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Beyond DFM OXFORD '

= DFMs are an important innovation - both supported by economic theory
and statistical evidence

= From a forecasting point of view, they have some limitations
= Alternatives
» Partial Least Squares Regression
> Focuses attention on forecasting problem
» Three-pass Regression Filter
> Allows focus on factors through proxies
» Regularized Reduced Rank Regression

> Improve DFM factor selection for forecasting problem
> Theoretically more sound than using variable selection using BIC
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Partial Least Squares OXFORD ‘&%

= Partial Least Squares uses the predicted variable when selecting factors
= PCA/DFM only look at x; when selecting factors
= The difference means that PLS may have advantages

» If the factors predicting y; are not excessively pervasive
If the rotation implied by PCA requires many factors to extract the ideal factor

\{

Vivelr = ﬁflt‘i‘Et

Suppose two estimated factors with the form

-l U]

Correct forecasting model for y.,; requires both f;; and fa

\{

\4

Yev1 = Tlf1t+7f2f2t+€t
= VVarifie + Varafu+ Varafa — V2rafa + €
= (1 +712) VYo + (r1 — 12) VoS + €
Implies v/72(y1 +72) = B and v72(y1 — 12) =0 (y1 = r2, y1 = B/ (2V2))

Without this knowledge, 2 parameters to estimate, not 1

\4

v
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Partial Least Squares OXFORD ‘&

= Partial least squares (PLS) uses only bivariate building blocks
= Never requires inverting k by k covariance matrix

» Computationally very simple
» Technically no more difficult than PCA

= Uses a basic property of linear regression

Yt = P1X1e + Poxor + PB3X3: + €
= Define n; = y; — 71x1: where 71 is from OLS of y on x;
» Immediate implication is > Nx1: =0

= Define Et = 1)t — ¥2X2: Where 7, is from OLS of 1 on x;
> Will have 3" &y = 0 but also S Exy =0
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Partial Least Squares OXFORD ‘&%

Ingredients to PLS are different from PCA
Assumed model

Vi = [,ly + Ff]t + €;
X = A]f]t + Azfzt + gt
f, = 91 +m,

Variable to predict is now a key component

>y, mby 1
» Oftenm =1
» Not studentized (important if m > 1)

Same set of predictors

» X¢, kby 1
» Assumed studentized
» Yy can be in X; ify: is really in the future, so that the values in X; are lags

> Normally y; is excluded
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Partial Least Squares OXFORD ‘&%

Algorithm (r-Factor Partial Least Squares Regression)

©)
J

1. Studentize X, set X

2. Fori=1,...,r

= X; and fo; = ¢
_(i—1 Sli—1
a. Set fit = Z} Cijxgl ) where Ci]' = tX](tl )Yt

b. Update X]@ = f(](i_l) — K;if; where

= Qutput is a set of uncorrelated factors f, f, ..., f;
= Forecasting model is theny; = Bo + B'f; + €;
= Useful to save C =[cy,...,c,]and K = [y, ..., k] and (ﬁo,ﬁ/)

» Numerical issues may produce some non-zero covariance for factors far apart
» Normally only interested in a small number, so not important
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Factors in PLS OXFORD ‘&

Factors are just linear combinations of original data

= Obvious for first factor, which is just f; = Xc¢; = XO¢,
= Second factors is f; = XMy
X(l) = X (Ik — C1K/1>
= X — (Xc1) K]
= X-— fll\'/l
XWe, = XOMm —ciri) ey
= Xp,

Same logic holds for any factor
X(j_l)Cj = X(j—Z) (Ik — Cj_lk‘{_l) C;
= XU=3) (5 — ¢j_ox)_y) (I — ¢i1x)_y) ¢
= X (Ik — Cl’\'/1) ce (Ik — C]'_ll\’]/-_l) C;

= Xp,
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Forecasting with Partial Least Squares OXFORD

= When forecasting y,, , use
Yi+n X1
y = E X = :
Yt Xt h

= When studentizing X save ftand 62, the vectors of means and variance
» Alternatively studentize all t observations of X, but only use 1,...,t — h in PLS

» Important inputs to preserve:
» cgandk;,i=1,2,...,r

Algorithm (Out-of-sample Factor Reconstruction)

1. Setfoy=1and % = (x, — ) © &

2. Fori=1,...,r
(i-1)

a. Compute f;y = C/%;
b. Setx) =xl~Y _ fiere!

» Construct forecast from f; and (/30, /3)
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Comparing PCA and PLS SKisin &

= There is a non-trivial relationship between PCA and PLS
= PCA iteratively solves the following problem to find f; = X3,

rr;jaxV [Xp;] subjectto p;p;=1andfifi=0, j<i

= PLS solves a similar problem to find f;

» Different in one important way

max Corr” [XB,,v] V[XB,] subjectto fif =0, j<i

» Assumes single y (m = 1)
= Implications:

» PLS can only find factors that are common to x; and y; due to Corr term
» PLS also cares about the factor space in X;, so more repetition of one factor in
x; will affect factor selected

= When x; = vy;, PLS is equivalent to PCA

9/33



UNIVERSITY OF

Three-pass Regression Filter OXFORD ‘&

» Generalization of PLS to incorporate user forecast proxizes, z;

= When proxies are not specified, proxies can be automatically generated,
very close to PLS

= Model structure

Xt = A-I—Aft—l—et
Veri = Po+ P +n;
Zt == ¢0+‘I’ft+€t

> £ = [f{t’fét}l
» A= [Al,Az], /5 = [ﬂl,O],q) = [‘I’l,‘l’z]

= f3 can have 0’s so that some factors are not important for y;,4
= Most discussion is on a single scalary,som =1
= z;is I by 1, with 0 <[ < min (k, T)

» lis finite
» Number of factors used in forecasting model
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Three-pass Regression Filter OXFORD ‘&5

Algorithm (Three-pass Regression Filter)

1. (Time series regression) Regress X; on Z fori=1,...,k Xi = @io + Z;@p; + vyt

2. (Cross section regression) Regress Xy on J)i fort=1,...,T,
Xit = Tio + @ £ + vy Estimate is f;.

3. (Predictive regression) Regress y:,1 on ft, Ver1 = Po + /S’ft + 1)¢

= Final forecast uses out-of-sample data but is otherwise identical
= Trivial to use with an imbalanced panel

» Run step 1 when x; is observed
> Include x;; and ¢; whenever observed in step 2

= Imbalanced panel may nto produce accurate forecasts though
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Forecasting with Three-pass Regression Filter  oxrorp <

= Use data ) ) ) _
Yi+n X1
Yo+n X)
y = X =
Yt ] | Xt |

to estimate 3PRF

> Retain ¢, fori=1,...,k
» Retain By and p

= To forecast Yeipt

» Compute f, by regressing X; on g?)l- and a constant
> Construct J;.p ¢ using fo + Bt:
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Automatic Proxy Variables OXFORD &

= Z; are potentially useful but not required

Algorithm (Automatic Proxy Selection)

1. Initialize w() =y
2. Fori=1,2,...,L

a. Setz; = wl) _
b. Compute 3PRF forecast ir(’) using proxies 1,...,1i
c. Update w(*t) =y — ¢()

Proxies are natural since forecast errors

Automatic algorithm finds factor most related to y, then the 1-factor
residual, then the 2-factor residual and so on

Nearly identical to the steps in PLS

Possibly easier to use 3PRF with missing data
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Theory Motivated Proxies OXFORD ‘&%

= One of the strengths of 3PRF is the ability to include theory motivated
proxies

= Kelly & Pruit show that money growth and output growth can be used to
improve inflation proxies over automatic proxies

= The use of theory motivated proxies effectively favors some factors over
others

= Potentially useful for removing factors that might be unstable, resulting in
poor OOS performance

= When will theory motivated proxies help?

» Proxies contain common, persistent components
» Some components in y that are not in z have unstable relationship
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Exact Relationship between 3PRF and PLS

UNIVERSITY OF

OXFORD &

= 3PRF and PLS are identical under the following conditions

» X has been studentized
» The 2-first stages do not include constants

= Factors that come from 3PRF and PLS differ by a rotation
= PLS factors are uncorrelated by design
= Equivalent factors can be constructed using

Zf_ 12 FSPRF

> ¥ is the covariance matrix of F3'%F
» Will stiff differ by scale and possibly factor of +1
» Order may also differ
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Forecasting from DFM and PLS/3PRF
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Forecast

» GDP growth

» Industrial Production

» Equity Returns

» Spread between Baa and 10 year rate

All data from Stock & Watson 2012 dataset
Dataset split in half

» 1959:2 - 1984:1 for initial estimation
» 1985:1 - 2011:2 for evaluation

Consider horizons from 1 to 4 quarters

Entire procedure is conducted out-of-sample
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DFM Components OXFORD ‘&%

= Forecasts computed using different methods:

» 3 components
» 3 components and 4 lags with Global BIC search
» [Py, selected components only

= X recursively studentized
» Only use series that have no missing data

= Cheating: some macro data-series are not available in real-time, but all
forecasts benefit
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PLS/3PRF Components and Benchmark ST

= Consider 1, 2 and 3 factor forecasts
= Automatic proxy selection only

= Always studentize X

= Benchmark is AR(4)
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Out-of-sample R?
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IP
PCA(3) 0.6038 0.4255 0.3125 0.2667
AR(4) 0.5521 0.3695 0.2699 0.2031
BIC 0.5671 0.3676 0.3047 0.2936
PCA-IC  0.5380 0.4089 0.3235 0.2773
3PRF-1 0.4653 0.3728 0.2999 0.2601
3PRF-2 0.5351 0.4081 0.3095 0.2494
3PRF-3 0.5230 0.3619 0.2294 0.1600
GDP
PCA(3) 0.6031 0.4204 0.2483 0.1485
AR(4) 0.5239 0.3578 0.2601 0.1860
BIC 0.6210 04573 0.2790 0.1669
PCA-IC  0.6010 0.435 0.3046 0.2246
3PRF-1 0.5385 0.4371 0.3444 0.2848
3PRF-2 0.5205 0.3759 0.2665 0.1922
3PRF-3 0.4637 0.2918 0.1796 0.1189
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Out-of-sample R? OXFORD ‘&%

BAA-GS10 (Diff)
PCA(3) -0.0754 -0.2065 -0.178 -0.0484
AR@4)  -0.0464 -0.0914 -0.0865 -0.0097
BIC 00232 -0.1253 -0.0036 -0.0380
PCA-IC  0.0390 -0.0698 -0.0711  0.0242
3PRF-1  -0.0072 -0.1735 -0.1367 -0.0240
3PRF-2  0.0303 -0.1887 -0.1283 -0.0564
3PRF-3  -0.1909 -0.4024 -0.3301 -0.1710

S&P 500 Return
PCA(3) 0.0442 -0.1133 -0.1870 -0.2149
AR(4) 0.0677 -0.0095 -0.0546 -0.0725
BIC 0.0232 -0.1281 -0.1895 -0.1950
PCA-IC 0.0070 -0.0929 -0.0949 -0.0982
3PRF-1 -0.0245 -0.1575 -0.1764 -0.1863
3PRF-2 0.0903 -0.1488 -0.2122 -0.2165
3PRF-3  0.0055 -0.2029 -0.3885 -0.3833
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Alternative Fits of GDP
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Number of PC and Fit of GDP wrsrver | G
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Number of 3PRF Factors and Fit of GDP SxroRD
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Alternative Fits of Baa-10 year spread
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Number of PC and Fit of Spread OXFORD
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Number of 3PRF Factors and Fit of Spread Sisonn
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Regularized Reduced Rank Regression OXFORD ‘&

= When k is large, OLS will not produce useful forecasts
= Reduced rank regression places some restrictions on the coefficients on x;

Ye+#1 = Yot af’x; + €
= 7’0+a([5/Xt) + €
= '}’0+(1ft+€t

» a is 1 by r - factor loadings
» B isr by k - selects the factors

= When k =~ T, even this type of restriction does not produce well behaved
forecasts
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Regularizing Covariance Matrices OXFORD &%

Regularization is a common method to ensure that covariance matrices are
invertible when k =~ T, or even when k> T

Many regularization schemes
Tikhonov

3y = 3 + pQQ’
where QQ’ has eigenvalues bounded from 0O for any k

» Common choice of QQ’ is I, £x = 3x + pl;
» Makes most sense when x; has been studentized

Eigenvalue cleaning
3y = VAV’

» Fori<r, A; = A; is unchanged
» Fori>r, 2= (k— r)_1 S A

2){ — V/‘V/
» Effectively imposes a r-factor structure
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Combining Reduced Rank and Regularization OXFORD ‘&2

= These two methods can be combined to produce RRRR
= In small k case,
Ver1 = Yo+ af'X; + €
normalizedf3 can be computed as as solution to generalized eigenvalue
problem
» Normal eigenvalue problem
|A—AIl =0
» Generalized Eigenvalue Problem

|A—2AB| =0
= Reduced Rank LS
Ty Wiy — A3y

kxm mxk kxk

=0

[ are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of this problem

» W is a weighting matrix, either I, or a diagonal GLS version using variance of
yi on i diagonal
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RRRR-Tikhonov SxFORD

= 3 are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of

Sy Wy — A (3x+pQQ")| =0

X is studentized

QQ’ is typically set to I

p 1s a tuning parameter, usually set using 5- or 10-fold cross validation
r also need to be selected

v

\4

v

v

> Cross validation

> Model-based IC

> 1 will always be less than m, the number of y series: When there is only 1 series,
the first eigenvector selects the optimal linear combination which will predict that
series the best. Only tension if more than 1 series.
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RRRR-Spectral Cutoff OXFORD &
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P are the r generalized eigenvectors associated with the r largest
generalized eigenvalues of

Sy WSg, — A% =0

Y is the covariance of the first ry principal components

> 17 to distinguish from r (the number of columns in )
> Mgy is the covariance between the PCs and the data to be predicted
> Iy must be chosen using another criteria - Scree plot or Information Criteria

The spectral cutoff method essentially chooses a set of r factors from the
set of ry PCs

This is not a trivial exercise since factors are always identified only up to a
rotation

For example, allows a 1-factor model to be used for forecasting even when
the factor can only be reconstructed from all ry PCs

Partially bridges the gap between PCA and PLS/3PRF
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Forecasting in RRRR OXFORD ‘&

= Once  was been estimated using generalized eigenvalue problem, run
regression

Yer1 = Qo+ @ (/Aj/Xt) + €t

to estimate &
= Can also include lags of y

p
A/
Vir1 = ¢o + Z QiYi—iv1 + @ (ﬁ Xt) + €t
i=1
= When using spectral cutoff, regressions use f; in place of x;
» Forecasts are simple since x;, /3 and other parameters are known at time ¢t

» When using spectral cutoff, f; is also known at time t

= 1 can be chosen using a normal IC such as BIC or using t-stats in the
forecasting regression
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General Setup for Forecasting

When forecasting with the models, it is useful to setup some matrices so that
observations are aligned
Assume interest in predicting Y 1yt - - -

;Yt+hﬁ
» Can also easily use cumulative versions, E; [Zf’zl ytH}

All matrices will have t rows
Leads (max h) and lags (max P)

S . .
_ _ Y2 N -
Y2 Y3 Yn+1 ) )
y3 Y4 Yh+2
Yleads _ : . Ylags - X = [ Xl ]
Ye—h+t1  Yi—h+2 Yt Y Yp—1 n X¢
Yi—1 Yt -
| Yt - -
L Yi—1  Yt—2 Ye—p A

= — denotes a missing observation (nan)
= When forecasting at horizon h, use column h of Y**®% and rows 1,...t — h of Y"?9

and X

» Remove any rows that have missing values

= When using PCA methods, extract PC (C) from all of X and userows 1,...t — hof C
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