The StepM Proceedure, Model Confidence Set and False Discovery Rate Control

The Econometrics of Predictability

May 27, 2014

- Multiple Hypothesis Testing
- StepM
- Model Confidence Set
- False Discovery Rate Control
- The main issue with the Reality Check and the Test for SPA is the null
- These tests ultimately test one question:
- Is the largest out-performance consistent with a random draw from the distribution when there are not superior models to the benchmark?
- If the null is rejected, only the best performing model can be determined to be better than the benchmark
- What about the $2 n d$ best model? Or the $\mathrm{k}^{\text {th }}$ best model?
- The StepM extends that reality check by allowing individual models to be tested
- It is implemented by repeatedly applying a RC-like algorithm which controls the Familywise Error Rate (FWE)
- The basic setup is identical to that of the RC/SPA
- The test is based on $\delta_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, B M \mid t}\right)-L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
- Can be used in the same types of tests as RC/SPA
- Absolute return
- Sharpe Ratio
- Risk-adjusted α comparisons
- MSE/MAE
- Predictive Likelihood
- Can be implemented on both raw and Studentized loss differentials
- The null and alternatives in StepM are not a single statement as they were in the RC/SPA
- The nulls are

$$
H_{0, j}: \mathrm{E}\left[\delta_{t}\right] \leq 0, \quad j=1, \ldots, m
$$

- The alternatives are

$$
H_{1, j}: \mathrm{E}\left[\delta_{t}\right]>0, j=1, \ldots, m
$$

- StepM will ultimately result in a set of rejections (if any are rejected)
- Goal of StepM is to identify as many false nulls as possible while controlling the Familywise Error Rate

Definition (Familywise Error Rate)

For a set of null and alternative hypotheses $H_{0, i}$ and $H_{1, i}$ for $i=1, \ldots, m$, let \mathcal{I}_{0} contain the indices of the correct null hypotheses. The Familywise Error Rate is defined as
$\operatorname{Pr}\left(\right.$ Rejecting at least one $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)=1-\operatorname{Pr}\left(\right.$ Reject no $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)$

- The FWE is concerned only with the probability of making at least one Type I error
- Making 1, 2 or m Type I errors is the same to FWE
- This is a criticism of FWE
- Other criteria exist such as False Discovery Rate which controls the percentage of rejections which are false (\# False Rejection/\# Rejections)
- Bonferoni bounds are the first procedure to control FWE

Definition (Bonferoni Bound)

Let $T_{1}, T_{2}, \ldots, T_{m}$ be a set of m test statistics, then

$$
\underbrace{\operatorname{Pr}\left(T_{1} \cup \ldots \cup T_{m} \mid H_{1,0}, \ldots H_{m, 0}\right)}_{\text {Joint Probability }} \leq \sum_{j=1}^{m} \underbrace{\operatorname{Pr}\left(T_{j} \mid H_{0, j}\right)}_{\text {Individual Probability }}
$$

where $\operatorname{Pr}\left(T_{j} \mid H_{0, j}\right)$ is the probability of observing T_{j} given the null $H_{0, j}$ is true.

- Bonferoni bounds are a simple method to test m hypotheses using only univariate test statistics
- Let $\left\{p v_{j}\right\}$ be a set of $m \mathrm{p}$-values from a set of tests
- The Bonferoni bound will reject the set of nulls is $p v_{j} \leq \alpha / m$ for all j
- α is the size of the test (e.g. 5\%)
- When m is moderately large, this is a very conservative test
- Conservative since assumes worst case dependence among statistics

Definition (Holm's Procedure)

Let $T_{1}, T_{2}, \ldots, T_{m}$ be a set of m test statistics with associated p -values $p v_{j}$, $j=1, \ldots, m$ where it is assumed $p v_{i}<p v_{j}$ if $i<j$. If

$$
p v_{j} \leq \alpha /(m-j+1)
$$

then $H_{0, j}$ can be rejected in factor of $H_{1, j}$ while controlling the famliywise error rate at α.

- Example: p-values of .001, . $01, .03, .05, m=4, \alpha=.05$
- Improves Bonferoni by ordering the p-values and using a stepwise procedure
- Allows subsets of hypotheses to be tested - Bonferoni is joint
- Less strict, except when $j=1$ (same as Bonferoni)
- Note: Holm's procedure ends as soon as a null cannot be rejected
- The RC/SPA, Bonferoni and Holm are all related

	Worst-case Dependence	Accounts for Dependence in Data
Single-step	Bonferoni	RC, SPA
Stepwise	Holm	StepM

Algorithm (StepM)

1. Begin with the active set $\mathcal{A}=\{1,2, \ldots, m\}$, superior set $\mathcal{S}=\{ \}$
2. Construct B bootstraps sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}, b=1, \ldots, B$
3. For each bootstrap sample, compute $T_{k, b}^{\star \text { StepM }}=\max _{j \in \mathcal{A}}\left\{\bar{\delta}_{b, j}^{\star}-\bar{\delta}_{j}\right\}$
4. Compute $q_{k, \alpha}$ as the $1-\alpha$ quantile of $\left\{T_{k, b}^{\star \text { StepM }}\right\}$
5. If $\max _{j \in \mathcal{A}}\left(\bar{\delta}_{j}\right)<q_{k, \alpha}$ stop
6. Otherwise for each $j \in \mathcal{A}$
a. If $\bar{\delta}_{j} \geq q_{k, \alpha}$ add j to \mathcal{S} and delete from \mathcal{A}
b. Return to 2

- StepM would be virtually identical to RC if only the largest $\bar{\delta}_{j}$ was tested
- Improves on the RC since (weakly more) individual out-performing models can be identified
- If no model outperforms, will stop with none and RC p-value will be larger than α
- Steps 2-4 are identical to the RC using the models in \mathcal{A}
- The stepwise testing can improve power by removing models
- The improvement comes if a model with substantial out-performance also has large variance
- Removing this model allows the critical value to be reduced
- StepM only guarantees that FWE $\leq \alpha$, and in general will be $<\alpha$
- Will only $=\alpha$ if $\mathrm{E}\left[\delta_{j, t}\right]=0$ for all j
- Example: $N\left(\mu, \sigma^{2}\right)$ when $\mu<0, H_{0}: \mu=0$
- Like the SPA to the RC, the StepM can be implemented using Studentized loss differentials
- Romano \& Wolf argue that the Studentization should be done inside each bootstrap sample, not globally as in the SPA
- Theoretically both are justified and neither makes a difference asymptotically
- Computing the variance inside each bootstrap will more closely match the re-sampled data than when using a global estimate

Studentized StepM Algorithm

Algorithm (Studentized StepM)

1. Begin with the active set $\mathcal{A}=\{1,2, \ldots, m\}$, superior set $\mathcal{S}=\{ \}$
2. Compute $\bar{z}_{j}=\bar{\delta}_{j} / \sqrt{\hat{\omega}_{j}^{2} / P}$ where $\hat{\omega}_{j}^{2}$ was previously defined
3. Construct B bootstraps sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}, b=1, \ldots, B$
4. For each bootstrap sample, compute

$$
T_{k, b}^{* \text { Step } M}=\max _{j \in \mathcal{A}}\left\{\frac{\bar{\delta}_{b, j}^{\star}-\bar{\delta}_{j}}{\hat{\omega}_{j}^{\star}}\right\}
$$

where $\hat{\omega}_{j}^{2 \star}$ is an estimate of the long-run variance of the bootstrapped data
5. Compute $q_{k, \alpha}^{z}$ as the $1-\alpha$ quantile of $\left\{T_{k, b}^{* \text { Step } M}\right\}$
6. If $\max _{j \in \mathcal{A}}\left(\bar{z}_{j}\right)<q_{k, \alpha}^{z}$ stop
7. Otherwise for each $j \in \mathcal{A}$
a. If $\bar{z}_{j} \geq q_{k, \alpha}^{z}$ add j to \mathcal{S} and delete from \mathcal{A}
b. Return to 2

- StepM is built around confidence intervals of the form

$$
\left[\bar{\delta}_{1}-q_{1, \alpha}, \infty\right] \times \ldots \times\left[\bar{\delta}_{m}-q_{1, \alpha}, \infty\right]
$$

- Null hypotheses are rejected for models where 0 is not in its confidence interval
- In the raw form, the confidence interval is a square - the same for every loss differential
- When Studentization is used, the confidence intervals take the form

$$
\left[\bar{\delta}_{1}-\sqrt{\omega_{1}^{2} / P} q_{1, \alpha}^{z}, \infty\right] \times \ldots \times\left[\bar{\delta}_{m}-\sqrt{\omega_{m}^{2} / P} q_{1, \alpha}^{z}, \infty\right]
$$

- This "customization" allows for more rejections if the loss differentials have cross-sectional heteroskedasticity
- Paper proposes a procedure to make data driven block size
- Basic idea is to use a (V)AR on $\left\{\delta_{j, t}\right\}$ to approximate the dependence
- Similar to Den Hann-Levine HAC
- Fit AR \& estimate residual covariance (or use short block bootstrap on errors)
- Simulate from model
- For $w=1, \ldots, \bar{W}$ compute the bootstrap confidence region with size $1-\alpha$ using percentile method
- For each block size, compute the empirical coverage - percentage of simulated $\bar{\delta}$ in their confidence region
- Choose optimal w which most closely matches $1-\alpha$
- Alternative: Use Politis \& White
- Applied StepM to a set of 105 Hedge Fund Returns with long histories
- Returns net of management fees
- Benchmark model was risk-free rate
- $m=105, P=147$ (all out-of-sample)
- Results:
- Raw data: No out-performers
- Max ratio of standard deviation $\hat{\omega}_{i} / \hat{\omega}_{j}=22$
- Studentized: 7 funds identified
- Note: Will always identify funds with the largest $\bar{\delta}$ (or \bar{z}) first

$\bar{x}_{T, s}-\bar{x}_{T, S+1}$	Fund	$\left(\bar{x}_{T, s}-\bar{x}_{T, S+1}\right) / \hat{\sigma}_{T, s}$	Fund
1.70	Libra Fund	10.63	Market Neutral* *
1.41	Private Investment Fund	9.26	Market Neutral Arbitrage* *
1.36	Aggressive Appreciation	8.43	Univest (B)* *
1.27	Gamut Investments	6.33	TQA Arbitrage Fund*
1.26	Turnberry Capital	5.48	Event-Driven Risk Arbitrage* *
1.14	FBR Weston	5.29	Gabelli Associates* *
1.11	Berkshire Partnership	5.24	Elliott Associates**
1.09	Eagle Capital	5.11	Event Driven Median
1.07	York Capital	4.97	Halcyon Fund
1.07	Gabelli Intl.	4.65	Mesirow Arbitrage Trust

- The main step in the StepM algorithm is identical to the RC
- The important difference is that the test is implemented for each null, rather than globally
- StepM will suffer if very poor models are included with a large variance
- Especially true for raw version, but also relevant for Studentized version
- Example

$$
\left[\begin{array}{c}
\bar{\delta}_{1} \\
\bar{\delta}_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
0 \\
-5
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

- Reality Check critical value will be 1.95 , while "best" critical value would be 1.645 (since only 1 relevant for asymptotic distribution)
- The RC portions of StepM can be replaced by SPA versions which addresses this problem
- Simple as adding in the indicator function I_{j}^{c} when subtracting the mean in step 3 (step 4 in Studentized version)
- Using SPA modification will always find more out-performing models
- RC, SPA and StepM were all testing superior predictive ability
- This type hypothesis is common when there is a natural benchmark
- In some scenarios there may not be a single benchmark, or there may more than one models which could be considered benchmarks
- When this occurs, it is not clear
- How to implement RC/SPA/StepM
- How to make sound conclusions about superior predictive ability
- The model confidence set addresses this problem by bypassing the benchmark
- The MCS aims to find the best model and all models which are indistinguishable from the best
- The model with the lowest loss will always be the best - identifying the others is more challenging
- Also returns p-values for models with respect to the MCS
- The outcome of the MCS is a set of models
- All model sets will be denoted using \mathcal{M}
- The initial model set is \mathcal{M}_{0}
- The goal is to find \mathcal{M}^{\star} which is the set of all models which are indistinguishable from the best
- The output of the MCS algorithm is $\widehat{\mathcal{M}}_{1-\alpha}$ where α is the size of the test
- The size is interpreted as a Familywise Error Rate - same as StepM
- In general $\widehat{\mathcal{M}}_{1-\alpha}$ will contain more than 1 model
- In between \mathcal{M}_{0} and $\widehat{\mathcal{M}}_{1-\alpha}$ are other sets of models

$$
\mathcal{M}_{0} \supset \mathcal{M}_{1} \supset \ldots \supset \widehat{\mathcal{M}}_{1-\alpha}
$$

- To construct the model confidence set, two tools are needed
- An equivalence test $d_{\mathcal{M}}$: Determines whether the model in \mathcal{M} are equal in terms of loss
- An elimination rule $e_{\mathcal{M}}$: Determines which model to eliminate if $d_{\mathcal{M}}$ finds that the models are not equivalent
- The generic form of the algorithm, starting at $i=0$:

1. Apply $d_{\mathcal{M}}$ to \mathcal{M}_{i}
2. If $d_{\mathcal{M}}$ rejects equivalence, use $e_{\mathcal{M}}$ to eliminate 1 model to produce \mathcal{M}_{i+1}
a. If not, stop
3. Increment i, return to 1

- Has a similar flavor to StepM
- Also gains from eliminating models with high variance
- When the algorithm ends, the final set $\widehat{\mathcal{M}}_{1-\alpha}$ has the property

$$
\lim _{P \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M}^{\star} \subset \widehat{\mathcal{M}}_{1-\alpha}\right) \geq 1-\alpha
$$

- The result follows directly since the FWE is $\leq \alpha$
- If there is only 1 "best" model, then the result can be strengthened

$$
\lim _{P \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M}^{\star} \subset \widehat{\mathcal{M}}_{1-\alpha}\right)=1
$$

- The MCS will find the "best" model asymptotically
- The intuition behind this is that the "best" model will have:
- Lower loss than all other models
- The variance of the average loss differential will decline as $P \rightarrow \infty$
- When 2 or more models are equally good, there is always a α chance that at least 1 will be rejected
- In large samples, models which are not in \mathcal{M}^{\star} will be eliminated with probability 1 since the individual test statistics are consistent
- The MCS takes loss functions as inputs, but ultimately works on loss differentials
- Since there is no benchmark model, all loss differentials are considered

$$
\delta_{i j, t}=L\left(y_{t+h}, \hat{y}_{t+h, i \mid t}\right)-L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)
$$

- There are many pairs, and so the actual test examines whether the average loss for model j is different from that of all models

$$
\bar{\delta}_{i}=\frac{1}{m-1} \sum_{i=1, i \neq j}^{m} \bar{\delta}_{i j}
$$

- If $\bar{\delta}_{i}$ is sufficiently positive, then model i is worse then the other models in the set
- The MCS can be based on two test statistics
- Both satisfy some technical conditions on $d_{\mathcal{M}}$ and $e_{\mathcal{M}}$
- The first is based on $T=\max _{i \in \mathcal{M}}\left(\bar{z}_{i}\right)$ where $\bar{z}_{i}=\bar{\delta}_{i} / \hat{\sigma}_{i}$ and $\hat{\sigma}_{i}^{2}$ is an estimate of the (log-run) variance of $\bar{\delta}_{i}$
- The elimination rule is $e_{\mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} z_{i}$
- The second is based on $T_{R}=\max _{i, j \in \mathcal{M}}\left|\bar{z}_{i j}\right|$ where $\bar{z}_{i j}=\bar{\delta}_{i j} / \hat{\sigma}_{i j}$ and $\hat{\sigma}_{i j}$ is an estimate of the (log-run) variance of $\bar{\delta}_{i j}$
- The elimination rule is $e_{R, \mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} \sup _{j \in \mathcal{M}} \bar{z}_{i j}$
- Eliminate the model which has the largest loss differential to some other model, relative to its standard deviation
- At each step the null is $H_{0}: \mathcal{M}=\mathcal{M}^{\star}$ and the alternative is $H_{1}: \mathcal{M} \supsetneq \mathcal{M}^{\star}$

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS construction using a bootstrap appropriate for the data
2. Construct the average loss for each model

$$
\bar{L}_{j}=P^{-1} \sum_{t=R+1}^{T} L_{j, t}
$$

where $L_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
3. For each bootstrap replication, compute centered the bootstrap average loss

$$
\eta_{b, j}^{\star}=P^{-1} \sum_{t=R+1}^{T} L_{b, j, t}^{*}-\bar{L}_{j}
$$

Algorithm (Model Confidence Set)

1. Being with $\mathcal{M}=\mathcal{M}_{0}$ containing all models where m is the number of models in M
2. Calculate $\bar{L}=m^{-1} \sum_{j=1}^{m} \bar{L}_{j}, \eta_{b}^{\star}=m^{-1} \sum_{j=1}^{m} \eta_{b, j}^{\star}$, and

$$
\hat{\sigma}_{j}^{2}=B^{-1} \sum_{b=1}^{B}\left(\eta_{b, j}^{\star}-\bar{\eta}_{j}^{\star}\right)^{2} \text { where } \bar{\eta}_{j}^{\star} \text { is the average of } \eta_{b, j}^{*} \text { for model } j
$$

3. Define $T=\max _{j \in \mathcal{M}}\left(\bar{z}_{j}\right)$ where $\bar{z}_{j}=\bar{L}_{j} / \hat{\sigma}_{j}$
4. For each bootstrap sample, compute

$$
T_{b}^{\star}=\max _{j \in \mathcal{M}}\left(\left(\bar{L}_{b, j}^{\star}-\bar{L}_{b}^{\star}\right) / \hat{\sigma}_{j}\right)=\max _{j \in \mathcal{M}}\left(\left(\eta_{b, j}^{\star}-\eta_{b}^{\star}\right) / \hat{\sigma}_{j}\right)
$$

5. Compute the p-value of \mathcal{M} as $\hat{p}=B^{-1} \sum_{b=1}^{B} I\left[T_{b}^{\star}>T\right]$
6. If $\hat{p}>\alpha$ stop
7. If $\hat{p}<\alpha$, set $e_{\mathcal{M}}=\operatorname{argmax}_{j \in \mathcal{M}}\left(\bar{z}_{j}\right)$ and eliminate the model with the largest test statistic from \mathcal{M}
8. Return to step 2, using the reduced model set

- It is important that the variance estimates are re-computed in each step of algorithm
- This allows the standard errors to decline if poor models are excluded since the cross-sectional variance of \bar{L}_{j} should be smaller when a bad model is dropped
- In practice the MCS should be implemented by computing in order

1. A set of bootstrap indices
2. The P by m set of bootstrapped losses $L_{b, j, t}^{*}$
3. The 1 by m vector containing $\eta_{b, j}^{\star}$

- By iterating over these B times only the B by m matrix containing $\eta_{b, j}^{\star}$ has to be retained
- Plus the 1 by m vector containing \bar{L}_{j}
- The MCS can also provide p-values for each model
- If model i is eliminated, then the p-value of model i is the maximum of the \hat{p} found when model i is eliminated and all previous p-values
- Suppose $\alpha=.05$, and the first three rounds eliminated models with \hat{p} of $.01, .04, .02$, respectively
- The three p-values would then be:
- . 01 (nothing to compare against)
- . $04=\max (.01, .04)$
- . $04=\max (.02, .04)$
- The output of the MCS algorithm is $\widehat{\mathcal{M}}_{1-\alpha}$ which contains the true set of best models with probability weakly larger than $1-\alpha$
- This is similar to a standard frequentist confidence interval which contains the true parameter with probability of at least $1-\alpha$
- The MCS p-value is not a statement about the probability that a model is the best
- For example, the model with the lowest loss always has p-value $=1$

Table 1: Computation of MCS p-values

Elimination Rule	p-value for $H_{0, \mathcal{M}_{k}}$	MCS p-value
$e_{\mathcal{M}_{1}}$	$P_{H_{0, \mathcal{M}_{1}}}=0.01$	$\hat{p}_{\mathcal{M}_{\mathcal{M}_{1}}}=0.01$
$e_{\mathcal{M}_{2}}$	$P_{H_{0, \mathcal{M}_{2}}}=0.04$	$\hat{p}_{\mathcal{M}_{2}}=0.04$
$e_{\mathcal{M}_{3}}$	$P_{H_{0, \mathcal{M}_{3}}}=0.02$	$\hat{p}_{\mathcal{M}_{\mathcal{M}_{3}}}=0.04$
$e_{\mathcal{M}_{4}}$	$P_{H_{0, \mathcal{M}_{4}}}=0.03$	$\hat{p}_{\mathcal{M}_{\mathcal{M}_{4}}}=0.04$
$e_{\mathcal{M}_{5}}$	$P_{H_{0, \mathcal{M}_{5}}}=0.07$	$\hat{p}_{\mathcal{M}_{\mathcal{M}_{5}}}=0.07$
$e_{\mathcal{M}_{6}}$	$P_{H_{0, \mathcal{M}_{6}}}=0.04$	$\hat{p}_{\mathcal{M}_{6}}=0.07$
$e_{\mathcal{M}_{7}}$	$P_{H_{0, \mathcal{M}_{7}}}=0.11$	$\hat{p}_{\mathcal{M}_{7}}=0.11$
$e_{\mathcal{M}_{8}}$	$P_{H_{0, \mathcal{M}_{8}}}=0.25$	$\hat{p}_{\mathcal{M}_{\mathcal{M}_{8}}}=0.25$
\vdots	\vdots	\vdots
$e_{\mathcal{M}_{\left(m_{0}\right)}}$	$P_{H_{0, \mathcal{M}_{m_{0}}}} \equiv 1.00$	$\hat{p}_{\mathcal{M}_{M_{0}}}=1.00$

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS construction using a bootstrap appropriate for the data
2. Construct the average loss for each model $\bar{L}_{j}=P^{-1} \sum_{t=R+1}^{T} L_{j, t}$ where $L_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
3. For each bootstrap replication, compute centered the bootstrap average loss

$$
\bar{L}_{b, j}^{\star}=P^{-1} \sum_{t=R+1}^{T} L_{b, j, t}^{*}-\bar{L}_{j}
$$

4. Calculate

$$
\hat{\sigma}_{i j}^{2}=B^{-1} \sum_{b=1}^{B}\left(\left(\bar{L}_{b, i}^{\star}-\bar{L}_{i}^{\star}\right)-\left(\bar{L}_{b, j}^{\star}-\bar{L}_{j}^{\star}\right)\right)^{2}
$$

where \bar{L}_{j}^{\star} is the average of $\bar{L}_{b, j}^{\star}$ for the model j across all bootstraps

Algorithm (Model Confidence Set)

1. Being with $\mathcal{M}=\mathcal{M}_{0}$ containing all models where m is the number of models in M
2. Define $T_{R}=\max _{i, j \in \mathcal{M}}\left(\bar{z}_{i j}\right)$ where $\bar{z}_{i j}=\left|\bar{L}_{i}-\bar{L}_{j}\right| / \hat{\sigma}_{i j}$
3. For each bootstrap sample, compute $T_{R, b}^{\star}=\max _{i, j \in \mathcal{M}}\left(\left|\bar{L}_{i}^{\star}-\bar{L}_{j}^{\star}\right| / \hat{\sigma}_{i j}\right)$
4. Compute the p-value of \mathcal{M} as

$$
\hat{p}=B^{-1} \sum_{b=1}^{B} I\left[T_{R, b}^{\star}>T_{R}\right]
$$

5. If $\hat{p}>\alpha$ stop
6. If $\hat{p}<\alpha$, set $e_{\mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} \sup _{j \in \mathcal{M}}\left(\bar{z}_{i j}\right)$ and eliminate the model with the largest test statistic from \mathcal{M}
7. Return to step 2 , using the reduced model set

- The main difference is that the variance is not re-estimated in each iteration
- This happens since T_{R} is based on the maximum DMW test statistic in each iteration
- DMW only depends on the properties of the pair
- However, the bootstrapped distribution does depend on which models are included and so this will vary across the iterations
- This version of the algorithm requires storing the B by matrix of \bar{L}_{j}^{\star}
- The MCS can be used to construct confidence sets for ICs
- This type of comparison does not directly use forecasts, and so is in-sample
- This differs from traditional model selection where only the model with the best IC is chosen
- The MCS for an IC could be used as a pre-filtering mechanism prior to combining
- Implementing the MCS on an IC is slightly more complicated than the default MCS since it is necessary to jointly bootstrap the vector $\left\{y_{t}, \mathbf{x}_{j, t}\right\}$ where $\mathbf{x}_{j, t}$ are the regressors in model j
- Paper recommends using T_{R} statistic to compare models using IC
- The object of interest is

$$
I C_{j}=T \ln \hat{\sigma}_{j}^{2}+c_{j}
$$

- c_{j} is the penalty term
- AIC: $2 k_{j}$, BIC: $k_{j} \ln T$
- $\mathrm{AIC}^{\star}: 2 k_{j}^{\star}, \mathrm{BIC}^{\star}: k_{j}^{\star} \ln T$
- k_{j}^{\star} is known as effective degrees of freedom (in mis-specified model $k^{\star} \neq k$)
- MCS paper discusses how to estimate k^{\star}
- Using T_{R} MCS construction algorithm, the test statistic is based on

$$
T_{R}=\max _{i, j \in \mathcal{M}}\left|\left[T \ln \hat{\sigma}_{i}^{2}+c_{i}\right]-\left[T \ln \hat{\sigma}_{j}^{2}+c_{j}\right]\right|
$$

- The bootstrap critical values are computed from

$$
T_{R, b}^{\star}=\max _{i, j \in \mathcal{M}}\left(\left[T \ln \hat{\sigma}_{i}^{2 \star}+c_{i}-T \ln \hat{\sigma}_{i}^{2}\right]-\left[T \ln \hat{\sigma}_{j}^{2 \star}+c_{j}-T \ln \hat{\sigma}_{j}^{2}\right]\right)
$$

- $\hat{\sigma}_{i}^{2 \star}$ is the variance computed using

$$
\epsilon_{b, t}^{\star}=y_{b, t}^{\star}-\mathbf{x}_{b, j, t}^{\star \prime} \hat{\boldsymbol{\beta}}_{b, j}^{\star}
$$

- $\hat{\boldsymbol{\beta}}_{b, j}^{\star}$ is re-estimated using the bootstrapped data $\left\{y_{b, t}^{\star}, \mathbf{x}_{b, j, t}^{\star}\right\}$
- Errors are computed using the bootstrapped data and parameter estimates
- Aside from these changes, the remainder of the algorithm is unmodified
- Controlling False Discover Rate (FDR) is an alternative to controlling Family Wise Error Rate (FWER)

Definition (k-Familywise Error Rate)

For a set of null and alternative hypotheses $H_{0, i}$ and $H_{1, i}$ for $i=1, \ldots, m$, let \mathcal{I}_{0} contain the indices of the correct null hypotheses. The k-Familywise Error Rate is defined as
$\operatorname{Pr}\left(\right.$ Rejecting at least $k H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)=1-\operatorname{Pr}\left(\right.$ Reject no $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)$

- k is typically 1 , so the testing procedures control the probability of any number of false rejections
- Type I errors
- The makes FWER tests possibly conservative
- Depends on what the actual intent of the study is

Definition

The False Discovery Rate is the percentage of false null hypothesis relative to the total number of rejections, and is defined

$$
F D R=F / R
$$

where F is the number of false rejections and R is the total number of rejections.

- Unlike FWER, methods that control FDR explicitly assume that some rejections are false.
- Ultimately this leads to a (potentially) procedure that might discover more actual rejections
- For standard DMW-type tests, both FWER and FDR control fundamentally reduce to choosing a critical value different from the usual ± 1.96
- Most of the time larger in magnitude
- Can be smaller in the case of FDR when there are many false nulls
- FDR is naturally adaptive
- When the number of false nulls is small (~ 0), then FDR should choose a critical value similar to the FWER-based procedures
- $R \approx F, F / R \approx 1$ so any F is too large
- On the other hand, when the percentage of false nulls is near 100%, can reject all nulls
- $F \approx 0, F / R \approx 0$ and all nulls can be rejected
- Critical value can be arbitrarily small since virtually no tests have small values
- Hypothetically, could have a critical value of 0 if all nulls were actually false
- FDR controls the false rejection rate, and it is common to use rates in the range of 5-10\%
- Ultimately should depend on risk associated with trading a bad strategy against the cost of missing a good strategy
- Adding a small percentage of near 0 excess return strategies to a large set of useful strategies shouldn't deteriorate performance substantially
- Operationalizing FDR requires some estimates
- In standard trading strategy setup, $H_{0}: \mu=0, H_{A}: \mu \neq 0$ where μ is the expected return in excess of some benchmark
- Benchmark might be risk-free rate, or could be buy-and-hold strategy
- π is the proportion of false nulls
- Estimated using information about the distribution of p-values "near" 1 since these should all be generated from true nulls
- Entire procedure relies on only p-values
- Similar to Bonferoni or Bonferoni-Holm
- For standard 2 -sided alternative

$$
p_{i}=2\left(1-\Phi\left(\left|t_{i}\right|\right)\right)
$$

where t_{i} is (normalized) test statistic for strategy i.

- Key idea is to find γ, which is some number in $[0,1]$ such that

$$
\alpha=\widehat{F D R} \equiv \frac{\hat{\pi} l \gamma}{\sum_{i=1}^{l} I\left[p_{i}<\gamma\right]}
$$

- where
- α is the target FDR rate
- $\hat{\pi}$ and an estimate of the percentage of nulls that are true (no abnormal performance)
- l is the number of rules
- γ is the parameter that is used to find the p -value cutoff
- $\sum_{i=1}^{l} I\left[p_{i}<\gamma\right]$ is the number of rejections using γ
- The numerator is simply an estimate of the number of false rejections, which is
Probability of Null True \times Number of Hypotheses $=$ Number of True Hypotheses
Number of False Hypotheses \times Cutoff $=$ Number of False that are Rejected using γ
- Exploits the fact that under the null p-values have a uniform distribution, so that if there are M false nulls, then, using a threshold of γ will reject γM
- Can further decompose FDR into upper (better) and lower (worse) measures

$$
\widehat{F D R}^{+} \equiv \frac{1 / 2 \hat{\pi} l \gamma_{U}}{\sum_{i=1}^{l} I\left[p_{i}<\gamma_{U}, t_{i}>0\right]}, \quad \widehat{F D R}^{+} \equiv \frac{1 / 2 \hat{\pi} l \gamma_{L}}{\sum_{i=1}^{l} I\left[p_{i}<\gamma_{L}, t_{i}<0\right]}
$$

- This version assumes a symmetric 2 -sided test statistic, so that on average 50% of the false rejections are in each tail
- Allows for tail-specific choice of γ which would naturally vary if the number of correct rejections was different
- Suppose for example that many rules were bad, then γ_{L} would be relatively large
- π is estimated as

$$
\hat{\pi}=\frac{\sum_{i=1}^{l} I\left[p_{k}>\lambda\right]}{l(1-\lambda)}
$$

- λ is a tuning parameter
- Simple to choose using visual inspection
- Recall that true nulls lead to a flat p-value histogram
- Find point where histogram looks non-flat, use cutoff for λ
- Histogram from BS

- $\hat{\pi}$ allows percentage of correct rejections to be computed as $\hat{\pi}^{A}=1-\hat{\pi}$
- In the decomposed FDR the number of good (bad) rules can be computed as

$$
\alpha \times \sum_{i=1}^{l} I\left[p_{i}<\gamma_{U}, t_{i}>0\right]
$$

- Note that γ_{U} is fixed here
- Apply FDR to technical trading rules of STW
- Use DJIA
- 1897-2011
- Find similar results, although importantly consider transaction costs for break even
- Strategies that trade more can have higher means while not violating EMH

Sample period	RW portfolio		Best rule		DJIA Sharpe ratio
	Sharpe ratio	Portfolio size	Sharpe ratio	BRC p - value	
$\begin{aligned} & 1: 1897- \\ & 1914 \end{aligned}$	1.24	45	1.18	0.00	-0.12
$\begin{aligned} & 2: 1915- \\ & 1938 \end{aligned}$	-	0	0.73	0.11	0.06
$\begin{aligned} & \text { 3: 1939- } \\ & 1962 \end{aligned}$	1.49	62	2.34	0.00	0.41
$\begin{aligned} & \text { 4: } 1962 \text { - } \\ & 1986 \end{aligned}$	1.52	15	1.45	0.00	-0.16
$\begin{aligned} & 5: 1987- \\ & 1996 \end{aligned}$	-	0	0.84	0.93	0.66
$\begin{aligned} & \text { 6: } 1997- \\ & 2011 \end{aligned}$	-	0	0.48	1.00	0.12
$\begin{aligned} & 1897- \\ & 1996 \end{aligned}$	0.70	88	0.82	0.00	0.12

- Transaction costs are important when assessing rules
- Rather than apply arbitrary TC, look for break even
- Transaction costs are a function of mean and number of transactions

$$
0=\mu_{i}-T C \times \#\{\text { trades }\}
$$

- μ_{i} is the full-sample mean, not the annualized

- Transaction for break even are lower
- Actual transaction costs are lower
- Unclear whether this is driven by more trading signals or worse mean

Sample period	FDR portfolio			RW portfolio			50 best rules		Best rule	
	IS	OOS	Median size	IS	OOS	Median size	IS	OOS	IS	OOS
1: 1897-1914	3.41	0.47	14	1.31	0.51	0	5.79	0.50	6.34	0.03
2: 1915-1938	4.62	0.01	13	0.90	0.17	0	5.39	-0.03	5.98	0.09
3: 1939-1962	4.77	0.55	15	1.85	0.09	0	5.78	0.43	6.70	0.12
4: 1962-1986	5.34	-0.31	13	1.36	0.14	0	6.17	-0.18	6.95	-0.59
5: 1987-1996	4.52	-0.34	12	-	-	-	5.44	-0.37	6.07	0.08
6: 1997-2011	4.55	-0.74	12	0.78	0.07	0	5.22	-0.51	5.97	-0.27

- Sharpe-Ratios
- Persistence is low
- Conservative Romano-Wolf appears to have more persistence
- Combination appears to be not help

