)

ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

USERDELTA - [OPTIONAL] A scalar value between 0.3 and 4 to use for delta in the estimation.

When the user provides a fixed value for delta, the vector of PARAMETERS has

one less element. This is useful for testing an unrestricted APARCH against

TARCH or GJR-GARCH alternatives

STARTINGVALS - [OPTIONAL] A (1+p+o+q+1), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT

(nu,lambda), vector of starting values.

[omega alpha(1)...alpha(p) gamma(1)...gamma(o) beta(1)...beta(q) delta [nu lambda]]’.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A 1+p+o+q+1 (+1 or 2) column vector of parameters with

[omega alpha(1)...alpha(p) gamma(1)...gamma(o) beta(1)...beta(q) delta [nu lambda]]’.

LL - The log likelihood at the optimum
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HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence

problems

COMMENTS:

The following (generally wrong) constraints are used:

(1) omega > 0

(2) alpha(i) >= 0 for i = 1,2,...,p

(3) 1<gamma<1 for i=1,...,o

(3) beta(i) >= 0 for i = 1,2,...,q

(4) delta>.3

(5) sum(alpha(i) + beta(k)) < 1 for i = 1,2,...p and k=1,2,...,q

(6) nu>2 of Students T and nu>1 for GED

(7) -.99<lambda<.99 for Skewed T

The conditional variance, h(t), of a APARCH(P,O,Q) process is modeled as follows:

h(t)^(delta/2) = omega

+ alpha(1)*(abs(r(t-1))+gamma(1)*r(t-1))^delta + ...

alpha(p)*(abs(r(t-p))+gamma(p)*r(t-p))^delta +

beta(1)*h(t-1)^(delta/2) +...+ beta(q)*h(t-q)^(delta/2)

Default Options

options = optimset(’fmincon’);

options = optimset(options , ’TolFun’ , 1e-005);

options = optimset(options , ’TolX’ , 1e-005);

options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’Diagnostics’ , ’on’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , ’400*numberOfVariables’);

See also APARCH_LIKELIHOOD, APARCH_CORE, APARCH_PARAMETER_CHECK, APARCH_STARTING_VALUES,

APARCH_TRANSFORM, APARCH_ITRANSFORM

You should use the MEX files (or compile if not using Win64 Matlab) as they provide speed ups of

approx 100 times relative to the m file
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6.2.4 AGARCH and NAGARCH estimation: agarch

AGARCH and models have volatility dynamics which follow

ht = ω +
P∑

p=1

(
rt−p − γ

)2 +
Q∑

q=1

ht−q

while NAGARCH models include the level of volatility in the asymmetry,

ht = ω +
P∑

p=1

(
rt−p − γ

√
ht−p

)2
+

Q∑
q=1

ht−q

6.2.4.1 Examples

% Estimate an AGARCH(1,1) model

parameters = agarch(y,1,1)

% Estimate a NAGARCH(1,1) model

parameters = agarch(y,1,1,’NAGARCH’)

% Estimate a NAGARCH(1,1) model with Student’s t innovations

parameters = agarch(y,1,1,’NAGARCH’,’STUDENTST’)

6.2.4.2 Required Inputs

[outputs] = agarch(EPSILON,P,Q)

• EPSILON: T by 1 vector of mean 0 data

• P: Order of squared innovations in model

• Q: Order of lagged variance in model

6.2.4.3 Optional Inputs

[outputs] = agarch(EPSILON,P,Q,MODEL_TYPE,ERROR_TYPE,STARTINGVALS,OPTIONS)

• MODELTYPE: String value, either ’AGARCH’ or ’NAGARCH’. ’AGARCH’ is the default.

• ERRORTYPE: The variable specifies the error distribution as a string and can take the values

– ’NORMAL’: Normal errors

– ’STUDENTST’: Standardized Students T errors

– ’GED’: Generalized Error Distribution errors

– ’SKEWT’: Hansen’s Skew-T errors

if omitted or blank, the default is ’NORMAL’. Specifying ’STUDENTST’ or ’GED’ will result in one extra

output (ν). Specifying ’SKEWT’ will result in 2, ν (first additional output) and λ (second additional

output).
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• STARTINGVALS: 2 + P + Q by 1 vector of starting values. If not provided, a grid search is performed

using common values.

• OPTIONS: Options structure for fminunc optimization.

6.2.4.4 Outputs

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] = agarch(inputs)

• PARAMETERS: A 2+p+q vector of estimated parameters. If ERRORTYPE is ’STUDENTST’ or ’GED’, an addi-

tional parameter (ν) is returned. If ERRORTYPE is ’SKEWT’, two additional parameters will be returned,

ν (first additional output) and λ (second additional output).

• LL: Log-likelihood at the optimum.

• HT: T by 1 vector of fit conditional variances

• VCVROBUST: The Bollerslev-Wooldridge robust covariance matrix of the estimated parameters.

• VCV: The maximum likelihood covariance matrix (inverse Hessian) of the estimated parameters.

• SCORES: A T by number of parameters matrix of scores of the parameters. Used in some diagnostic

tests.

• DIAGNOSTICS: A structure that contains information about the status of the optimizer. Useful for

checking if there are convergence problems.

6.2.4.5 Comments

AGARCH(P,Q) and NAGARCH(P,Q) with different error distributions:

Normal, Students-T, Generalized Error Distribution, Skewed T

USAGE:

[PARAMETERS] = agarch(EPSILON,P,Q)

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS]

= agarch(EPSILON,P,Q,MODEL_TYPE,ERROR_TYPE,STARTINGVALS,OPTIONS)

INPUTS:

EPSILON - A column of mean zero data

P - Positive, scalar integer representing the number of symmetric innovations

Q - Non-negative, scalar integer representing the number of lags of conditional

variance (0 for ARCH-type model)

MODEL_TYPE - [OPTIONAL] The type of variance process, either

’AGARCH’ - Asymmetric GARCH, Engle (1990) [DEFAULT]

’NAGARCH’ - Nonlinear Asymmetric GARCH, Engle & Ng (1993)

ERROR_TYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution



102 Volatility Modeling

’SKEWT’ - Skewed T distribution

STARTINGVALS - [OPTIONAL] A (2+p+q), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT

(nu,lambda), vector of starting values.

[omega alpha(1) ... alpha(p) gamma beta(1) ... beta(q) [nu lambda]]’.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A 2+p+q column vector of parameters with

[omega alpha(1) ... alpha(p) gamma beta(1) ... beta(q) [nu lambda]]’.

LL - The log likelihood at the optimum

HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence

problems

COMMENTS:

The following (generally wrong) constraints are used:

(1) omega > 0

(2) alpha(i) >= 0 for i = 1,2,...,p

(3) beta(i) >= 0 for i = 1,2,...,q

(4) -q(.01,EPSILON)<gamma<q(.99,EPSILON) for AGARCH

(5) sum(alpha(i) + beta(k)) < 1 for i = 1,2,...p and k=1,2,...,q for

AGARCH and sum(alpha(i)*(1+gamma^2) + beta(k)) < 1 for NAGARCH

(6) nu>2 of Students T and nu>1 for GED

(7) -.99<lambda<.99 for Skewed T

The conditional variance, h(t), of a AGARCH(P,Q) process is given by:

h(t) = omega

+ alpha(1)*(r_{t-1}-gamma)^2 + ... + alpha(p)*(r_{t-p}-gamma)^2

+ beta(1)*h(t-1) +...+ beta(q)*h(t-q)

The conditional variance, h(t), of a NAGARCH(P,Q) process is given by:

h(t) = omega

+ alpha(1)*(r_{t-1}-gamma*sqrt(h(t-1)))^2 + ... + alpha(p)*(r_{t-p}-gamma*sqrt(h(t-p)))^2

+ beta(1)*h(t-1) +...+ beta(q)*h(t-q)

Default Options

options = optimset(’fminunc’);

options = optimset(options , ’TolFun’ , 1e-005);

options = optimset(options , ’TolX’ , 1e-005);

options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’Diagnostics’ , ’on’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , ’200*numberOfVariables’);

See also AGARCH_LIKELIHOOD, AGARCH_CORE, AGARCH_PARAMETER_CHECK, AGARCH_TRANSFORM, AGARCH_ITRANSFORM
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You should use the MEX files (or compile if not using Win64 Matlab) as they provide speed ups of

approx 10 times relative to the m file



104 Volatility Modeling

6.2.5 IGARCH estimation igarch

IGARCH and IAVARCH estimation both with and without a constant. IGARCH is the integrated version of a

GARCH model with the sum of the coefficients on the dynamic parameters is forced to sum to 1. IAVARCH

is the equivalent for AVARCH.

6.2.5.1 Examples

% IGARCH(1,1) with a constant

parameters = igarch(y,1,1)

% IAVARCH(1,1) with a constant

igarch(y,1,1,[],1)

% IGARCH(1,1) without a constant

parameters = igarch(y,1,1,[],[],0)

% IGARCH(1,1) with a constant and Student’s t innovations

parameters = igarch(y,1,1,’STUDENTST’)

6.2.5.2 Required Inputs

[outputs] = igarch(EPSILON,P,Q)

• EPSILON: T by 1 vector of mean 0 data

• P: Order of squared innovations in model

• Q: Order of lagged variance in model

6.2.5.3 Optional Inputs

[outputs] = igarch(EPSILON,P,Q,ERRORTYPE,IGARCHTYPE,CONSTANT,STARTINGVALS,OPTIONS)

• ERRORTYPE: The variable specifies the error distribution as a string and can take the values

– ’NORMAL’: Normal errors

– ’STUDENTST’: Standardized Students T errors

– ’GED’: Generalized Error Distribution errors

– ’SKEWT’: Hansen’s Skew-T errors

if omitted or blank, the default is ’NORMAL’. Specifying ’STUDENTST’ or ’GED’ will result in one extra

output (ν). Specifying ’SKEWT’ will result in 2, ν (first additional output) and λ (second additional

output).

• IGARCHTYPE: This variable is either 1 or 2. 1 indicates a AVARCH-subfamily model should be esti-

mated while 2 indicates a GARCH-subfamily model should be estimated. If not input, or if tarchtype

is empty ([]), the default is 2.
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• CONSTANT: Logical value indicating whether a constant should be included in the model. The default

is 1.

• STARTINGVALS: A CONSTANT+P+Q-1 vector of starting values. If ERRORTYPE is ’STUDENTST’ or ’GED’, an

additional starting value is needed. IfERRORTYPE is’SKEWT’ two additional starting values are needed.

If startingvals is empty or omitted, a simple grid search is used for starting values.

• OPTIONS: A valid fminunc options structure. The defaults are listed in the comments. This options is

useful for preventing output from being displayed if calling the routine many times.

6.2.5.4 Outputs

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] = igarch(inputs)

• PARAMETERS: A CONSTANT+P+Q-1 vector of estimated parameters. If ERRORTYPE is ’STUDENTST’ or ’GED’,

an additional parameter (ν) is returned. If ERRORTYPE is ’SKEWT’, two additional parameters will be

returned, ν (first additional output) and λ (second additional output).

• LL: Log-likelihood at the optimum.

• HT: T by 1 vector of fit conditional variances

• VCVROBUST: The Bollerslev-Wooldridge robust covariance matrix of the estimated parameters.

• VCV: The maximum likelihood covariance matrix (inverse Hessian) of the estimated parameters.

• SCORES: A T by number of parameters matrix of scores of the parameters. Used in some diagnostic

tests.

• DIAGNOSTICS: A structure that contains information about the status of the optimizer. Useful for

checking if there are convergence problems.

6.2.5.5 Comments

IGARCH(P,Q) parameter estimation with different error distributions

Normal, Students-T, Generalized Error Distribution, Skewed T

Estimation of IGARCH models if IGARCHTYPE=2

Estimation of IAVARCH if IGARCHTYPE=1

USAGE:

[PARAMETERS] = igarch(EPSILON,P,O,Q)

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS]

= igarch(EPSILON,P,Q,ERRORTYPE,IGARCHTYPE,CONSTANT,STARTINGVALS,OPTIONS)

INPUTS:

EPSILON - A column of mean zero data

P - Positive, scalar integer representing the number of innovations

Q - Positive, scalar integer representing the number of lags of conditional variance

ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:
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’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

IGARCHTYPE - [OPTIONAL] The type of variance process, either

1 - Model evolves in absolute values

2 - Model evolves in squares [DEFAULT]

CONSTANT - [OPTIONAL] Logical value indicating whether model should include a constant.

Default is true (include).

STARTINGVALS - [OPTIONAL] A (CONSTANT+p+q), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT

(nu,lambda), vector of starting values.

[omega alpha(1) ... alpha(p) beta(1) ... beta(q) [nu lambda]]’.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A CONSTANT+p+q column vector of parameters with

[omega alpha(1) ... alpha(p) beta(1) ... beta(q-1) [nu lambda]]’.

Note that the final beta is redundant and so excluded

LL - The log likelihood at the optimum

HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence problems

COMMENTS:

The following (generally wrong) constraints are used:

(1) omega > 0 if CONSTANT

(2) alpha(i) >= 0 for i = 1,2,...,p

(3) beta(i) >= 0 for i = 1,2,...,q

(4) sum(alpha(i) + beta(j)) = 1 for i = 1,2,...p and j = 1,2,...q

(5) nu>2 of Students T and nu>1 for GED

(6) -.99<lambda<.99 for Skewed T

The conditional variance, h(t), of an IGARCH(P,Q) process is modeled

as follows:

g(h(t)) = omega

+ alpha(1)*f(r_{t-1}) + ... + alpha(p)*f(r_{t-p})+...

beta(1)*g(h(t-1)) +...+ beta(q)*g(h(t-q))

where f(x) = abs(x) if IGARCHTYPE=1

g(x) = sqrt(x) if IGARCHTYPE=1

f(x) = x^2 if IGARCHTYPE=2

g(x) = x if IGARCHTYPE=2

Default Options

options = optimset(’fminunc’);

options = optimset(options , ’TolFun’ , 1e-005);
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options = optimset(options , ’TolX’ , 1e-005);

options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’Diagnostics’ , ’on’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , ’400*numberOfVariables’);

See also IGARCH_LIKELIHOOD, IGARCH_CORE, IGARCH_PARAMETER_CHECK, IGARCH_STARTING_VALUES,

IGARCH_TRANSFORM, IGARCH_ITRANSFORM

You should use the MEX file for igarch_core (or compile if not using Win64 Matlab)

as they provide speed ups of approx 100 times relative to the m file

6.2.6 FIGARCH estimation figarch

FIGARCH(p , d , q ) estimation for p ∈ {0, 1} and q ∈ {0, 1}. FIGARCH is a fractionally integrated version

of GARCH, which is usually represented using its ARCH(∞) respresentation

ht = ω̄ +
∞∑

i=1

λiε
2
t−i

where

δ1 = d

λ1 = φ − β + d

δi =
i − 1− d

i
δi−1, i = 2, . . .

λi = βλi−1 + δi − φδi−1, i = 2, . . .

6.2.6.1 Examples

% FIGARCH(0,d,0)

parameters = figarch(y,0,0)

% FIGARCH(1,d,0)

parameters = figarch(y,1,0)

% FIGARCH(0,d,1)

parameters = figarch(y,0,1)

% FIGARCH(1,d,1)

parameters = figarch(y,1,1)

% FIGARCH(1,d,1) with Student’s t Errors

parameters = figarch(y,1,1,’STUDENTST’)

6.2.6.2 Required Inputs

[outputs] = figarch(EPSILON,P,Q)
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• EPSILON: T by 1 vector of mean 0 data

• P: Order of the short memory autoregressive process. Must be 0 or 1.

• Q: Order of the moving average process. Must be 0 or 1.

6.2.6.3 Optional Inputs

[outputs] = figarch(EPSILON,P,Q,ERRORTYPE,TRUNCLAG,STARTINGVALS,OPTIONS)

• ERRORTYPE: The variable specifies the error distribution as a string and can take the values

– ’NORMAL’: Normal errors

– ’STUDENTST’: Standardized Students T errors

– ’GED’: Generalized Error Distribution errors

– ’SKEWT’: Hansen’s Skew-T errors

if omitted or blank, the default is ’NORMAL’. Specifying ’STUDENTST’ or ’GED’ will result in one extra

output (ν). Specifying ’SKEWT’ will result in 2, ν (first additional output) and λ (second additional

output).

• TRUNCLAG: Truncation point for ARCH(∞) representation.

• STARTINGVALS: A 2+P+Q vector of starting values. If ERRORTYPE is ’STUDENTST’ or ’GED’, an addi-

tional starting value is needed. If ERRORTYPE is ’SKEWT’ two additional starting values are needed.

If startingvals is empty or omitted, a simple grid search is used for starting values.

• OPTIONS: A valid fminunc options structure. The defaults are listed in the comments. This options is

useful for preventing output from being displayed if calling the routine many times.

6.2.6.4 Outputs

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] = figarch(inputs)

• PARAMETERS: A 2+P+Q vector of estimated parameters. If ERRORTYPE is ’STUDENTST’ or ’GED’, an addi-

tional parameter (ν) is returned. If ERRORTYPE is ’SKEWT’, two additional parameters will be returned,

ν (first additional output) and λ (second additional output).

• LL: Log-likelihood at the optimum.

• HT: T by 1 vector of fit conditional variances

• VCVROBUST: The Bollerslev-Wooldridge robust covariance matrix of the estimated parameters.

• VCV: The maximum likelihood covariance matrix (inverse Hessian) of the estimated parameters.

• SCORES: A T by number of parameters matrix of scores of the parameters. Used in some diagnostic

tests.

• DIAGNOSTICS: A structure that contains information about the status of the optimizer. Useful for

checking if there are convergence problems.
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6.2.6.5 Comments

FIGARCH(Q,D,P) parameter estimation for P={0,1} and Q={0,1} with different error distributions:

Normal, Students-T, Generalized Error Distribution, Skewed T

USAGE:

[PARAMETERS] = figarch(EPSILON,P,Q)

[PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS]

= figarch(EPSILON,P,Q,ERRORTYPE,STARTINGVALS,OPTIONS)

INPUTS:

EPSILON - T by 1 Column vector of mean zero residuals

P - 0 or 1 indicating whether the autoregressive term is present in the model (phi)

Q - 0 or 1 indicating whether the moving average term is present in the model (beta)

ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:

’NORMAL’ - Gaussian Innovations [DEFAULT]

’STUDENTST’ - T distributed errors

’GED’ - Generalized Error Distribution

’SKEWT’ - Skewed T distribution

TRUNCLAG - [OPTIONAL] Number of weights to compute in ARCH(oo) representation.

Default is 1000.

STARTINGVALS - [OPTIONAL] A (2+p+q), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT

(nu,lambda), vector of starting values. [omega phi d beta [nu lambda]]’.

If

not provided, FIGARCH_STARTING_VALUES attempts to find reasonable values.

OPTIONS - [OPTIONAL] A user provided options structure. Default options are below.

OUTPUTS:

PARAMETERS - A 2+p+q column vector of parameters with [omega phi d beta [nu lambda]]’.

LL - The log likelihood at the optimum

HT - The estimated conditional variances

VCVROBUST - Robust parameter covariance matrix

VCV - Non-robust standard errors (inverse Hessian)

SCORES - Matrix of scores (# of params by t)

DIAGNOSTICS - Structure of optimization output information. Useful to check for convergence

problems .

COMMENTS:

The following (generally wrong) constraints are used:

(1) omega > 0

(2) 0<= d <= 1

(3) 0 <= phi <= (1-d)/2

(3) 0 <= beta <= d + phi

(5) nu>2 of Students T and nu>1 for GED

(6) -.99<lambda<.99 for Skewed T

The conditional variance, h(t), of a FIGARCH(1,d,1) process is modeled as follows:

h(t) = omega + [1-beta L - phi L (1-L)^d] epsilon(t)^2 + beta * h(t-1)

where L is the lag operator which is estimated using an ARCH(oo) representation,
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h(t) = omega + sum(lambda(i) * epsilon(t-1)^2)

where lambda(i) is a function of the fractional differencing parameter, phi and beta.

Default Options

options = optimset(’fminunc’);

options = optimset(options , ’TolFun’ , 1e-005);

options = optimset(options , ’TolX’ , 1e-005);

options = optimset(options , ’Display’ , ’iter’);

options = optimset(options , ’Diagnostics’ , ’on’);

options = optimset(options , ’LargeScale’ , ’off’);

options = optimset(options , ’MaxFunEvals’ , ’400*numberOfVariables’);

See also TARCH, APARCH, EGARCH, AGARCH, FIGARCH_LIKELIHOOD, FIGARCH_PARAMETER_CHECK,

FIGARCH_WEIGHTS FIGARCH_STARTING_VALUES, FIGARCH_TRANSFORM, FIGARCH_ITRANSFORM
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Density Estimation

7.1 Kernel Density Estimation: pltdens

Kernel density estimation is a useful tool to visualize the distribution of returns which would having to

make strong parametric assumptions. Let {yt }T
t=1 be a set of i.i.d. data. The kernel density around a point

x is defined

f̂ (x ) =
t∑

t=1

K

(
yt − x

h

)
where h is the bandwidth, a parameter that controls the width of the window. pltdens supports a number

of Kernels

• Gaussian

K (z ) =
1√
2π

exp(−z 2/2)

• Epanechnikov

K (z ) =

{
3
4 (1− z 2) −1 ≤ z ≤ 1

0 otherwise

• Quartic (Biweight)

K (z ) =

{
15
16 (1− z 2)2 −1 ≤ z ≤ 1

0 otherwise

• Triweight

K (z ) =

{
35
32 (1− z 2)3 −1 ≤ z ≤ 1

0 otherwise

For i.i.d. data Silverman’s bandwidth, 1.06σ̂2T −
1
5 has good properties and is used by default. The function

can be used two ways. The first is to produce the kernel density plot and is simply

pltdens(y)

The second computes the weights but does not produce a plot
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[h,f,y] = pltdens(y);

Data on the S&P 500 were used to produce 3 kernel densities, one with Silverman’s BW, on over-smoothed

(h large) and one under-smoothed (h small). The results of this code is contained in figure 9.1.

[h,f,y] = pltdens(SP500);

disp(h)

[hover,fover,yover] = pltdens(SP500,.01);

[hunder,funder,yunder] = pltdens(SP500,.0001);

fig = figure(1);

clf

set(fig,’PaperOrientation’,’landscape’,’PaperSize’,[11 8.5],...

’InvertHardCopy’,’off’,’PaperPositionMode’,’auto’,...

’Position’,[117 158 957 764],’Color’,[1 1 1]);

hfig = plot(y,f,yover,fover,yunder,funder);

axis tight

for i=1:3;set(hfig(i),’LineWidth’,2);end

legend(’Silvermann’,’Over smoothed’,’Under smoothed’)

set(gca,’FontSize’,14)

h =

.0027

7.1.0.1 Examples

% Produce a kernel plot

pltdens(y)

% Compute weights but do not produce a plot

[h,f,y] = pltdens(y);

% Produce the plot manually

plot(y,f)

% Specify a custom bandwidth

pltdens(y,3);

7.1.0.2 Comments

PURPOSE: Draw a nonparametric density estimate.

--------------------------------------------------

USAGE: [h,f,y] = pltdens(x,h,p,kernel)

or pltdens(x) which uses gaussian kernel default

where:

x is a vector

h is the kernel bandwidth

default=1.06 * std(x) * n^(-1/5); Silverman page 45

p is 1 if the density is 0 for negative values
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Figure 7.1: A plot with kernel densities using Silverman’s BW and over- and under- smoothed.

k is the kernel type:

=1 Gaussian (default)

=2 Epanechnikov

=3 Biweight

=4 Triangular

A jittered plot of the
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observations is shown below the density.

--------------------------------------------------

RETURNS:

h = the interval used

f = the density

y = the domain of support

plot(y,f) will produce a plot of the density

--------------------------------------------------

SEE ALSO hist, histo

--------------------------------------------------
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7.2 Distributional Fit Testing

7.2.1 Jarque-Bera Test: jarquebera

Jarque-Bera test for normality, defined as

(T − K )
(

sk 2

6
+
(κ− 3)2

24

)
where sk is the sample skewness and κ is the sample kurtosis.

7.2.1.1 Examples

% Jarque-Bera test on normal data

x = randn(100,1);

[statistic, pval] = jarquebera(x);

% Jarque-Bera test on regression errors

% where there were 4 regressors (4 mean parameters + 1 variance)

y=randn(100,1);x = randn(100,4); e = y - x*(x

[statistic, pval] = jarquebera(e, 5)

7.2.1.2 Required Inputs

[outputs] = jarquebera(DATA)

• DATA: T by 1 vector of data to be tested.

7.2.1.3 Optional Inputs

[outputs] = jarquebera(DATA,K,ALPHA)

• K: Degree of freedom adjustment. Default is 2.

• ALPHA: Size of the test to use. Default is 5%.

7.2.1.4 Outputs

[STATISTIC,PVAL,H] = jarquebera(inputs)

• STATISTIC: Jarque-Bera test statistic.

• PVAL: P-value evaluated using the asymptotic χ2
2 distribution.

• H: Logical indicating whether the test rejects at ALPHA.
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7.2.1.5 Comments

Computes the Jarque-Bera test for normality using the skewness and kurtosis to determine if a

distribution is normal.

USAGE:

[STATISTIC] = jarquebera(DATA)

[STATISTIC,PVAL,H] = jarquebera(DATA,K,ALPHA)

INPUTS:

DATA - A set of data to be tested for deviations from normality

K - [OPTIONAL] The number of dependant variables if any used in constructing the errors

(if omitted K=2)

ALPHA - [OPTIONAL] The level of the test used for the null of normality. Default is .05

OUTPUTS:

STATISTIC - A scalar representing the statistic

PVAL - A scalar pval of the null

H - A hypothesis dummy (0 for fail to reject the null of normality, 1 otherwise)

COMMENTS:

The data entered can be mean 0 or not. In either case the sample mean is subtracted and the

data are standardized by the sample standard deviation before computing the statistic .

EXAMPLES:

J-B test on normal data

x = randn(100,1);

[statistic, pval] = jarquebeta(x);

J-B test on regression errors where there were 4 regressors (4 mean parameters + 1 variance)

x = randn(100,1);

[statistic, pval] = jarquebeta(x, 5)
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7.2.2 Kolmogorov-Smirnov Test: kolmogorov

Kolmogorov-Smirnov test for correct unconditional distribution.

7.2.2.1 Examples

% Test data for uniformity

stat = kolmogorov(x)

% Test standard normal data

[stat,pval] = kolmogorov(x,[],’normcdf’)

% Test normal mean 1, standard deviation 2 data

[stat,pval] = kolmogorov(x,[],’normcdf’,1,2)

7.2.2.2 Required Inputs

[outputs] = kolmogorov(X)

• X: Data to be tested. X should have been transformed such that it is uniform (under the hypothesized

distribution).

7.2.2.3 Optional Inputs

[outputs] = kolmogorov(X,ALPHA,DIST,VARARGIN)

• ALPHA: Size of the test to use. Default is 5%.

• DIST: A string or function handle containing the name of a CDF to use to transform X to be uniform

(under the hypothesized distribution).

• VARARGIN: Optional arguments needed by DIST.

7.2.2.4 Outputs

[STAT,PVAL,H] = kolmogorov(inputs)

• STATISTIC: Kolmogorov-Smirnov test statistic.

• PVAL: P-value evaluated using a Monte Carlo distribution.

• H: Logical indicating whether the test rejects at ALPHA.



118 Density Estimation

7.2.2.5 Comments

Performs a Kolmogorov-Smirnov test that the data are from a specified distribution

USAGE:

[STAT,PVAL,H] = kolmogorov(X,ALPHA,DIST,VARARGIN)

INPUTS:

X - A set of random variable to be tested for distributional correctness

ALPHA - [OPTIONAL] The size for the test or use for computing H. 0.05 if not entered or

empty.

DIST - [OPTIONAL] A char string of the name of the CDF, i.e. ’normcdf’ for the normal,

’stdtcdf’ for standardized Student’s T, etc. If not provided or empty, data are

assumed to have a uniform distribution (i.e. that data have already been fed

through a probability integral transform)

VARARGIN - [OPTIONAL] Arguments passed to the CDF, such as the mean and variance for a normal

or a d.f. for T. The VARARGIN should be such that DIST(X,VARARGIN) is a valid

function with the correct inputs.

OUTPUTS:

STAT - The KS statistic

PVAL - The asymptotic probability of significance

H - 1 for reject the null that the distribution is correct, using the size provided (or

.05 if not), 0 otherwise

EXAMPLES:

Test data for uniformity

stat = kolmogorov(x);

Test standard normal data

[stat,pval] = kolmogorov(x,[],’normcdf’);

Test normal mean 1, standard deviation 2 data

[stat,pval] = kolmogorov(x,[],’normcdf’,1,2);

COMMENTS:

See also BERKOWITZ
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7.2.3 Berkowitz Test: berkowitz

Berkowitz (2001) test for correct fit in conditional density models.

7.2.3.1 Examples

% Test uniform data from a TS model

stat = berkowitz(x);

% Test standard normal data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’);

% Test normal mean 1, standard deviation 2 data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’,1,2);

7.2.3.2 Required Inputs

[outputs] = berkowitz(X)

• X: Data to be tested. X should have been transformed such that it is uniform (under the hypothesized

distribution).

7.2.3.3 Optional Inputs

[outputs] = berkowitz(X,TYPE,ALPHA,DIST,VARARGIN)

• TYPE: String either ’TS’ or ’CS’. Determines whether the test statistics looks at the AR(1) coefficient

(’TS’ does, ’CS’ does not). Default is ’TS’.

• ALPHA: Size of the test to use. Default is 5%.

• DIST: A string or function handle containing the name of a CDF to use to transform X to be uniform

(under the hypothesized distribution).

• VARARGIN: Optional arguments needed by DIST.

7.2.3.4 Outputs

[STAT,PVAL,H] = berkowitz(inputs)

• STATISTIC: Berkowitz test statistic.

• PVAL: P-value evaluated using the asymptotic χ2
q distribution where q = 2 or q = 3, depending on

TYPE.

• H: Logical indicating whether the test rejects at ALPHA.
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7.2.3.5 Comments

Performs a Kolmogorov-Smirnov-like test using the Berkowitz transformation to a univariate normal

that the data are from a specified distribution.

USAGE:

[STAT,PVAL,H] = berkowitz(X,TYPE,ALPHA,DIST,VARARGIN)

INPUTS:

X - A set of random variable to be tested for distributional correctness

TYPE - [OPTIONAL] A char string, either ’CS’ if the data are cross-sectional or ’TS’ for

time series. The TS checks for autocorrelation in the prob integral transforms

while the CS does not. ’TS’ is the default value.

ALPHA - [OPTIONAL] The size for the test or use for computing H. 0.05 if not entered or

empty.

DIST - [OPTIONAL] A char string of the name of the CDF of X, i.e. ’normcdf’ for the normal,

’stdtcdf’ for standardized Studnet’s T, etc. If not provided or empty, data are

assumed to have a uniform distribution (i.e. that data have already been fed

through a probability integral transform)

VARARGIN - [OPTIONAL] Arguments passed to the CDF, such as the mean and variance for a normal

or a d.f. for T. The VARARGIN should be such that DIST(X,VARARGIN) is a valid

function with the correct inputs.

OUTPUTS:

STAT - The Berkowitz statistic computed as a likelihood ratio of normals

PVAL - The asymptotic probability of significance

H - 1 for reject the null that the distribution is correct using the size provided (or

.05 if not), 0 otherwise

EXAMPLES:

Test uniform data from a TS model

stat = berkowitz(x);

Test standard normal data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’);

Test normal mean 1, standard deviation 2 data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’,1,2);

COMMENTS:

See also KOLMOGOROV
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Bootstrap and Multiple Hypothesis Tests

8.1 Bootstraps

8.1.1 Block Bootstrap: block_bootstrap

8.1.1.1 Examples

% 1000 block bootstraps with a block size of 12

bsData = block_bootstrap(data, 1000, 12)

% Vector block bootstraps with a block size of 12

[t,k] = size(data,1);

bsIndex = block_bootstrap(1:t, 1000, 12)

for i=1:1000

bsData = data(bsIndex(:,i),:);

% Statistics here

end

8.1.1.2 Required Inputs

[BSDATA, INDICES]=block_bootstrap(DATA,B,W)

• DATA: T by 1 vector of data.

• B: Positive integer containing the number of bootstrap replications.

• W: Positive integer containing the window size

8.1.1.3 Outputs

[BSDATA, INDICES]=block_bootstrap(inputs)

• BSDATA: T by B matrix of bootstrapped data.

• INDICES: T by B vector of bootstrap indices such that BSDATA = DATA(INDICES).
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8.1.1.4 Comments

Implements a circular block bootstrap for bootstrapping stationary, dependant series

USAGE:

[BSDATA, INDICES]=block_bootstrap(DATA,B,W)

INPUTS:

DATA - T by 1 vector of data to be bootstrapped

B - Number of bootstraps

W - Block length

OUTPUTS:

BSDATA - T by B matrix of bootstrapped data

INDICES - T by B matrix of locations of the original BSDATA=DATA(indexes);

COMMENTS:

To generate bootstrap sequences for other uses, such as bootstrapping vector processes,

simpleset DATA to (1:N)’

See also stationary_bootstrap



8.1 Bootstraps 123

8.1.2 Stationary Bootstrap: stationary_bootstrap

8.1.2.1 Examples

% 1000 block bootstraps with an average block size of 12

bsData = stationary_bootstrap(data, 1000, 12)

% Vector block bootstraps with a block size of 12

[t,k] = size(data,1);

bsIndex = stationary_bootstrap(1:t, 1000, 12)

for i=1:1000

bsData = data(bsIndex(:,i),:);

% Statistics here

end

8.1.2.2 Required Inputs

[BSDATA, INDICES]=stationary_bootstrap(DATA,B,W)

• DATA: T by 1 vector of data.

• B: Positive integer containing the number of bootstrap replications.

• W: Positive integer containing the average window size. The probability of ending the block is p =
w−1.

8.1.2.3 Outputs

[BSDATA, INDICES]=stationary_bootstrap(inputs)

• BSDATA: T by B matrix of bootstrapped data.

• INDICES: T by B vector of bootstrap indices such that BSDATA = DATA(INDICES).

8.1.2.4 Comments

Implements the stationay bootstrap for bootstrapping stationary, dependant series

USAGE:

[BSDATA, INDICES] = stationary_bootstrap(DATA,B,W)

INPUTS:

DATA - T by 1 vector of data to be bootstrapped

B - Number of bootstraps

W - Average block length. P, the probability of starting a new block is defined P=1/W

OUTPUTS:

BSDATA - T by B matrix of bootstrapped data

INDICES - T by B matrix of locations of the original BSDATA=DATA(indexes);
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COMMENTS:

To generate bootstrap sequences for other uses, such as bootstrapping vector processes, simply

set DATA to (1:N)’

See also block_bootstrap
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8.2 Multiple Hypothesis Tests

8.2.1 Reality Check and Test for Superior Predictive Accuracy bsds

Implementation of the White’s (2000) Reality Check and Peter Reinhard Hansen’s (2005) the Test for Su-

perior Predictive Accuracy (SPA). BSDS refers to “bootstrap data snooper”.

8.2.1.1 Examples

% Standard Reality Check with 1000 bootstrap replications and a window size of 12

bench = randn(1000,1).^2;

models = randn(1000,100).^2;

[c,realityCheckPval] = bsds(bench, models, 1000, 12)

% Standard Reality Check with 1000 bootstrap replications, a window size of 12

% and a circular block bootstrap

[c,realityCheckPval] = bsds(bench, models, 1000, 12, ’BLOCK’)

% Hansen’s P-values

SPAPval = bsds(bench, models, 1000, 12)

% Both Pvals on "goods"

bench = .01 + randn(1000,1);

models = randn(1000,100);

[SPAPval,realityCheckPval] = bsds(-bench, -models, 1000, 12)

8.2.1.2 Required Inputs

[outputs] = bsds_studentized(BENCH,MODELS,B,W)

• BENCH: T by 1 vector of benchmark losses. If “goods” (e..g returns) , multiply by -1.

• MODELS: T by M matrix of model losses. If “goods” (e..g returns) , multiply by -1.

• B: Scalar integer number of bootstrap replications to perform.

• W: Scalar integer containing the average window length (stationary bootstrap) or window length

(block bootstrap).

8.2.1.3 Optional Inputs

[outputs] = bsds_studentized(BENCH,MODELS,B,W,TYPE,BOOT)

• TYPE: String value, either ’STUDENTIZED’ (default) or ’STANDATRD’. Studentized conducts the test

using studentized data and should be more powerful.

• BOOT: String value, either ’STATIONARY’ (default) or ’BLOCK’. Determines the type of bootstrap used.
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8.2.1.4 Outputs

[C,U,L] = bsds_studentized(inputs)

• C: Hansen’s consistent p-val, which adjusts teh Reality Check p-val in the case of high variance but

low mean models.

• U: White’s Reality Check p-val.

• L: Hansen’s lower p-val.

8.2.1.5 Comments

Calculate Whites and Hansens p-vals for out-performance using unmodified data or studentized

residuals, the latter often providing better power, particularly when the losses functions are

heteroskedastic

USAGE:

[C] = bsds_studentized(BENCH,MODELS,B,W)

[C,U,L] = bsds_studentized(BENCH,MODELS,B,W,TYPE,BOOT)

INPUTS:

BENCH - Losses from the benchmark model

MODELS - Losses from each of the models used for comparrison

B - Number of Bootstrap replications

W - Desired block length

TYPE - String, either ’STANDARD’ or ’STUDENTIZED’. ’STUDENTIZED’ is the default, and

generally leads to better power.

BOOT - [OPTIONAL] ’STATIONARY’ or ’BLOCK’. Stationary is used as the default.

OUTPUTS:

C - Consistent P-val(Hansen)

U - Upper P-val(White) (Original RC P-vals)

L - Lower P-val(Hansen)

COMMENTS:

This version of the BSDS operates on quantities that should be ’bads’, such as losses. The null

hypothesis is that the average performance of the benchmark is as small as the minimum average

performance across the models. The alternative is that the minimum average loss across the

models is smaller than the the average performance of the benchmark.

If the quantities of interest are ’goods’, such as returns, simple call bsds_studentized with

-1*BENCH and -1*MODELS

EXAMPLES:

Standard Reality Check with 1000 bootstrap replications and a window size of 12

bench = randn(1000,1).^2;

models = randn(1000,100).^2;

[c,realityCheckPval] = bsds(bench, models, 1000, 12)
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Standard Reality Check with 1000 bootstrap replications, a window size of 12 and a circular

block bootstrap

[c,realityCheckPval] = bsds(bench, models, 1000, 12, ’BLOCK’)

Hansen’s P-values

SPAPval = bsds(bench, models, 1000, 12)

Both Pvals on "goods"

bench = .01 + randn(1000,1);

models = randn(1000,100);

[SPAPval,realityCheckPval] = bsds(-bench, -models, 1000, 12)

See also MCS
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8.2.2 Model Confidence Set mcs

Implementation of Peter R Hansen, Lunde, and Nason’s (2005) Model Confidence Set (MCS).

8.2.2.1 Examples

% MCS with 5% size, 1000 bootstrap replications and an average block length of 12

losses = bsxfun(@plus,chi2rnd(5,[1000 10]),linspace(.1,1,10));

[includedR, pvalsR] = mcs(losses, .05, 1000, 12)

% MCS on "goods"

gains = bsxfun(@plus,chi2rnd(5,[1000 10]),linspace(.1,1,10));

[includedR, pvalsR] = mcs(-gains, .05, 1000, 12)

% MCS with circular block bootstrap

[includedR, pvalsR] = mcs(losses, .05, 1000, 12, ’BLOCK’)

8.2.2.2 Required Inputs

[outputs] = mcs(LOSSES,ALPHA,B,W)

• LOSSES: T by M matrix of model losses. If “goods” (e..g returns) , multiply by -1.

• ALPHA: Size to use when constructing the MCS

• B: Scalar integer number of bootstrap replications to perform.

• W:Scalar integer containing the average window length (stationary bootstrap) or window length (block

bootstrap).

8.2.2.3 Optional Inputs

[outputs] = mcs(LOSSES,ALPHA,B,W,BOOT)

• BOOT: String value, either ’STATIONARY’ (default) or ’BLOCK’. Determines the type of bootstrap used.

8.2.2.4 Outputs

[INCLUDEDR,PVALSR,EXCLUDEDR,INCLUDEDSQ,PVALSSQ,EXCLUDEDSQ] = mcs(inputs)

• INCLUDEDR: Indices of included models using R type comparison.

• PVALSR: P-values of models using R type comparison. The p-values correspond to the the indices in

the order [EXCLUDEDR;INCLUDEDR].

• EXCLUDEDR: Indices of excluded models using R type comparison.

• INCLUDEDSQ: Indices of included models using SQ type comparison.

• PVALSSQ: P-values of models using R type comparison. The p-values correspond to the the indices

in the order [EXCLUDEDSQ;INCLUDEDSQ].

• EXCLUDEDSQ: Indices of excluded models using SQ type comparison.
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8.2.2.5 Comments

Compute the model confidence set of Hansen, Lunde and Nason

USAGE:

[INCLUDEDR] = mcs(LOSSES,ALPHA,B,W)

[INCLUDEDR,PVALSR,EXCLUDEDR,INCLUDEDSQ,PVALSSQ,EXCLUDEDSQ] = mcs(LOSSES,ALPHA,B,W,BOOT)

INPUTS:

LOSSES - T by K matrix of losses

ALPHA - The final pval to use in the MCS

B - Number of bootstrap replications

W - Desired block length

BOOT - [OPTIONAL] ’STATIONARY’ or ’BLOCK’. Stationary will be used as default.

OUTPUTS:

INCLUDEDR - Included models using R method

PVALSR - Pvals using R method

EXCLUDEDR - Excluded models using R method

INCLUDEDSQ - Included models using SQ method

PVALSSQ - Pvals using SQ method

EXCLUDEDSQ - Excluded models using SQ method

COMMENTS:

This version of the MCS operates on quatities that should be ’bad’, such as losses. If the

quantities of interest are ’goods’, such as returns, simply call MCS with -1*LOSSES

EXAMPLES

MCS with 5% size, 1000 bootstrap replications and an average block length of 12

losses = bsxfun(@plus,chi2rnd(5,[1000 10]),linspace(.1,1,10));

[includedR, pvalsR] = mcs(losses, .05, 1000, 12)

MCS on "goods"

gains = bsxfun(@plus,chi2rnd(5,[1000 10]),linspace(.1,1,10));

[includedR, pvalsR] = mcs(-gains, .05, 1000, 12)

MCS with circular block bootstrap

[includedR, pvalsR] = mcs(losses, .05, 1000, 12, ’BLOCK’)

See also BSDS
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Chapter 9

Density Estimation

9.1 Kernel Density Estimation: pltdens

Kernel density estimation is a useful tool to visualize the distribution of returns which would having to

make strong parametric assumptions. Let {yt }T
t=1 be a set of i.i.d. data. The kernel density around a point

x is defined

f̂ (x ) =
t∑

t=1

K

(
yt − x

h

)
where h is the bandwidth, a parameter that controls the width of the window. pltdens supports a number

of Kernels

• Gaussian

K (z ) =
1√
2π

exp(−z 2/2)

• Epanechnikov

K (z ) =

{
3
4 (1− z 2) −1 ≤ z ≤ 1

0 otherwise

• Quartic (Biweight)

K (z ) =

{
15
16 (1− z 2)2 −1 ≤ z ≤ 1

0 otherwise

• Triweight

K (z ) =

{
35
32 (1− z 2)3 −1 ≤ z ≤ 1

0 otherwise

For i.i.d. data Silverman’s bandwidth, 1.06σ̂2T −
1
5 has good properties and is used by default. The function

can be used two ways. The first is to produce the kernel density plot and is simply

pltdens(y)

The second computes the weights but does not produce a plot
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[h,f,y] = pltdens(y);

Data on the S&P 500 were used to produce 3 kernel densities, one with Silverman’s BW, on over-smoothed

(h large) and one under-smoothed (h small). The results of this code is contained in figure 9.1.

[h,f,y] = pltdens(SP500);

disp(h)

[hover,fover,yover] = pltdens(SP500,.01);

[hunder,funder,yunder] = pltdens(SP500,.0001);

fig = figure(1);

clf

set(fig,’PaperOrientation’,’landscape’,’PaperSize’,[11 8.5],...

’InvertHardCopy’,’off’,’PaperPositionMode’,’auto’,...

’Position’,[117 158 957 764],’Color’,[1 1 1]);

hfig = plot(y,f,yover,fover,yunder,funder);

axis tight

for i=1:3;set(hfig(i),’LineWidth’,2);end

legend(’Silvermann’,’Over smoothed’,’Under smoothed’)

set(gca,’FontSize’,14)

h =

.0027

9.1.0.1 Examples

% Produce a kernel plot

pltdens(y)

% Compute weights but do not produce a plot

[h,f,y] = pltdens(y);

% Produce the plot manually

plot(y,f)

% Specify a custom bandwidth

pltdens(y,3);

9.1.0.2 Comments

PURPOSE: Draw a nonparametric density estimate.

--------------------------------------------------

USAGE: [h,f,y] = pltdens(x,h,p,kernel)

or pltdens(x) which uses gaussian kernel default

where:

x is a vector

h is the kernel bandwidth

default=1.06 * std(x) * n^(-1/5); Silverman page 45

p is 1 if the density is 0 for negative values
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Figure 9.1: A plot with kernel densities using Silverman’s BW and over- and under- smoothed.

k is the kernel type:

=1 Gaussian (default)

=2 Epanechnikov

=3 Biweight

=4 Triangular

A jittered plot of the



134 Density Estimation

observations is shown below the density.

--------------------------------------------------

RETURNS:

h = the interval used

f = the density

y = the domain of support

plot(y,f) will produce a plot of the density

--------------------------------------------------

SEE ALSO hist, histo

--------------------------------------------------
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9.2 Distributional Fit Testing

9.2.1 Jarque-Bera Test: jarquebera

Jarque-Bera test for normality, defined as

(T − K )
(

sk 2

6
+
(κ− 3)2

24

)
where sk is the sample skewness and κ is the sample kurtosis.

9.2.1.1 Examples

% Jarque-Bera test on normal data

x = randn(100,1);

[statistic, pval] = jarquebera(x);

% Jarque-Bera test on regression errors

% where there were 4 regressors (4 mean parameters + 1 variance)

y=randn(100,1);x = randn(100,4); e = y - x*(x

[statistic, pval] = jarquebera(e, 5)

9.2.1.2 Required Inputs

[outputs] = jarquebera(DATA)

• DATA: T by 1 vector of data to be tested.

9.2.1.3 Optional Inputs

[outputs] = jarquebera(DATA,K,ALPHA)

• K: Degree of freedom adjustment. Default is 2.

• ALPHA: Size of the test to use. Default is 5%.

9.2.1.4 Outputs

[STATISTIC,PVAL,H] = jarquebera(inputs)

• STATISTIC: Jarque-Bera test statistic.

• PVAL: P-value evaluated using the asymptotic χ2
2 distribution.

• H: Logical indicating whether the test rejects at ALPHA.
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9.2.1.5 Comments

Computes the Jarque-Bera test for normality using the skewness and kurtosis to determine if a

distribution is normal.

USAGE:

[STATISTIC] = jarquebera(DATA)

[STATISTIC,PVAL,H] = jarquebera(DATA,K,ALPHA)

INPUTS:

DATA - A set of data to be tested for deviations from normality

K - [OPTIONAL] The number of dependant variables if any used in constructing the errors

(if omitted K=2)

ALPHA - [OPTIONAL] The level of the test used for the null of normality. Default is .05

OUTPUTS:

STATISTIC - A scalar representing the statistic

PVAL - A scalar pval of the null

H - A hypothesis dummy (0 for fail to reject the null of normality, 1 otherwise)

COMMENTS:

The data entered can be mean 0 or not. In either case the sample mean is subtracted and the

data are standardized by the sample standard deviation before computing the statistic .

EXAMPLES:

J-B test on normal data

x = randn(100,1);

[statistic, pval] = jarquebeta(x);

J-B test on regression errors where there were 4 regressors (4 mean parameters + 1 variance)

x = randn(100,1);

[statistic, pval] = jarquebeta(x, 5)
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9.2.2 Kolmogorov-Smirnov Test: kolmogorov

Kolmogorov-Smirnov test for correct unconditional distribution.

9.2.2.1 Examples

% Test data for uniformity

stat = kolmogorov(x)

% Test standard normal data

[stat,pval] = kolmogorov(x,[],’normcdf’)

% Test normal mean 1, standard deviation 2 data

[stat,pval] = kolmogorov(x,[],’normcdf’,1,2)

9.2.2.2 Required Inputs

[outputs] = kolmogorov(X)

• X: Data to be tested. X should have been transformed such that it is uniform (under the hypothesized

distribution).

9.2.2.3 Optional Inputs

[outputs] = kolmogorov(X,ALPHA,DIST,VARARGIN)

• ALPHA: Size of the test to use. Default is 5%.

• DIST: A string or function handle containing the name of a CDF to use to transform X to be uniform

(under the hypothesized distribution).

• VARARGIN: Optional arguments needed by DIST.

9.2.2.4 Outputs

[STAT,PVAL,H] = kolmogorov(inputs)

• STATISTIC: Kolmogorov-Smirnov test statistic.

• PVAL: P-value evaluated using a Monte Carlo distribution.

• H: Logical indicating whether the test rejects at ALPHA.
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9.2.2.5 Comments

Performs a Kolmogorov-Smirnov test that the data are from a specified distribution

USAGE:

[STAT,PVAL,H] = kolmogorov(X,ALPHA,DIST,VARARGIN)

INPUTS:

X - A set of random variable to be tested for distributional correctness

ALPHA - [OPTIONAL] The size for the test or use for computing H. 0.05 if not entered or

empty.

DIST - [OPTIONAL] A char string of the name of the CDF, i.e. ’normcdf’ for the normal,

’stdtcdf’ for standardized Student’s T, etc. If not provided or empty, data are

assumed to have a uniform distribution (i.e. that data have already been fed

through a probability integral transform)

VARARGIN - [OPTIONAL] Arguments passed to the CDF, such as the mean and variance for a normal

or a d.f. for T. The VARARGIN should be such that DIST(X,VARARGIN) is a valid

function with the correct inputs.

OUTPUTS:

STAT - The KS statistic

PVAL - The asymptotic probability of significance

H - 1 for reject the null that the distribution is correct, using the size provided (or

.05 if not), 0 otherwise

EXAMPLES:

Test data for uniformity

stat = kolmogorov(x);

Test standard normal data

[stat,pval] = kolmogorov(x,[],’normcdf’);

Test normal mean 1, standard deviation 2 data

[stat,pval] = kolmogorov(x,[],’normcdf’,1,2);

COMMENTS:

See also BERKOWITZ
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9.2.3 Berkowitz Test: berkowitz

Berkowitz (2001) test for correct fit in conditional density models.

9.2.3.1 Examples

% Test uniform data from a TS model

stat = berkowitz(x);

% Test standard normal data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’);

% Test normal mean 1, standard deviation 2 data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’,1,2);

9.2.3.2 Required Inputs

[outputs] = berkowitz(X)

• X: Data to be tested. X should have been transformed such that it is uniform (under the hypothesized

distribution).

9.2.3.3 Optional Inputs

[outputs] = berkowitz(X,TYPE,ALPHA,DIST,VARARGIN)

• TYPE: String either ’TS’ or ’CS’. Determines whether the test statistics looks at the AR(1) coefficient

(’TS’ does, ’CS’ does not). Default is ’TS’.

• ALPHA: Size of the test to use. Default is 5%.

• DIST: A string or function handle containing the name of a CDF to use to transform X to be uniform

(under the hypothesized distribution).

• VARARGIN: Optional arguments needed by DIST.

9.2.3.4 Outputs

[STAT,PVAL,H] = berkowitz(inputs)

• STATISTIC: Berkowitz test statistic.

• PVAL: P-value evaluated using the asymptotic χ2
q distribution where q = 2 or q = 3, depending on

TYPE.

• H: Logical indicating whether the test rejects at ALPHA.
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9.2.3.5 Comments

Performs a Kolmogorov-Smirnov-like test using the Berkowitz transformation to a univariate normal

that the data are from a specified distribution.

USAGE:

[STAT,PVAL,H] = berkowitz(X,TYPE,ALPHA,DIST,VARARGIN)

INPUTS:

X - A set of random variable to be tested for distributional correctness

TYPE - [OPTIONAL] A char string, either ’CS’ if the data are cross-sectional or ’TS’ for

time series. The TS checks for autocorrelation in the prob integral transforms

while the CS does not. ’TS’ is the default value.

ALPHA - [OPTIONAL] The size for the test or use for computing H. 0.05 if not entered or

empty.

DIST - [OPTIONAL] A char string of the name of the CDF of X, i.e. ’normcdf’ for the normal,

’stdtcdf’ for standardized Studnet’s T, etc. If not provided or empty, data are

assumed to have a uniform distribution (i.e. that data have already been fed

through a probability integral transform)

VARARGIN - [OPTIONAL] Arguments passed to the CDF, such as the mean and variance for a normal

or a d.f. for T. The VARARGIN should be such that DIST(X,VARARGIN) is a valid

function with the correct inputs.

OUTPUTS:

STAT - The Berkowitz statistic computed as a likelihood ratio of normals

PVAL - The asymptotic probability of significance

H - 1 for reject the null that the distribution is correct using the size provided (or

.05 if not), 0 otherwise

EXAMPLES:

Test uniform data from a TS model

stat = berkowitz(x);

Test standard normal data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’);

Test normal mean 1, standard deviation 2 data from a TS model

[stat,pval] = berkowitz(x,’TS’,[],’normcdf’,1,2);

COMMENTS:

See also KOLMOGOROV
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Helper Functions

10.1 Date Functions

10.1.1 Excel Date Transformation: x2mdate

The function x2mdate converts Excel dates to MATLAB dates, and is a work-a-like to the Mathworks pro-

vided function of the same name for users who do not have the Finance toolbox.

10.1.1.1 Examples

xlsdate = [35000 40000 41000];

mldate = x2mdate(xlsdate)

stringDate = datestr(mldate)

mldate =

728960 733960 734960

stringDate =

28-Oct-1995

06-Jul-2009

01-Apr-2012

10.1.1.2 Required Inputs

[outputs] = x2mdate(XLSDATE)

The required inputs are:

• XLSDATE: Scalar or vector containing Excel dates.

10.1.1.3 Optional Inputs

[outputs] = x2mdate(XLSDATE,TYPE)

The optional inputs are:
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• TYPE: 0 or 1 indicating whether the base date for conversion is Dec-31-1899 (TYPE= 1) or Jan 1, 1904

(TYPE = 0).

10.1.1.4 Outputs

[MLDATE] = x2mdate(inputs)

• MLDATE: Vector with same size as XLSDATE containing MATLAB serial date values.

10.1.1.5 Comments

X2MDATE provides a simple method to convert between excel dates and MATLAB dates.

USAGE:

[MLDATE] = x2mdate(XLSDATE)

[MLDATE] = x2mdate(XLSDATE, TYPE)

INPUTS:

XLSDATE - A scalar or vector of Excel dates.

TYPE - [OPTIONAL] A scalar or vector of the same size as XLSDATE that describes the Excel

basedate. Can be either 0 or 1. If 0 (default), the base date of Dec-31-1899 is

used. If 1, the base date is Jan 1, 1904.

OUTPUTS:

MLDATE - A vector with the same size as XLSDATE consisting of MATLAB dates.

EXAMPLE:

XLSDATE = [35000 40000 41000];

MLDATE = x2mdate(XLSDATE);

datestr(MLDATE)

28-Oct-1995

06-Jul-2009

01-Apr-2012

COMMENTS:

This is a reverse engineered clone of the MATLAB function x2mdate and should behave the same.

You only need it if you do not have the financial toolbox installed.

See also C2MDATE
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10.1.2 CRSP Date Transformation: c2mdate

The function c2mdate converts CRSP dates to MATLAB dates. CRSP dates are of the form YYYYMMDD and

are numeric.

10.1.2.1 Examples

crspdate = [19951028 20090706 20120401];

mldate = c2mdate(crspdate)

stringDate = datestr(mldate)

mldate =

728960 733960 734960

stringDate =

28-Oct-1995

06-Jul-2009

01-Apr-2012

10.1.2.2 Required Inputs

[outputs] = c2mdate(CRSPDATE)

The required inputs are:

• XLSDATE: Scalar or vector containing Excel dates.

10.1.2.3 Outputs

[MLDATE] = c2mdate(inputs)

• MLDATE: Vector with same size as CRSPDATE containing MATLAB serial date values.

10.1.2.4 Comments

C2MDATE provides a simple method to convert between CRSP dates provided by WRDS and MATLAB dates.

USAGE:

[MLDATE] = c2mdate(CRSPDATE)

INPUTS:

CRSPDATE - A scalar or vector of CRSP dates.

OUTPUTS:

MLDATE - A vector with the same size as CRSPDATE consisting of MATLAB dates.

EXAMPLE:

CRSPDATE = [19951028 20090706 20120401]’;
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MLDATE = c2mdate(CRSPDATE);

datestr(MLDATE)

28-Oct-1995

06-Jul-2009

01-Apr-2012

COMMENTS:

This is provided to make it easy to move between CRSP and MATLAB dates.

See also X2MDATE
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